<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />




<title>Effects of Correction of Detection Rate</title>

<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/yeti.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/font-awesome-4.5.0/css/font-awesome.min.css" rel="stylesheet" />


<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
div.sourceCode { overflow-x: auto; }
table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode {
  margin: 0; padding: 0; vertical-align: baseline; border: none; }
table.sourceCode { width: 100%; line-height: 100%; background-color: #f8f8f8; }
td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; }
td.sourceCode { padding-left: 5px; }
pre, code { background-color: #f8f8f8; }
code > span.kw { color: #204a87; font-weight: bold; } /* Keyword */
code > span.dt { color: #204a87; } /* DataType */
code > span.dv { color: #0000cf; } /* DecVal */
code > span.bn { color: #0000cf; } /* BaseN */
code > span.fl { color: #0000cf; } /* Float */
code > span.ch { color: #4e9a06; } /* Char */
code > span.st { color: #4e9a06; } /* String */
code > span.co { color: #8f5902; font-style: italic; } /* Comment */
code > span.ot { color: #8f5902; } /* Other */
code > span.al { color: #ef2929; } /* Alert */
code > span.fu { color: #000000; } /* Function */
code > span.er { color: #a40000; font-weight: bold; } /* Error */
code > span.wa { color: #8f5902; font-weight: bold; font-style: italic; } /* Warning */
code > span.cn { color: #000000; } /* Constant */
code > span.sc { color: #000000; } /* SpecialChar */
code > span.vs { color: #4e9a06; } /* VerbatimString */
code > span.ss { color: #4e9a06; } /* SpecialString */
code > span.im { } /* Import */
code > span.va { color: #000000; } /* Variable */
code > span.cf { color: #204a87; font-weight: bold; } /* ControlFlow */
code > span.op { color: #ce5c00; font-weight: bold; } /* Operator */
code > span.pp { color: #8f5902; font-style: italic; } /* Preprocessor */
code > span.ex { } /* Extension */
code > span.at { color: #c4a000; } /* Attribute */
code > span.do { color: #8f5902; font-weight: bold; font-style: italic; } /* Documentation */
code > span.an { color: #8f5902; font-weight: bold; font-style: italic; } /* Annotation */
code > span.cv { color: #8f5902; font-weight: bold; font-style: italic; } /* CommentVar */
code > span.in { color: #8f5902; font-weight: bold; font-style: italic; } /* Information */
</style>
<style type="text/css">
  pre:not([class]) {
    background-color: white;
  }
</style>


<style type="text/css">
h1 {
  font-size: 34px;
}
h1.title {
  font-size: 38px;
}
h2 {
  font-size: 30px;
}
h3 {
  font-size: 24px;
}
h4 {
  font-size: 18px;
}
h5 {
  font-size: 16px;
}
h6 {
  font-size: 12px;
}
.table th:not([align]) {
  text-align: left;
}
</style>


</head>

<body>

<style type = "text/css">
.main-container {
  max-width: 940px;
  margin-left: auto;
  margin-right: auto;
}
code {
  color: inherit;
  background-color: rgba(0, 0, 0, 0.04);
}
img {
  max-width:100%;
  height: auto;
}
.tabbed-pane {
  padding-top: 12px;
}
button.code-folding-btn:focus {
  outline: none;
}
</style>


<style type="text/css">
/* padding for bootstrap navbar */
body {
  padding-top: 51px;
  padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar)  */
.section h1 {
  padding-top: 56px;
  margin-top: -56px;
}

.section h2 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h3 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h4 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h5 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h6 {
  padding-top: 56px;
  margin-top: -56px;
}
</style>

<script>
// manage active state of menu based on current page
$(document).ready(function () {
  // active menu anchor
  href = window.location.pathname
  href = href.substr(href.lastIndexOf('/') + 1)
  if (href === "")
    href = "index.html";
  var menuAnchor = $('a[href="' + href + '"]');

  // mark it active
  menuAnchor.parent().addClass('active');

  // if it's got a parent navbar menu mark it active as well
  menuAnchor.closest('li.dropdown').addClass('active');
});
</script>


<div class="container-fluid main-container">

<!-- tabsets -->
<script>
$(document).ready(function () {
  window.buildTabsets("TOC");
});
</script>

<!-- code folding -->






<div class="navbar navbar-default  navbar-fixed-top" role="navigation">
  <div class="container">
    <div class="navbar-header">
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
      </button>
      <a class="navbar-brand" href="index.html">SLSL_workflow</a>
    </div>
    <div id="navbar" class="navbar-collapse collapse">
      <ul class="nav navbar-nav">
        <li>
  <a href="index.html">Home</a>
</li>
<li>
  <a href="about.html">About</a>
</li>
<li>
  <a href="tutorial.html">Tutorial</a>
</li>
<li>
  <a href="detection_rate_correction.html">Detection Rate Correction</a>
</li>
<li>
  <a href="license.html">License</a>
</li>
      </ul>
      <ul class="nav navbar-nav navbar-right">
        <li>
  <a href="https://github.com/tk382/SCNoisyClustering">
    <span class="fa fa-github"></span>
     
  </a>
</li>
      </ul>
    </div><!--/.nav-collapse -->
  </div><!--/.container -->
</div><!--/.navbar -->

<!-- Add a small amount of space between sections. -->
<style type="text/css">
div.section {
  padding-top: 12px;
}
</style>

<div class="fluid-row" id="header">



<h1 class="title toc-ignore">Effects of Correction of Detection Rate</h1>

</div>


<p><strong>Last updated:</strong> 2018-07-17</p>
<strong>workflowr checks:</strong> <small>(Click a bullet for more information)</small>
<ul>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>R Markdown file:</strong> up-to-date </summary></p>
<p>Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.</p>
</details>
</li>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>Environment:</strong> empty </summary></p>
<p>Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.</p>
</details>
</li>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>Seed:</strong> <code>set.seed(20180618)</code> </summary></p>
<p>The command <code>set.seed(20180618)</code> was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.</p>
</details>
</li>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>Session information:</strong> recorded </summary></p>
<p>Great job! Recording the operating system, R version, and package versions is critical for reproducibility.</p>
</details>
</li>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>Repository version:</strong> <a href="https://github.com/tk382/SCNoisyClustering/tree/0e83fce3d3d4188c4adec16be40b67240577cb4c" target="_blank">0e83fce</a> </summary></p>
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated. <br><br> Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use <code>wflow_publish</code> or <code>wflow_git_commit</code>). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
<pre><code>
Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    R/.Rhistory
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/correcting_detection_rate/.Rhistory
    Ignored:    analysis/pipeline/.Rhistory

