pressure derivations

  1. pressure from bounds

    symbol description unit variable name
    \(p\) pressure \(Pa\) pressure {:}
    \(p^{B}(l)\) pressure boundaries (\(l \in \{1,2\}\)) \(Pa\) pressure_bounds {:,2}

    The pattern : for the dimensions can represent {vertical}, or {time,vertical}.

    \[p = e^{\frac{ln(z^{B}(2)) + ln(z^{B}(1))}{2}}\]
  2. pressure from altitude

    symbol description unit variable name
    \(a\) WGS84 semi-major axis \(m\)  
    \(b\) WGS84 semi-minor axis \(m\)  
    \(f\) WGS84 flattening \(m\)  
    \(g\) gravity \(\frac{m}{s^2}\)  
    \(g_{0}\) mean earth gravity \(\frac{m}{s^2}\)  
    \(g_{surf}\) gravity at surface \(\frac{m}{s^2}\)  
    \(GM\) WGS84 earth’s gravitational constant \(\frac{m^3}{s^2}\)  
    \(M_{air}(i)\) molar mass of total air \(\frac{g}{mol}\) molar_mass {:,vertical}
    \(p(i)\) pressure \(Pa\) pressure {:,vertical}
    \(p_{surf}\) surface pressure \(Pa\) surface_pressure {:}
    \(R\) universal gas constant \(\frac{kg m^2}{K mol s^2}\)  
    \(T(i)\) temperature \(K\) temperature {:,vertical}
    \(z(i)\) altitude \(m\) altitude {:,vertical}
    \(z_{surf}\) surface height \(m\) surface_altitude {:}
    \(\phi\) latitude \(degN\) latitude {:}
    \(\omega\) WGS84 earth angular velocity \(rad/s\)  

    The pattern : for the dimensions can represent {latitude,longitude}, {time}, {time,latitude,longitude}, or no dimensions at all.

    The surface pressure \(p_{surf}\) and surface height \(z_{surf}\) need to use the same definition of ‘surface’.

    The altitudes \(z(i)\) are expected to be above the surface height. This should normally be the case since even for altitude grids that start at the surface, \(z_{surf}\) should equal the lower altitude boundary \(z^{B}(1,1)\), whereas \(z(1)\) should then be between \(z^{B}(1,1)\) and \(z^{B}(1,2)\) (which is generally not equal to \(z^{B}(1,1)\)).

    \begin{eqnarray} g_{surf} & = & 9.7803253359 \frac{1 + 0.00193185265241{\sin}^2(\frac{\pi}{180}\phi)} {\sqrt{1 - 0.00669437999013 {\sin}^2(\frac{\pi}{180}\phi)}} \\ m & = & \frac{\omega^2a^2b}{GM} \\ g(1) & = & g_{surf} \left(1 - \frac{2}{a}\left(1+f+m-2f{\sin}^2(\frac{\pi}{180}\phi)\right)\frac{z_{surf}+z(1)}{2} + \frac{3}{a^2}\left(\frac{z_{surf}+z(1)}{2}\right)^2\right) \\ g(i) & = & g_{surf} \left(1 - \frac{2}{a}\left(1+f+m-2f{\sin}^2(\frac{\pi}{180}\phi)\right)\frac{z(i-1)+z(i)}{2} + \frac{3}{a^2}\left(\frac{z(i-1)+z(i)}{2}\right)^2\right), 1 < i \leq N \\ p(1) & = & p_{surf}e^{-10^{-3}\frac{M_{air}(1)}{T(1)}\frac{g(1)}{R}\left(z(i)-z_{surf}\right)} \\ p(i) & = & p(i-1)e^{-10^{-3}\frac{M_{air}(i-1)+M_{air}(i)}{T(i-1)+T(i)}\frac{g(i)}{R}\left(z(i)-z(i-1)\right)}, 1 < i \leq N \end{eqnarray}
  3. pressure from geopotential height

