Last updated: 2018-08-29

workflowr checks: (Click a bullet for more information)
  • R Markdown file: uncommitted changes The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180618)

    The command set.seed(20180618) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: f6c8902

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    R/.Rhistory
        Ignored:    analysis/.Rhistory
        Ignored:    analysis/pipeline/.Rhistory
    
    Untracked files:
        Untracked:  ..gif
        Untracked:  .DS_Store
        Untracked:  R/.DS_Store
        Untracked:  R/myheatmap.R
        Untracked:  analysis/.DS_Store
        Untracked:  analysis/Dropseqpreprocessing_cache/
        Untracked:  analysis/SLSL_marker_based_logcpm.pdf
        Untracked:  analysis/biomarkers.R
        Untracked:  analysis/cellref.pdf
        Untracked:  analysis/consistency_check.R
        Untracked:  analysis/dropseq_sc3_result.Rdata
        Untracked:  analysis/dropseq_slsl1.Rdata
        Untracked:  analysis/example_dropseq_cache/
        Untracked:  analysis/example_smartseq.Rmd
        Untracked:  analysis/figure/
        Untracked:  analysis/marker-based.pdf
        Untracked:  analysis/normalization_test.R
        Untracked:  analysis/pbmcheat.pdf
        Untracked:  analysis/pbmcref.pdf
        Untracked:  analysis/pipeline/0_dropseq/
        Untracked:  analysis/pipeline/1_10X/
        Untracked:  analysis/pipeline/2_zeisel/
        Untracked:  analysis/pipeline/3_smallsets/
        Untracked:  analysis/writeup/cite.log
        Untracked:  analysis/writeup/paper.aux
        Untracked:  analysis/writeup/paper.bbl
        Untracked:  analysis/writeup/paper.blg
        Untracked:  analysis/writeup/paper.log
        Untracked:  analysis/writeup/paper.out
        Untracked:  analysis/writeup/paper.synctex.gz
        Untracked:  analysis/writeup/paper.tex
        Untracked:  analysis/writeup/writeup.aux
        Untracked:  analysis/writeup/writeup.bbl
        Untracked:  analysis/writeup/writeup.blg
        Untracked:  analysis/writeup/writeup.dvi
        Untracked:  analysis/writeup/writeup.log
        Untracked:  analysis/writeup/writeup.out
        Untracked:  analysis/writeup/writeup.synctex.gz
        Untracked:  analysis/writeup/writeup.tex
        Untracked:  analysis/writeup/writeup2.aux
        Untracked:  analysis/writeup/writeup2.bbl
        Untracked:  analysis/writeup/writeup2.blg
        Untracked:  analysis/writeup/writeup2.log
        Untracked:  analysis/writeup/writeup2.out
        Untracked:  analysis/writeup/writeup2.pdf
        Untracked:  analysis/writeup/writeup2.synctex.gz
        Untracked:  analysis/writeup/writeup2.tex
        Untracked:  analysis/writeup/writeup3.aux
        Untracked:  analysis/writeup/writeup3.log
        Untracked:  analysis/writeup/writeup3.out
        Untracked:  analysis/writeup/writeup3.synctex.gz
        Untracked:  analysis/writeup/writeup3.tex
        Untracked:  data/unnecessary_in_building/
        Untracked:  normalized_out_1.Rdata
        Untracked:  not_normalized_out_1.Rdata
        Untracked:  src/.gitignore
        Untracked:  tutorial2.Rmd
    
    Unstaged changes:
        Modified:   NAMESPACE
        Modified:   R/RcppExports.R
        Deleted:    analysis/10Xpreprocessing.Rmd
        Deleted:    analysis/Dropseqpreprocessing.Rmd
        Modified:   analysis/_site.yml
        Modified:   analysis/about.Rmd
        Modified:   analysis/example_10x.Rmd
        Modified:   analysis/example_dropseq.Rmd
        Modified:   analysis/license.Rmd
        Modified:   analysis/pipeline/.DS_Store
        Modified:   analysis/writeup/.DS_Store
        Modified:   data/.DS_Store
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    html f6c8902 tk382 2018-08-29 Build site.