Untracked files:
    Untracked:  ..gif
    Untracked:  .DS_Store
    Untracked:  R/.DS_Store
    Untracked:  analysis/.DS_Store
    Untracked:  analysis/bibliography.bib
    Untracked:  analysis/clean_data/
    Untracked:  analysis/detection_rate_correction_cache/
    Untracked:  analysis/downsampling/
    Untracked:  analysis/dropouts/
    Untracked:  analysis/filteringtest.R
    Untracked:  analysis/old/
    Untracked:  analysis/pipeline/large_sets.pdf
    Untracked:  analysis/pipeline/temp_ari.txt
    Untracked:  analysis/pipeline/temp_time.txt
    Untracked:  analysis/sysdata_reference_test/
    Untracked:  analysis/tutorial_cache/
    Untracked:  analysis/writeup/cite.bib
    Untracked:  analysis/writeup/cite.log
    Untracked:  analysis/writeup/paper.aux
    Untracked:  analysis/writeup/paper.bbl
    Untracked:  analysis/writeup/paper.blg
    Untracked:  analysis/writeup/paper.log
    Untracked:  analysis/writeup/paper.out
    Untracked:  analysis/writeup/paper.synctex.gz
    Untracked:  analysis/writeup/paper.tex
    Untracked:  analysis/writeup/writeup.aux
    Untracked:  analysis/writeup/writeup.bbl
    Untracked:  analysis/writeup/writeup.blg
    Untracked:  analysis/writeup/writeup.dvi
    Untracked:  analysis/writeup/writeup.log
    Untracked:  analysis/writeup/writeup.out
    Untracked:  analysis/writeup/writeup.synctex.gz
    Untracked:  analysis/writeup/writeup.tex
    Untracked:  analysis/writeup/writeup2.aux
    Untracked:  analysis/writeup/writeup2.bbl
    Untracked:  analysis/writeup/writeup2.blg
    Untracked:  analysis/writeup/writeup2.log
    Untracked:  analysis/writeup/writeup2.out
    Untracked:  analysis/writeup/writeup2.pdf
    Untracked:  analysis/writeup/writeup2.synctex.gz
    Untracked:  analysis/writeup/writeup2.tex
    Untracked:  analysis/writeup/writeup3.aux
    Untracked:  analysis/writeup/writeup3.log
    Untracked:  analysis/writeup/writeup3.out
    Untracked:  analysis/writeup/writeup3.synctex.gz
    Untracked:  analysis/writeup/writeup3.tex
    Untracked:  data/unnecessary_in_building/

Unstaged changes:
    Modified:   R/SLSL.R
    Deleted:    SCNoisyClustering_0.1.0.tar.gz
    Modified:   analysis/pipeline/large_sets.Rmd
    Modified:   analysis/pipeline/small_good_sets.Rmd
    Modified:   analysis/pipeline/small_good_sets_result.txt
    Modified:   analysis/pipeline/small_good_sets_time.txt
    Modified:   analysis/tutorial.Rmd
    Modified:   analysis/writeup/.DS_Store

</code></pre>
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. </details>
</li>
</ul>
<details> <summary> <small><strong>Expand here to see past versions:</strong></small> </summary>
<ul>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
File
</th>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
<th style="text-align:left;">
Message
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
html
</td>
<td style="text-align:left;">
<a href="https://cdn.rawgit.com/tk382/SCNoisyClustering/36ebfc22180cfa5fe94d018f30be3872b66a15d2/docs/detection_rate_correction.html" target="_blank">36ebfc2</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
<td style="text-align:left;">
Build site.
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/1d42e3115a20b03920e4edde2f702157ed02ccdc/analysis/detection_rate_correction.Rmd" target="_blank">1d42e31</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
<td style="text-align:left;">
wflow_publish(“analysis/detection_rate_correction.Rmd”)
</td>
</tr>
<tr>
<td style="text-align:left;">
html
</td>
<td style="text-align:left;">
<a href="https://cdn.rawgit.com/tk382/SCNoisyClustering/b7e4475a778b99f389303acbac3e5a9b5d09d752/docs/detection_rate_correction.html" target="_blank">b7e4475</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
<td style="text-align:left;">
Build site.
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/884f74e12b35e993c934a83414cb5c6aa01a74c7/analysis/detection_rate_correction.Rmd" target="_blank">884f74e</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
<td style="text-align:left;">
wflow_publish(“analysis/detection_rate_correction.Rmd”)
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/66600ac6832a8277eb7c27530636bd6c92526944/analysis/detection_rate_correction.Rmd" target="_blank">66600ac</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
<td style="text-align:left;">
add analysis files
</td>
</tr>
</tbody>
</table>
</ul>
<p></details></p>
<hr />
<div id="pollen" class="section level2">
<h2>Pollen</h2>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">i =<span class="st"> </span><span class="dv">2</span>

<span class="kw">load</span>(<span class="st">&#39;../data/unnecessary_in_building/2_Pollen.RData&#39;</span>)
X        =<span class="st"> </span><span class="kw">as.matrix</span>(Pollen<span class="op">$</span>x)
truth    =<span class="st"> </span><span class="kw">as.numeric</span>(<span class="kw">as.factor</span>(Pollen<span class="op">$</span>label))
numClust =<span class="st"> </span><span class="kw">length</span>(<span class="kw">unique</span>(truth))
logX =<span class="st"> </span><span class="kw">log</span>(X<span class="op">+</span><span class="dv">1</span>)

det =<span class="st"> </span><span class="kw">colSums</span>(X<span class="op">!=</span><span class="dv">0</span>) <span class="op">/</span><span class="st"> </span><span class="kw">nrow</span>(X)

det2 =<span class="st"> </span><span class="kw">qr</span>(det)
R =<span class="st"> </span><span class="kw">t</span>(<span class="kw">qr.resid</span>(det2, <span class="kw">t</span>(logX)))

pca1 =<span class="st"> </span><span class="kw">irlba</span>(R,<span class="dv">2</span>); pca2 =<span class="st"> </span><span class="kw">irlba</span>(logX,<span class="dv">2</span>)
dat =<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">pc1=</span><span class="kw">c</span>(pca1<span class="op">$</span>v[,<span class="dv">1</span>], pca2<span class="op">$</span>v[,<span class="dv">1</span>]), <span class="dt">detection.rate=</span><span class="kw">rep</span>(det, <span class="dv">2</span>), <span class="dt">label=</span><span class="kw">rep</span>(<span class="kw">c</span>(<span class="st">&quot;After correction&quot;</span>, <span class="st">&quot;Before correction&quot;</span>), <span class="dt">each=</span><span class="kw">nrow</span>(pca1<span class="op">$</span>v)), <span class="dt">true.label=</span><span class="kw">as.factor</span>(<span class="kw">rep</span>(truth,<span class="dv">2</span>)))
<span class="kw">ggplot</span>(dat, <span class="kw">aes</span>(<span class="dt">x=</span>pc1, <span class="dt">y=</span>detection.rate, <span class="dt">col=</span>true.label)) <span class="op">+</span><span class="st"> </span><span class="kw">facet_grid</span>(<span class="op">~</span>label) <span class="op">+</span><span class="st"> </span><span class="kw">geom_point</span>() <span class="op">+</span><span class="st"> </span><span class="kw">ggtitle</span>(<span class="st">&quot;PCA&quot;</span>)</code></pre></div>
<p><img src="figure/detection_rate_correction.Rmd/Pollen-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of Pollen-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/b7e4475a778b99f389303acbac3e5a9b5d09d752/docs/figure/detection_rate_correction.Rmd/Pollen-1.png" target="_blank">b7e4475</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
</tbody>
</table>
<p></details></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">tsne1 =<span class="st"> </span><span class="kw">Rtsne</span>(<span class="kw">t</span>(R))
tsne2 =<span class="st"> </span><span class="kw">Rtsne</span>(<span class="kw">t</span>(logX))