    symbol description unit variable name
    \(g_{0}\) mean earth gravity \(\frac{m}{s^2}\)  
    \(M_{air}(i)\) molar mass of total air \(\frac{g}{mol}\) molar_mass {:,vertical}
    \(p(i)\) pressure \(Pa\) pressure {:,vertical}
    \(p_{surf}\) surface pressure \(Pa\) surface_pressure {:}
    \(R\) universal gas constant \(\frac{kg m^2}{K mol s^2}\)  
    \(T(i)\) temperature \(K\) temperature {:,vertical}
    \(z_{g}(i)\) geopotential height \(m\) geopotential_height {:,vertical}
    \(z_{g,surf}\) surface geopotential height \(m\) surface_geopotential_height {:}

    The pattern : for the dimensions can represent {latitude,longitude}, {time}, {time,latitude,longitude}, or no dimensions at all.

    The surface pressure \(p_{surf}\) and surface height \(z_{g,surf}\) need to use the same definition of ‘surface’.

    The geopotential heights \(z_{g}(i)\) are expected to be above the surface geopotential height. This should normally be the case since even for geopotential height grids that start at the surface, \(z_{g,surf}\) should equal the lower altitude boundary \(z^{B}_{g}(1,1)\), whereas \(z_{g}(1)\) should then be between \(z^{B}_{g}(1,1)\) and \(z^{B}_{g}(1,2)\) (which is generally not equal to \(z^{B}_{g}(1,1)\)).

    \begin{eqnarray} p(1) & = & p_{surf}e^{-10^{-3}\frac{M_{air}(1)}{T(1)}\frac{g_{0}}{R}\left(z_{g}(i)-z_{g,surf}\right)} \\ p(i) & = & p(i-1)e^{-10^{-3}\frac{M_{air}(i-1)+M_{air}(i)}{T(i-1)+T(i)}\frac{g_{0}}{R}\left(z_{g}(i)-z_{g}(i-1)\right)}, 1 < i \leq N \end{eqnarray}
  4. pressure from number density and temperature

    symbol description unit variable name
    \(k\) Boltzmann constant \(\frac{kg m^2}{K s^2}\)  
    \(n\) number density \(\frac{molec}{m^3}\) number_density {:}
    \(p\) pressure \(Pa\) pressure {:}
    \(T\) temperature \(K\) temperature {:}

    The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.

    \[p = nkT\]
  5. surface pressure from surface number density and surface temperature

    symbol description unit variable name
    \(k\) Boltzmann constant \(\frac{kg m^2}{K s^2}\)  
    \(n_{surf}\) surface number density \(\frac{molec}{m^3}\) surface_number_density {:}
    \(p_{surf}\) surface pressure \(Pa\) surface_pressure {:}
    \(T_{surf}\) surface temperature \(K\) surface_temperature {:}

    The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.

    \[p_{surf} = n_{surf}kT_{surf}\]
  6. tropopause pressure from temperature and altitude/pressure

    symbol description unit variable name
    \(p(i)\) pressure \(Pa\) pressure {:,vertical}
    \(p_{TP}\) tropopause pressure \(Pa\) tropopause_pressure {:}
    \(T(i)\) temperature \(K\) temperature {:,vertical}
    \(z(i)\) altitude \(m\) altitude {:,vertical}

    The pattern : for the dimensions can represent {latitude,longitude}, {time}, {time,latitude,longitude}, or no dimensions at all.

    The tropopause pressure \(p_{TP}\) equals the pressure \(p(i)\) where \(i\) is the minimum level that satisfies:

    \begin{eqnarray} & 1 < i < N & \wedge \\ & 5000 <= p(i) <= 50000 & \wedge \\ & \frac{T(i-1)-T(i)}{z(i)-z(i-1)} > 0.002 \wedge \frac{T(i)-T(i+1)}{z(i+1)-z(i)} <= 0.002 & \wedge \\ & \forall_{j, i < j <= N \wedge z(j)-z(i) <= 2000} \frac{T(i)-T(j)}{z(j)-z(i)} <= 0.002 & \end{eqnarray}

    If no such \(i\) can be found then \(p_{TP}\) is set to NaN.