Read data.

library(data.table)
tmp = setDF(fread('data/unnecessary_in_building/GSM1626794_P14Retina_2.digital_expression.txt'))
orig = tmp[,-1]; rownames(orig) = tmp[,1]; rm(tmp)
genenames = sapply(strsplit(rownames(orig), ":"), function(x) x[3])
gc(verbose=FALSE);
            used  (Mb) gc trigger   (Mb) limit (Mb)  max used  (Mb)
Ncells   2792253 149.2    4257502  227.4         NA   4257502 227.4
Vcells 106691790 814.0  155381158 1185.5      16384 107648931 821.3

Quality Control and Cell Filter

nGene = colSums(orig > 0)
hist(nGene)

Expand here to see past versions of cell_filter-1.png:
Version Author Date
f6c8902 tk382 2018-08-29

summaryX = cellFilter(X = orig, 
                      genenames = genenames,
                      minGene = 500, 
                      maxGene = 2000, 
                      maxMitoProp = 0.1)
tmpX = summaryX$X
nUMI = summaryX$nUMI
nGene = summaryX$nGene
percent.mito = summaryX$percent.mito
det.rate = summaryX$det.rate

par(mfrow = c(1,4))
boxplot(nUMI, main='nUMI'); 
boxplot(nGene, main='nGene'); 
boxplot(percent.mito, main='mitochondrial gene', ylim=c(0,0.5)); 
boxplot(det.rate, main='detection rate', ylim=c(0,0.1))

Expand here to see past versions of cell_filter-2.png:
Version Author Date
f6c8902 tk382 2018-08-29

Gene filtering

X = tmpX[rowSums(tmpX) > 0, ]
genenames = genenames[rowSums(tmpX) > 0]

#gene filter by dispersion
disp = dispersion(X, bins = 20)
plot(disp$z ~ disp$genemeans,
     xlab = "mean expression",
     ylab = "normalized dispersion")

Expand here to see past versions of basic_gene_filtering-1.png:
Version Author Date
f6c8902 tk382 2018-08-29

select = which(abs(disp$z) > 1)
X = X[select, ]
genenames = genenames[select]

UMI Normalization

Use quantile-normalization to make the distribution of each cell the same.

nX = quantile_normalize(as.matrix(X))

Correct Detection Rate

After normalization, the linear relationship between the first PC and the detection rate usually disappears. The plots show that even without correction, the two are not heavily correlated. So we do not regress out the detection rate.

#take log
logX = as.matrix(log(nX + 1))

#check dependency
out = correct_detection_rate(logX, det.rate)

Expand here to see past versions of log_transform_and_det_correction-1.png:
Version Author Date
f6c8902 tk382 2018-08-29

#regress out
# log.cpm = out$residual
log.cpm = logX

Dimension reduction on the data for visualization.

pc = irlba(log.cpm, 20)
plot(pc$d, ylab = "singular values")

Expand here to see past versions of tsne-1.png:
Version Author Date
f6c8902 tk382 2018-08-29

tsne = Rtsne(pc$v[,1:5], dims=2, perplexity = 100, pca=FALSE)
plot(tsne$Y, xlab = 'tsne1', ylab = 'tsne2', cex = 0.5)

Expand here to see past versions of tsne-2.png:
Version Author Date
f6c8902 tk382 2018-08-29

rm(pc)

Run SLSL on the log.cpm matrix.

# out = SLSL(log.cpm, log=FALSE,
#                 filter = FALSE,
#                 correct_detection_rate = FALSE,
#                 klist = c(300,350,400),
#                 sigmalist = c(1,1.5,2),
#                 kernel_type = "pearson",
#                 verbose=FALSE)
# save(out, file = 'dropseq_slsl1.Rdata')
load('analysis/dropseq_slsl1.Rdata')
tab = table(out$result)
plot(tsne$Y, col=rainbow(length(tab))[out$result],
     xlab = 'tsne1', ylab='tsne2', main="SLSL", cex = 0.5)

Using SC3 with our gene and cell filter procedure and disabling the biology and filter feature of the function leads to the following result. Using SC3’s default methods lead to the error “distribution of gene expression in cells is too skewed towards 0”.

library(SingleCellExperiment)
library(SC3)
# colnames(X) = paste0("C", 1:ncol(X))
# sce = SingleCellExperiment(
#   assays = list(
#     counts = X,
#     logcounts = as.matrix(log(X+1))
#   ),
#   colData = colnames(X)
# )
# rowData(sce)$feature_symbol = genenames
# sce = sc3_prepare(sce, kmeans_nstart = 50)
# sce = sc3_estimate_k(sce)
# k = metadata(sce)$sc3$k_estimation
# N = ncol(X)
# sce = sc3(sce, ks=k, biology = FALSE, gene_filter=FALSE,
#          kmeans_nstart=10)
# col_data_selected = colData(sce)
# save(col_data_selected, file  = "analysis/dropseq_sc3_result.Rdata")
load('analysis/dropseq_sc3_result.Rdata')
plot(tsne$Y, col=rainbow(k)[col_data_selected$sc3_6_clusters],
     xlab = 'tsne1', ylab='tsne2', main="SC3", cex = 0.5)
ind = which(genenames %in% c('Chat', 'Gad1', 'Gad2', 'Slc17a8', 'Slc6a9', 'Gjd2'))
df = data.frame(tsne1 = tsne$Y[,1], tsne2 = tsne$Y[,2],
                Slc17a8 = log.cpm[ind[1], ],
                Gad2 = log.cpm[ind[2], ],
                Gad1 = log.cpm[ind[3],]
                )
g1 = ggplot(df, aes(x=tsne1, y=tsne2, col = Slc17a8)) + geom_point(size=0.1) +
  scale_colour_gradient(low="pink", high="black") + guides(color = FALSE) + ggtitle('Slc17a8')
g2 = ggplot(df, aes(x=tsne1, y=tsne2, col = Gad2)) + geom_point(size=0.1) +
  scale_colour_gradient(low="pink", high="black") + guides(color = FALSE) + ggtitle('Gad2')
g3 = ggplot(df, aes(x=tsne1, y=tsne2, col = Gad1)) + geom_point(size=0.1) +
  scale_colour_gradient(low="pink", high="black") + guides(color = FALSE) + ggtitle('Gad1')
grid.arrange(g1,g2,g3, nrow=1)