dat =<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">v1 =</span> <span class="kw">c</span>(tsne1<span class="op">$</span>Y[,<span class="dv">1</span>], tsne2<span class="op">$</span>Y[,<span class="dv">1</span>]), <span class="dt">v2 =</span> <span class="kw">c</span>(tsne1<span class="op">$</span>Y[,<span class="dv">2</span>], tsne2<span class="op">$</span>Y[,<span class="dv">2</span>]), <span class="dt">label=</span><span class="kw">rep</span>(<span class="kw">c</span>(<span class="st">&quot;After correction&quot;</span>, <span class="st">&quot;Before correction&quot;</span>), <span class="dt">each=</span><span class="kw">nrow</span>(tsne1<span class="op">$</span>Y)), <span class="dt">true.label =</span> <span class="kw">as.factor</span>(<span class="kw">rep</span>(truth, <span class="dv">2</span>)))
<span class="kw">ggplot</span>(dat, <span class="kw">aes</span>(<span class="dt">x=</span>v1, <span class="dt">y=</span>v2, <span class="dt">col=</span>true.label)) <span class="op">+</span><span class="st"> </span><span class="kw">facet_grid</span>(<span class="op">~</span>label) <span class="op">+</span><span class="st"> </span><span class="kw">geom_point</span>() <span class="op">+</span><span class="st"> </span><span class="kw">ggtitle</span>(<span class="st">&quot;tSNE&quot;</span>)</code></pre></div>
<p><img src="figure/detection_rate_correction.Rmd/Pollen-2.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of Pollen-2.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/b7e4475a778b99f389303acbac3e5a9b5d09d752/docs/figure/detection_rate_correction.Rmd/Pollen-2.png" target="_blank">b7e4475</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
</tbody>
</table>
<p></details></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res1 =<span class="st"> </span><span class="kw">SLSL</span>(R, <span class="dt">log=</span>F, <span class="dt">filter=</span>F, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res1<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.7755788</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res2 =<span class="st"> </span><span class="kw">SLSL</span>(X, <span class="dt">log=</span>T, <span class="dt">filter=</span>F, <span class="dt">correct_detection_rate =</span> F, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res2<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.8325414</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res3 =<span class="st"> </span><span class="kw">SLSL</span>(X, <span class="dt">log=</span>T, <span class="dt">filter=</span>F, <span class="dt">correct_detection_rate =</span> T, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res3<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.7665684</code></pre>
</div>
<div id="usoskin" class="section level2">
<h2>Usoskin</h2>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">i =<span class="st"> </span><span class="dv">3</span>

<span class="kw">load</span>(<span class="st">&#39;../data/unnecessary_in_building/3_Usoskin.RData&#39;</span>)
X        =<span class="st"> </span><span class="kw">as.matrix</span>(Usoskin<span class="op">$</span>X)
truth    =<span class="st"> </span><span class="kw">as.numeric</span>(<span class="kw">as.factor</span>(<span class="kw">as.character</span>(Usoskin<span class="op">$</span>lab1)))
numClust =<span class="st"> </span><span class="dv">4</span>
<span class="kw">rm</span>(Usoskin)

logX =<span class="st"> </span><span class="kw">log</span>(X<span class="op">+</span><span class="dv">1</span>)

det =<span class="st"> </span><span class="kw">colSums</span>(X<span class="op">!=</span><span class="dv">0</span>) <span class="op">/</span><span class="st"> </span><span class="kw">nrow</span>(X)

<span class="kw">plot</span>(<span class="kw">irlba</span>(logX,<span class="dv">1</span>)<span class="op">$</span>v[,<span class="dv">1</span>]<span class="op">~</span><span class="kw">log</span>(det))</code></pre></div>
<p><img src="figure/detection_rate_correction.Rmd/Usoskin-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of Usoskin-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/b7e4475a778b99f389303acbac3e5a9b5d09d752/docs/figure/detection_rate_correction.Rmd/Usoskin-1.png" target="_blank">b7e4475</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
</tbody>
</table>
<p></details></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">det2 =<span class="st"> </span><span class="kw">qr</span>(<span class="kw">cbind</span>(<span class="kw">rep</span>(<span class="dv">1</span>, <span class="kw">length</span>(det)), <span class="kw">log</span>(det)))
R =<span class="st"> </span><span class="kw">t</span>(<span class="kw">qr.resid</span>(det2, <span class="kw">t</span>(logX)))

pca1 =<span class="st"> </span><span class="kw">irlba</span>(R,<span class="dv">2</span>); pca2 =<span class="st"> </span><span class="kw">irlba</span>(logX,<span class="dv">2</span>)
dat =<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">pc1=</span><span class="kw">c</span>(pca1<span class="op">$</span>v[,<span class="dv">1</span>], pca2<span class="op">$</span>v[,<span class="dv">1</span>]), <span class="dt">detection.rate=</span><span class="kw">rep</span>(det, <span class="dv">2</span>), <span class="dt">label=</span><span class="kw">rep</span>(<span class="kw">c</span>(<span class="st">&quot;After correction&quot;</span>, <span class="st">&quot;Before correction&quot;</span>), <span class="dt">each=</span><span class="kw">nrow</span>(pca1<span class="op">$</span>v)), <span class="dt">true.label=</span><span class="kw">as.factor</span>(<span class="kw">rep</span>(truth,<span class="dv">2</span>)))
<span class="kw">ggplot</span>(dat, <span class="kw">aes</span>(<span class="dt">x=</span>pc1, <span class="dt">y=</span>detection.rate, <span class="dt">col=</span>true.label)) <span class="op">+</span><span class="st"> </span><span class="kw">facet_grid</span>(<span class="op">~</span>label) <span class="op">+</span><span class="st"> </span><span class="kw">geom_point</span>() <span class="op">+</span><span class="st"> </span><span class="kw">ggtitle</span>(<span class="st">&quot;PCA&quot;</span>)</code></pre></div>
<p><img src="figure/detection_rate_correction.Rmd/Usoskin-2.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of Usoskin-2.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/b7e4475a778b99f389303acbac3e5a9b5d09d752/docs/figure/detection_rate_correction.Rmd/Usoskin-2.png" target="_blank">b7e4475</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
</tbody>
</table>
<p></details></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">tsne1 =<span class="st"> </span><span class="kw">Rtsne</span>(<span class="kw">t</span>(R), <span class="dt">perplexity=</span><span class="dv">20</span>)
tsne2 =<span class="st"> </span><span class="kw">Rtsne</span>(<span class="kw">t</span>(logX))

dat =<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">v1 =</span> <span class="kw">c</span>(tsne1<span class="op">$</span>Y[,<span class="dv">1</span>], tsne2<span class="op">$</span>Y[,<span class="dv">1</span>]), <span class="dt">v2 =</span> <span class="kw">c</span>(tsne1<span class="op">$</span>Y[,<span class="dv">2</span>], tsne2<span class="op">$</span>Y[,<span class="dv">2</span>]), <span class="dt">label=</span><span class="kw">rep</span>(<span class="kw">c</span>(<span class="st">&quot;After correction&quot;</span>, <span class="st">&quot;Before correction&quot;</span>), <span class="dt">each=</span><span class="kw">nrow</span>(tsne1<span class="op">$</span>Y)), <span class="dt">true.label =</span> <span class="kw">as.factor</span>(<span class="kw">rep</span>(truth, <span class="dv">2</span>)))
<span class="kw">ggplot</span>(dat, <span class="kw">aes</span>(<span class="dt">x=</span>v1, <span class="dt">y=</span>v2, <span class="dt">col=</span>true.label)) <span class="op">+</span><span class="st"> </span><span class="kw">facet_grid</span>(<span class="op">~</span>label) <span class="op">+</span><span class="st"> </span><span class="kw">geom_point</span>() <span class="op">+</span><span class="st"> </span><span class="kw">ggtitle</span>(<span class="st">&quot;tSNE&quot;</span>)</code></pre></div>
<p><img src="figure/detection_rate_correction.Rmd/Usoskin-3.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of Usoskin-3.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/b7e4475a778b99f389303acbac3e5a9b5d09d752/docs/figure/detection_rate_correction.Rmd/Usoskin-3.png" target="_blank">b7e4475</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
</tbody>
</table>
<p></details></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res1 =<span class="st"> </span><span class="kw">SLSL</span>(R, <span class="dt">log=</span>F, <span class="dt">filter=</span>F, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res1<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.6188269</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res2 =<span class="st"> </span><span class="kw">SLSL</span>(X, <span class="dt">log=</span>T, <span class="dt">filter=</span>F, <span class="dt">correct_detection_rate =</span> F, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res2<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.8746858</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res3 =<span class="st"> </span><span class="kw">SLSL</span>(X, <span class="dt">log=</span>T, <span class="dt">filter=</span>F, <span class="dt">correct_detection_rate =</span> T, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res3<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.6348444</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">rm</span>(R,X,logX,res1,res2,res3); <span class="kw">gc</span>()</code></pre></div>
<pre><code>          used  (Mb) gc trigger   (Mb) limit (Mb)  max used   (Mb)
Ncells 2221109 118.7    3972565  212.2         NA   3972565  212.2
Vcells 5410323  41.3  166030754 1266.8      16384 207538345 1583.4</code></pre>
</div>
<div id="buettner" class="section level2">
<h2>Buettner</h2>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">i =<span class="st"> </span><span class="dv">4</span>

<span class="co">#read data</span>
<span class="kw">load</span>(<span class="st">&#39;../data/unnecessary_in_building/4_Buettner.RData&#39;</span>)
X        =<span class="st"> </span><span class="kw">as.matrix</span>(Buettner<span class="op">$</span>X)
truth    =<span class="st"> </span><span class="kw">as.numeric</span>(<span class="kw">as.factor</span>(Buettner<span class="op">$</span>label))
numClust =<span class="st"> </span><span class="dv">3</span>
<span class="kw">rm</span>(Buettner)

logX =<span class="st"> </span><span class="kw">log</span>(X<span class="op">+</span><span class="dv">1</span>)
det =<span class="st"> </span><span class="kw">colSums</span>(X<span class="op">!=</span><span class="dv">0</span>) <span class="op">/</span><span class="st"> </span><span class="kw">nrow</span>(X)

det2 =<span class="st"> </span><span class="kw">qr</span>(det)
R =<span class="st"> </span><span class="kw">t</span>(<span class="kw">qr.resid</span>(det2, <span class="kw">t</span>(logX)))

pca1 =<span class="st"> </span><span class="kw">irlba</span>(R,<span class="dv">2</span>); pca2 =<span class="st"> </span><span class="kw">irlba</span>(logX,<span class="dv">2</span>)
dat =<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">pc1=</span><span class="kw">c</span>(pca1<span class="op">$</span>v[,<span class="dv">1</span>], pca2<span class="op">$</span>v[,<span class="dv">1</span>]), <span class="dt">detection.rate=</span><span class="kw">rep</span>(det, <span class="dv">2</span>), <span class="dt">label=</span><span class="kw">rep</span>(<span class="kw">c</span>(<span class="st">&quot;After correction&quot;</span>, <span class="st">&quot;Before correction&quot;</span>), <span class="dt">each=</span><span class="kw">nrow</span>(pca1<span class="op">$</span>v)), <span class="dt">true.label=</span><span class="kw">as.factor</span>(<span class="kw">rep</span>(truth,<span class="dv">2</span>)))
<span class="kw">ggplot</span>(dat, <span class="kw">aes</span>(<span class="dt">x=</span>pc1, <span class="dt">y=</span>detection.rate, <span class="dt">col=</span>true.label)) <span class="op">+</span><span class="st"> </span><span class="kw">facet_grid</span>(<span class="op">~</span>label) <span class="op">+</span><span class="st"> </span><span class="kw">geom_point</span>() <span class="op">+</span><span class="st"> </span><span class="kw">ggtitle</span>(<span class="st">&quot;PCA&quot;</span>)</code></pre></div>
<p><img src="figure/detection_rate_correction.Rmd/Buettner-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of Buettner-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/b7e4475a778b99f389303acbac3e5a9b5d09d752/docs/figure/detection_rate_correction.Rmd/Buettner-1.png" target="_blank">b7e4475</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
</tbody>
</table>
<p></details></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">tsne1 =<span class="st"> </span><span class="kw">Rtsne</span>(<span class="kw">t</span>(R), <span class="dt">perplexity=</span><span class="dv">20</span>)
tsne2 =<span class="st"> </span><span class="kw">Rtsne</span>(<span class="kw">t</span>(logX), <span class="dt">perplexity=</span><span class="dv">20</span>)

dat =<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">v1 =</span> <span class="kw">c</span>(tsne1<span class="op">$</span>Y[,<span class="dv">1</span>], tsne2<span class="op">$</span>Y[,<span class="dv">1</span>]), <span class="dt">v2 =</span> <span class="kw">c</span>(tsne1<span class="op">$</span>Y[,<span class="dv">2</span>], tsne2<span class="op">$</span>Y[,<span class="dv">2</span>]), <span class="dt">label=</span><span class="kw">rep</span>(<span class="kw">c</span>(<span class="st">&quot;After correction&quot;</span>, <span class="st">&quot;Before correction&quot;</span>), <span class="dt">each=</span><span class="kw">nrow</span>(tsne1<span class="op">$</span>Y)), <span class="dt">true.label =</span> <span class="kw">as.factor</span>(<span class="kw">rep</span>(truth, <span class="dv">2</span>)))
<span class="kw">ggplot</span>(dat, <span class="kw">aes</span>(<span class="dt">x=</span>v1, <span class="dt">y=</span>v2, <span class="dt">col=</span>true.label)) <span class="op">+</span><span class="st"> </span><span class="kw">facet_grid</span>(<span class="op">~</span>label) <span class="op">+</span><span class="st"> </span><span class="kw">geom_point</span>() <span class="op">+</span><span class="st"> </span><span class="kw">ggtitle</span>(<span class="st">&quot;tSNE&quot;</span>)</code></pre></div>
<p><img src="figure/detection_rate_correction.Rmd/Buettner-2.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of Buettner-2.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/b7e4475a778b99f389303acbac3e5a9b5d09d752/docs/figure/detection_rate_correction.Rmd/Buettner-2.png" target="_blank">b7e4475</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
</tbody>
</table>
<p></details></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res1 =<span class="st"> </span><span class="kw">SLSL</span>(R, <span class="dt">log=</span>F, <span class="dt">filter=</span>F, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res1<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.4329975</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res2 =<span class="st"> </span><span class="kw">SLSL</span>(X, <span class="dt">log=</span>T, <span class="dt">filter=</span>F, <span class="dt">correct_detection_rate =</span> F, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res2<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.428236</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res3 =<span class="st"> </span><span class="kw">SLSL</span>(X, <span class="dt">log=</span>T, <span class="dt">filter=</span>F, <span class="dt">correct_detection_rate =</span> T, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res3<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.4145447</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">rm</span>(R,X,logX,res1,res2,res3); <span class="kw">gc</span>()</code></pre></div>
<pre><code>          used  (Mb) gc trigger   (Mb) limit (Mb)  max used   (Mb)
Ncells 2203793 117.7    3972484  212.2         NA   3972484  212.2
Vcells 5419519  41.4  138305840 1055.2      16384 172882188 1319.0</code></pre>
</div>
<div id="yan" class="section level2">
<h2>Yan</h2>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">i =<span class="st"> </span><span class="dv">5</span>

<span class="kw">load</span>(<span class="st">&#39;../data/unnecessary_in_building/5_Yan.rda&#39;</span>)
X        =<span class="st"> </span><span class="kw">as.matrix</span>(yan)
truth    =<span class="st"> </span><span class="kw">as.character</span>(ann<span class="op">$</span>cell_type1)
truth    =<span class="st"> </span><span class="kw">as.numeric</span>(<span class="kw">as.factor</span>(truth))
numClust =<span class="st"> </span><span class="dv">6</span>
<span class="kw">rm</span>(ann, yan)

logX =<span class="st"> </span><span class="kw">log</span>(X<span class="op">+</span><span class="dv">1</span>)

det =<span class="st"> </span><span class="kw">colSums</span>(X<span class="op">!=</span><span class="dv">0</span>) <span class="op">/</span><span class="st"> </span><span class="kw">nrow</span>(X)

det2 =<span class="st"> </span><span class="kw">qr</span>(det)
R =<span class="st"> </span><span class="kw">t</span>(<span class="kw">qr.resid</span>(det2, <span class="kw">t</span>(logX)))

pca1 =<span class="st"> </span><span class="kw">irlba</span>(R,<span class="dv">2</span>); pca2 =<span class="st"> </span><span class="kw">irlba</span>(logX,<span class="dv">2</span>)
dat =<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">pc1=</span><span class="kw">c</span>(pca1<span class="op">$</span>v[,<span class="dv">1</span>], pca2<span class="op">$</span>v[,<span class="dv">1</span>]), <span class="dt">detection.rate=</span><span class="kw">rep</span>(det, <span class="dv">2</span>), <span class="dt">label=</span><span class="kw">rep</span>(<span class="kw">c</span>(<span class="st">&quot;After correction&quot;</span>, <span class="st">&quot;Before correction&quot;</span>), <span class="dt">each=</span><span class="kw">nrow</span>(pca1<span class="op">$</span>v)), <span class="dt">true.label=</span><span class="kw">as.factor</span>(<span class="kw">rep</span>(truth,<span class="dv">2</span>)))
<span class="kw">ggplot</span>(dat, <span class="kw">aes</span>(<span class="dt">x=</span>pc1, <span class="dt">y=</span>detection.rate, <span class="dt">col=</span>true.label)) <span class="op">+</span><span class="st"> </span><span class="kw">facet_grid</span>(<span class="op">~</span>label) <span class="op">+</span><span class="st"> </span><span class="kw">geom_point</span>() <span class="op">+</span><span class="st"> </span><span class="kw">ggtitle</span>(<span class="st">&quot;PCA&quot;</span>)</code></pre></div>
<p><img src="figure/detection_rate_correction.Rmd/Yan-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of Yan-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/b7e4475a778b99f389303acbac3e5a9b5d09d752/docs/figure/detection_rate_correction.Rmd/Yan-1.png" target="_blank">b7e4475</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
</tbody>
</table>
<p></details></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">tsne1 =<span class="st"> </span><span class="kw">Rtsne</span>(<span class="kw">t</span>(R), <span class="dt">perplexity=</span><span class="dv">20</span>)
tsne2 =<span class="st"> </span><span class="kw">Rtsne</span>(<span class="kw">t</span>(logX), <span class="dt">perplexity=</span><span class="dv">20</span>)

dat =<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">v1 =</span> <span class="kw">c</span>(tsne1<span class="op">$</span>Y[,<span class="dv">1</span>], tsne2<span class="op">$</span>Y[,<span class="dv">1</span>]), <span class="dt">v2 =</span> <span class="kw">c</span>(tsne1<span class="op">$</span>Y[,<span class="dv">2</span>], tsne2<span class="op">$</span>Y[,<span class="dv">2</span>]), <span class="dt">label=</span><span class="kw">rep</span>(<span class="kw">c</span>(<span class="st">&quot;After correction&quot;</span>, <span class="st">&quot;Before correction&quot;</span>), <span class="dt">each=</span><span class="kw">nrow</span>(tsne1<span class="op">$</span>Y)), <span class="dt">true.label =</span> <span class="kw">as.factor</span>(<span class="kw">rep</span>(truth, <span class="dv">2</span>)))
<span class="kw">ggplot</span>(dat, <span class="kw">aes</span>(<span class="dt">x=</span>v1, <span class="dt">y=</span>v2, <span class="dt">col=</span>true.label)) <span class="op">+</span><span class="st"> </span><span class="kw">facet_grid</span>(<span class="op">~</span>label) <span class="op">+</span><span class="st"> </span><span class="kw">geom_point</span>() <span class="op">+</span><span class="st"> </span><span class="kw">ggtitle</span>(<span class="st">&quot;tSNE&quot;</span>)</code></pre></div>
<p><img src="figure/detection_rate_correction.Rmd/Yan-2.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of Yan-2.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/36ebfc22180cfa5fe94d018f30be3872b66a15d2/docs/figure/detection_rate_correction.Rmd/Yan-2.png" target="_blank">36ebfc2</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/b7e4475a778b99f389303acbac3e5a9b5d09d752/docs/figure/detection_rate_correction.Rmd/Yan-2.png" target="_blank">b7e4475</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
</tbody>
</table>
<p></details></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res1 =<span class="st"> </span><span class="kw">SLSL</span>(R, <span class="dt">log=</span>F, <span class="dt">filter=</span>F, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res1<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.8954618</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res2 =<span class="st"> </span><span class="kw">SLSL</span>(X, <span class="dt">log=</span>T, <span class="dt">filter=</span>F, <span class="dt">correct_detection_rate =</span> F, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res2<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.8954618</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res3 =<span class="st"> </span><span class="kw">SLSL</span>(X, <span class="dt">log=</span>T, <span class="dt">filter=</span>F, <span class="dt">correct_detection_rate =</span> T, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res3<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.675345</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">rm</span>(R,X,logX,res1,res2,res3); <span class="kw">gc</span>()</code></pre></div>
<pre><code>          used  (Mb) gc trigger  (Mb) limit (Mb)  max used   (Mb)
Ncells 2236314 119.5    3972484 212.2         NA   3972484  212.2
Vcells 5358557  40.9  110644672 844.2      16384 172882188 1319.0</code></pre>
</div>
<div id="treutlein" class="section level2">
<h2>Treutlein</h2>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">i =<span class="st"> </span><span class="dv">6</span>

<span class="kw">load</span>(<span class="st">&#39;../data/unnecessary_in_building/6_Treutlein.rda&#39;</span>)
X        =<span class="st"> </span><span class="kw">as.matrix</span>(treutlein)
truth    =<span class="st"> </span><span class="kw">as.numeric</span>(<span class="kw">colnames</span>(treutlein))
ind      =<span class="st"> </span><span class="kw">sort</span>(truth, <span class="dt">index.return=</span><span class="ot">TRUE</span>)<span class="op">$</span>ix
X        =<span class="st"> </span>X[,ind]
truth    =<span class="st"> </span>truth[ind]
numClust =<span class="st"> </span><span class="kw">length</span>(<span class="kw">unique</span>(truth))
<span class="kw">rm</span>(treutlein)
logX =<span class="st"> </span><span class="kw">log</span>(X<span class="op">+</span><span class="dv">1</span>)

det =<span class="st"> </span><span class="kw">colSums</span>(X<span class="op">!=</span><span class="dv">0</span>) <span class="op">/</span><span class="st"> </span><span class="kw">nrow</span>(X)

det2 =<span class="st"> </span><span class="kw">qr</span>(<span class="kw">cbind</span>(<span class="kw">log</span>(det), <span class="kw">rep</span>(<span class="dv">1</span>, <span class="kw">length</span>(det))))
R =<span class="st"> </span><span class="kw">t</span>(<span class="kw">qr.resid</span>(det2, <span class="kw">t</span>(logX)))

pca1 =<span class="st"> </span><span class="kw">irlba</span>(R,<span class="dv">2</span>); pca2 =<span class="st"> </span><span class="kw">irlba</span>(logX,<span class="dv">2</span>)
dat =<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">pc1=</span><span class="kw">c</span>(pca1<span class="op">$</span>v[,<span class="dv">1</span>], pca2<span class="op">$</span>v[,<span class="dv">1</span>]), <span class="dt">detection.rate=</span><span class="kw">rep</span>(det, <span class="dv">2</span>), <span class="dt">label=</span><span class="kw">rep</span>(<span class="kw">c</span>(<span class="st">&quot;After correction&quot;</span>, <span class="st">&quot;Before correction&quot;</span>), <span class="dt">each=</span><span class="kw">nrow</span>(pca1<span class="op">$</span>v)), <span class="dt">true.label=</span><span class="kw">as.factor</span>(<span class="kw">rep</span>(truth,<span class="dv">2</span>)))
<span class="kw">ggplot</span>(dat, <span class="kw">aes</span>(<span class="dt">x=</span>pc1, <span class="dt">y=</span>detection.rate, <span class="dt">col=</span>true.label)) <span class="op">+</span><span class="st"> </span><span class="kw">facet_grid</span>(<span class="op">~</span>label) <span class="op">+</span><span class="st"> </span><span class="kw">geom_point</span>() <span class="op">+</span><span class="st"> </span><span class="kw">ggtitle</span>(<span class="st">&quot;PCA&quot;</span>)</code></pre></div>
<p><img src="figure/detection_rate_correction.Rmd/Treutlein-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of Treutlein-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/36ebfc22180cfa5fe94d018f30be3872b66a15d2/docs/figure/detection_rate_correction.Rmd/Treutlein-1.png" target="_blank">36ebfc2</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/b7e4475a778b99f389303acbac3e5a9b5d09d752/docs/figure/detection_rate_correction.Rmd/Treutlein-1.png" target="_blank">b7e4475</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
</tbody>
</table>
<p></details></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">tsne1 =<span class="st"> </span><span class="kw">Rtsne</span>(<span class="kw">t</span>(R), <span class="dt">perplexity=</span><span class="dv">10</span>)
tsne2 =<span class="st"> </span><span class="kw">Rtsne</span>(<span class="kw">t</span>(logX), <span class="dt">perplexity=</span><span class="dv">10</span>)

dat =<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">v1 =</span> <span class="kw">c</span>(tsne1<span class="op">$</span>Y[,<span class="dv">1</span>], tsne2<span class="op">$</span>Y[,<span class="dv">1</span>]), <span class="dt">v2 =</span> <span class="kw">c</span>(tsne1<span class="op">$</span>Y[,<span class="dv">2</span>], tsne2<span class="op">$</span>Y[,<span class="dv">2</span>]), <span class="dt">label=</span><span class="kw">rep</span>(<span class="kw">c</span>(<span class="st">&quot;After correction&quot;</span>, <span class="st">&quot;Before correction&quot;</span>), <span class="dt">each=</span><span class="kw">nrow</span>(tsne1<span class="op">$</span>Y)), <span class="dt">true.label =</span> <span class="kw">as.factor</span>(<span class="kw">rep</span>(truth, <span class="dv">2</span>)))
<span class="kw">ggplot</span>(dat, <span class="kw">aes</span>(<span class="dt">x=</span>v1, <span class="dt">y=</span>v2, <span class="dt">col=</span>true.label)) <span class="op">+</span><span class="st"> </span><span class="kw">facet_grid</span>(<span class="op">~</span>label) <span class="op">+</span><span class="st"> </span><span class="kw">geom_point</span>() <span class="op">+</span><span class="st"> </span><span class="kw">ggtitle</span>(<span class="st">&quot;tSNE&quot;</span>)</code></pre></div>
<p><img src="figure/detection_rate_correction.Rmd/Treutlein-2.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of Treutlein-2.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/36ebfc22180cfa5fe94d018f30be3872b66a15d2/docs/figure/detection_rate_correction.Rmd/Treutlein-2.png" target="_blank">36ebfc2</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/b7e4475a778b99f389303acbac3e5a9b5d09d752/docs/figure/detection_rate_correction.Rmd/Treutlein-2.png" target="_blank">b7e4475</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
</tbody>
</table>
<p></details></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res1 =<span class="st"> </span><span class="kw">SLSL</span>(R, <span class="dt">log=</span>F, <span class="dt">filter=</span>F, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res1<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.3672819</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res2 =<span class="st"> </span><span class="kw">SLSL</span>(X, <span class="dt">log=</span>T, <span class="dt">filter=</span>F, <span class="dt">correct_detection_rate =</span> F, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res2<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.4136064</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res3 =<span class="st"> </span><span class="kw">SLSL</span>(X, <span class="dt">log=</span>T, <span class="dt">filter=</span>F, <span class="dt">correct_detection_rate =</span> T, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res3<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.3488583</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">rm</span>(R,X,logX,res1,res2,res3); <span class="kw">gc</span>()</code></pre></div>
<pre><code>          used  (Mb) gc trigger  (Mb) limit (Mb)  max used   (Mb)
Ncells 2225549 118.9    3972484 212.2         NA   3972484  212.2
Vcells 5350667  40.9   88515737 675.4      16384 172882188 1319.0</code></pre>
</div>
<div id="chu-cell-type" class="section level2">
<h2>Chu (cell type)</h2>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">i =<span class="st"> </span><span class="dv">7</span>

<span class="kw">load</span>(<span class="st">&#39;../data/unnecessary_in_building/7_Chu_celltype.Rdata&#39;</span>)
X        =<span class="st"> </span><span class="kw">as.matrix</span>(Chu_celltype<span class="op">$</span>X)
truth    =<span class="st"> </span><span class="kw">as.numeric</span>(<span class="kw">as.factor</span>(Chu_celltype<span class="op">$</span>label))
numClust =<span class="st"> </span><span class="dv">7</span>
<span class="kw">rm</span>(Chu_celltype)

logX =<span class="st"> </span><span class="kw">log</span>(X<span class="op">+</span><span class="dv">1</span>)

det =<span class="st"> </span><span class="kw">colSums</span>(X<span class="op">!=</span><span class="dv">0</span>) <span class="op">/</span><span class="st"> </span><span class="kw">nrow</span>(X)

det2 =<span class="st"> </span><span class="kw">qr</span>(det)
R =<span class="st"> </span><span class="kw">t</span>(<span class="kw">qr.resid</span>(det2, <span class="kw">t</span>(logX)))

pca1 =<span class="st"> </span><span class="kw">irlba</span>(R,<span class="dv">2</span>); pca2 =<span class="st"> </span><span class="kw">irlba</span>(logX,<span class="dv">2</span>)
dat =<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">pc1=</span><span class="kw">c</span>(pca1<span class="op">$</span>v[,<span class="dv">1</span>], pca2<span class="op">$</span>v[,<span class="dv">1</span>]), <span class="dt">detection.rate=</span><span class="kw">rep</span>(det, <span class="dv">2</span>), <span class="dt">label=</span><span class="kw">rep</span>(<span class="kw">c</span>(<span class="st">&quot;After correction&quot;</span>, <span class="st">&quot;Before correction&quot;</span>), <span class="dt">each=</span><span class="kw">nrow</span>(pca1<span class="op">$</span>v)), <span class="dt">true.label=</span><span class="kw">as.factor</span>(<span class="kw">rep</span>(truth,<span class="dv">2</span>)))
<span class="kw">ggplot</span>(dat, <span class="kw">aes</span>(<span class="dt">x=</span>pc1, <span class="dt">y=</span>detection.rate, <span class="dt">col=</span>true.label)) <span class="op">+</span><span class="st"> </span><span class="kw">facet_grid</span>(<span class="op">~</span>label) <span class="op">+</span><span class="st"> </span><span class="kw">geom_point</span>() <span class="op">+</span><span class="st"> </span><span class="kw">ggtitle</span>(<span class="st">&quot;PCA&quot;</span>)</code></pre></div>
<p><img src="figure/detection_rate_correction.Rmd/Chu_celltype-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of Chu_celltype-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/b7e4475a778b99f389303acbac3e5a9b5d09d752/docs/figure/detection_rate_correction.Rmd/Chu_celltype-1.png" target="_blank">b7e4475</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
</tbody>
</table>
<p></details></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">tsne1 =<span class="st"> </span><span class="kw">Rtsne</span>(<span class="kw">t</span>(R))
tsne2 =<span class="st"> </span><span class="kw">Rtsne</span>(<span class="kw">t</span>(logX))

dat =<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">v1 =</span> <span class="kw">c</span>(tsne1<span class="op">$</span>Y[,<span class="dv">1</span>], tsne2<span class="op">$</span>Y[,<span class="dv">1</span>]), <span class="dt">v2 =</span> <span class="kw">c</span>(tsne1<span class="op">$</span>Y[,<span class="dv">2</span>], tsne2<span class="op">$</span>Y[,<span class="dv">2</span>]), <span class="dt">label=</span><span class="kw">rep</span>(<span class="kw">c</span>(<span class="st">&quot;After correction&quot;</span>, <span class="st">&quot;Before correction&quot;</span>), <span class="dt">each=</span><span class="kw">nrow</span>(tsne1<span class="op">$</span>Y)), <span class="dt">true.label =</span> <span class="kw">as.factor</span>(<span class="kw">rep</span>(truth, <span class="dv">2</span>)))
<span class="kw">ggplot</span>(dat, <span class="kw">aes</span>(<span class="dt">x=</span>v1, <span class="dt">y=</span>v2, <span class="dt">col=</span>true.label)) <span class="op">+</span><span class="st"> </span><span class="kw">facet_grid</span>(<span class="op">~</span>label) <span class="op">+</span><span class="st"> </span><span class="kw">geom_point</span>() <span class="op">+</span><span class="st"> </span><span class="kw">ggtitle</span>(<span class="st">&quot;tSNE&quot;</span>)</code></pre></div>
<p><img src="figure/detection_rate_correction.Rmd/Chu_celltype-2.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of Chu_celltype-2.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/b7e4475a778b99f389303acbac3e5a9b5d09d752/docs/figure/detection_rate_correction.Rmd/Chu_celltype-2.png" target="_blank">b7e4475</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
</tbody>
</table>
<p></details></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res1 =<span class="st"> </span><span class="kw">SLSL</span>(R, <span class="dt">log=</span>F, <span class="dt">filter=</span>F, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res1<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.9900038</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res2 =<span class="st"> </span><span class="kw">SLSL</span>(X, <span class="dt">log=</span>T, <span class="dt">filter=</span>F, <span class="dt">correct_detection_rate =</span> F, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res2<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.9956408</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res3 =<span class="st"> </span><span class="kw">SLSL</span>(X, <span class="dt">log=</span>T, <span class="dt">filter=</span>F, <span class="dt">correct_detection_rate =</span> T, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res3<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.7612027</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">rm</span>(R,X,logX,res1,res2,res3); <span class="kw">gc</span>()</code></pre></div>
<pre><code>          used  (Mb) gc trigger   (Mb) limit (Mb)  max used   (Mb)
Ncells 2259138 120.7    3972565  212.2         NA   3972565  212.2
Vcells 5473999  41.8  207597943 1583.9      16384 259497187 1979.9</code></pre>
</div>
<div id="chu-timecourse" class="section level2">
<h2>Chu (timecourse)</h2>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">i =<span class="st"> </span><span class="dv">8</span>
<span class="kw">load</span>(<span class="st">&#39;../data/unnecessary_in_building/8_Chu_timecourse.Rdata&#39;</span>)
X        =<span class="st"> </span><span class="kw">as.matrix</span>(Chu_timecourse<span class="op">$</span>X)
truth    =<span class="st"> </span><span class="kw">as.numeric</span>(<span class="kw">as.factor</span>(Chu_timecourse<span class="op">$</span>label))
numClust =<span class="st"> </span><span class="kw">length</span>(<span class="kw">unique</span>(truth))

logX =<span class="st"> </span><span class="kw">log</span>(X<span class="op">+</span><span class="dv">1</span>)

det =<span class="st"> </span><span class="kw">colSums</span>(X<span class="op">!=</span><span class="dv">0</span>) <span class="op">/</span><span class="st"> </span><span class="kw">nrow</span>(X)

det2 =<span class="st"> </span><span class="kw">qr</span>(det)
R =<span class="st"> </span><span class="kw">t</span>(<span class="kw">qr.resid</span>(det2, <span class="kw">t</span>(logX)))

pca1 =<span class="st"> </span><span class="kw">irlba</span>(R,<span class="dv">2</span>); pca2 =<span class="st"> </span><span class="kw">irlba</span>(logX,<span class="dv">2</span>)
dat =<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">pc1=</span><span class="kw">c</span>(pca1<span class="op">$</span>v[,<span class="dv">1</span>], pca2<span class="op">$</span>v[,<span class="dv">1</span>]), <span class="dt">detection.rate=</span><span class="kw">rep</span>(det, <span class="dv">2</span>), <span class="dt">label=</span><span class="kw">rep</span>(<span class="kw">c</span>(<span class="st">&quot;After correction&quot;</span>, <span class="st">&quot;Before correction&quot;</span>), <span class="dt">each=</span><span class="kw">nrow</span>(pca1<span class="op">$</span>v)), <span class="dt">true.label=</span><span class="kw">as.factor</span>(<span class="kw">rep</span>(truth,<span class="dv">2</span>)))
<span class="kw">ggplot</span>(dat, <span class="kw">aes</span>(<span class="dt">x=</span>pc1, <span class="dt">y=</span>detection.rate, <span class="dt">col=</span>true.label)) <span class="op">+</span><span class="st"> </span><span class="kw">facet_grid</span>(<span class="op">~</span>label) <span class="op">+</span><span class="st"> </span><span class="kw">geom_point</span>() <span class="op">+</span><span class="st"> </span><span class="kw">ggtitle</span>(<span class="st">&quot;PCA&quot;</span>)</code></pre></div>
<p><img src="figure/detection_rate_correction.Rmd/Chu_timecourse-1.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of Chu_timecourse-1.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/b7e4475a778b99f389303acbac3e5a9b5d09d752/docs/figure/detection_rate_correction.Rmd/Chu_timecourse-1.png" target="_blank">b7e4475</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
</tbody>
</table>
<p></details></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">tsne1 =<span class="st"> </span><span class="kw">Rtsne</span>(<span class="kw">t</span>(R))
tsne2 =<span class="st"> </span><span class="kw">Rtsne</span>(<span class="kw">t</span>(logX))

dat =<span class="st"> </span><span class="kw">data.frame</span>(<span class="dt">v1 =</span> <span class="kw">c</span>(tsne1<span class="op">$</span>Y[,<span class="dv">1</span>], tsne2<span class="op">$</span>Y[,<span class="dv">1</span>]), <span class="dt">v2 =</span> <span class="kw">c</span>(tsne1<span class="op">$</span>Y[,<span class="dv">2</span>], tsne2<span class="op">$</span>Y[,<span class="dv">2</span>]), <span class="dt">label=</span><span class="kw">rep</span>(<span class="kw">c</span>(<span class="st">&quot;After correction&quot;</span>, <span class="st">&quot;Before correction&quot;</span>), <span class="dt">each=</span><span class="kw">nrow</span>(tsne1<span class="op">$</span>Y)), <span class="dt">true.label =</span> <span class="kw">as.factor</span>(<span class="kw">rep</span>(truth, <span class="dv">2</span>)))
<span class="kw">ggplot</span>(dat, <span class="kw">aes</span>(<span class="dt">x=</span>v1, <span class="dt">y=</span>v2, <span class="dt">col=</span>true.label)) <span class="op">+</span><span class="st"> </span><span class="kw">facet_grid</span>(<span class="op">~</span>label) <span class="op">+</span><span class="st"> </span><span class="kw">geom_point</span>() <span class="op">+</span><span class="st"> </span><span class="kw">ggtitle</span>(<span class="st">&quot;tSNE&quot;</span>)</code></pre></div>
<p><img src="figure/detection_rate_correction.Rmd/Chu_timecourse-2.png" width="672" style="display: block; margin: auto;" /></p>
<details> <summary><em>Expand here to see past versions of Chu_timecourse-2.png:</em></summary>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<a href="https://github.com/tk382/SCNoisyClustering/blob/b7e4475a778b99f389303acbac3e5a9b5d09d752/docs/figure/detection_rate_correction.Rmd/Chu_timecourse-2.png" target="_blank">b7e4475</a>
</td>
<td style="text-align:left;">
tk382
</td>
<td style="text-align:left;">
2018-07-16
</td>
</tr>
</tbody>
</table>
<p></details></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res1 =<span class="st"> </span><span class="kw">SLSL</span>(R, <span class="dt">log=</span>F, <span class="dt">filter=</span>F, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res1<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.7321747</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res2 =<span class="st"> </span><span class="kw">SLSL</span>(X, <span class="dt">log=</span>T, <span class="dt">filter=</span>F, <span class="dt">correct_detection_rate =</span> F, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res2<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.7276994</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">set.seed</span>(<span class="dv">1</span>); res3 =<span class="st"> </span><span class="kw">SLSL</span>(X, <span class="dt">log=</span>T, <span class="dt">filter=</span>F, <span class="dt">correct_detection_rate =</span> T, <span class="dt">numClust =</span> numClust)
<span class="kw">adj.rand.index</span>(res3<span class="op">$</span>result, truth)</code></pre></div>
<pre><code>[1] 0.7145637</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">rm</span>(R,X,logX,res1,res2,res3); <span class="kw">gc</span>()</code></pre></div>
<pre><code>           used  (Mb) gc trigger   (Mb) limit (Mb)  max used   (Mb)
Ncells  2260642 120.8    3972565  212.2         NA   3972565  212.2
Vcells 20014295 152.7  199358024 1521.0      16384 259497187 1979.9</code></pre>
</div>
<div id="session-information" class="section level2">
<h2>Session information</h2>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">sessionInfo</span>()</code></pre></div>
<pre><code>R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.5

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] stargazer_5.2.2         abind_1.4-5            
 [3] broom_0.4.5             diceR_0.5.1            
 [5] Rtsne_0.13              fossil_0.3.7           
 [7] shapefiles_0.7          foreign_0.8-70         
 [9] maps_3.3.0              sp_1.2-7               
[11] reshape_0.8.7           dplyr_0.7.6            
[13] ggplot2_3.0.0           irlba_2.3.2            
[15] Matrix_1.2-14           quadprog_1.5-5         
[17] inline_0.3.15           matrixStats_0.53.1     
[19] SCNoisyClustering_0.1.0

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4  reshape2_1.4.3    purrr_0.2.4      
 [4] lattice_0.20-35   colorspace_1.3-2  htmltools_0.3.6  
 [7] yaml_2.1.19       rlang_0.2.0       R.oo_1.22.0      
[10] pillar_1.2.2      glue_1.2.0        withr_2.1.2      
[13] R.utils_2.6.0     bindrcpp_0.2.2    plyr_1.8.4       
[16] bindr_0.1.1       stringr_1.3.0     munsell_0.4.3    
[19] gtable_0.2.0      workflowr_1.1.1   R.methodsS3_1.7.1
[22] psych_1.8.3.3     evaluate_0.10.1   labeling_0.3     
[25] knitr_1.20        parallel_3.5.1    Rcpp_0.12.16     
[28] scales_0.5.0      backports_1.1.2   mnormt_1.5-5     
[31] digest_0.6.15     stringi_1.1.7     grid_3.5.1       
[34] rprojroot_1.3-2   tools_3.5.1       magrittr_1.5     
[37] lazyeval_0.2.1    tibble_1.4.2      tidyr_0.8.0      
[40] whisker_0.3-2     pkgconfig_2.0.1   assertthat_0.2.0 
[43] rmarkdown_1.9     R6_2.2.2          mclust_5.4       
[46] nlme_3.1-137      git2r_0.21.0      compiler_3.5.1   </code></pre>
</div>

<!-- Adjust MathJax settings so that all math formulae are shown using
TeX fonts only; see
http://docs.mathjax.org/en/latest/configuration.html.  This will make
the presentation more consistent at the cost of the webpage sometimes
taking slightly longer to load. Note that this only works because the
footer is added to webpages before the MathJax javascript. -->
<script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
</script>

<hr>
<p>
  This reproducible <a href="http://rmarkdown.rstudio.com">R Markdown</a>
  analysis was created with
  <a href="https://github.com/jdblischak/workflowr">workflowr</a> 1.1.1
</p>
<hr>



</div>

<script>

// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
  $('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
  bootstrapStylePandocTables();
});


</script>

<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>