Expand here to see past versions of markers-1.png:
Version Author Date
f6c8902 tk382 2018-08-29

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.5

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] bindrcpp_0.2.2          data.table_1.11.4      
 [3] gridExtra_2.3           gdata_2.18.0           
 [5] stargazer_5.2.2         abind_1.4-5            
 [7] broom_0.5.0             gplots_3.0.1           
 [9] diceR_0.5.1             Rtsne_0.13             
[11] igraph_1.2.2            scatterplot3d_0.3-41   
[13] pracma_2.1.4            fossil_0.3.7           
[15] shapefiles_0.7          foreign_0.8-71         
[17] maps_3.3.0              sp_1.3-1               
[19] caret_6.0-80            lattice_0.20-35        
[21] reshape_0.8.7           dplyr_0.7.6            
[23] ggplot2_3.0.0           irlba_2.3.2            
[25] Matrix_1.2-14           quadprog_1.5-5         
[27] inline_0.3.15           matrixStats_0.54.0     
[29] SCNoisyClustering_0.1.0

loaded via a namespace (and not attached):
 [1] nlme_3.1-137              bitops_1.0-6             
 [3] lubridate_1.7.4           dimRed_0.1.0             
 [5] rprojroot_1.3-2           tools_3.5.1              
 [7] backports_1.1.2           R6_2.2.2                 
 [9] KernSmooth_2.23-15        rpart_4.1-13             
[11] lazyeval_0.2.1            colorspace_1.3-2         
[13] nnet_7.3-12               withr_2.1.2              
[15] tidyselect_0.2.4          compiler_3.5.1           
[17] git2r_0.23.0              labeling_0.3             
[19] caTools_1.17.1.1          scales_0.5.0             
[21] sfsmisc_1.1-2             DEoptimR_1.0-8           
[23] robustbase_0.93-2         stringr_1.3.1            
[25] digest_0.6.15             rmarkdown_1.10           
[27] R.utils_2.6.0             pkgconfig_2.0.1          
[29] htmltools_0.3.6           rlang_0.2.1              
[31] ddalpha_1.3.4             bindr_0.1.1              
[33] gtools_3.8.1              mclust_5.4.1             
[35] ModelMetrics_1.1.0        R.oo_1.22.0              
[37] magrittr_1.5              Rcpp_0.12.18             
[39] munsell_0.5.0             R.methodsS3_1.7.1        
[41] stringi_1.2.4             whisker_0.3-2            
[43] yaml_2.2.0                MASS_7.3-50              
[45] plyr_1.8.4                recipes_0.1.3            
[47] grid_3.5.1                pls_2.6-0                
[49] crayon_1.3.4              splines_3.5.1            
[51] knitr_1.20                pillar_1.3.0             
[53] reshape2_1.4.3            codetools_0.2-15         
[55] stats4_3.5.1              CVST_0.2-2               
[57] magic_1.5-8               glue_1.3.0               
[59] evaluate_0.11             RcppArmadillo_0.8.600.0.0
[61] foreach_1.4.4             gtable_0.2.0             
[63] purrr_0.2.5               tidyr_0.8.1              
[65] kernlab_0.9-26            assertthat_0.2.0         
[67] DRR_0.0.3                 gower_0.1.2              
[69] prodlim_2018.04.18        class_7.3-14             
[71] survival_2.42-6           geometry_0.3-6           
[73] timeDate_3043.102         RcppRoll_0.3.0           
[75] tibble_1.4.2              iterators_1.0.10         
[77] workflowr_1.1.1           lava_1.6.2               
[79] ipred_0.9-6              

This reproducible R Markdown analysis was created with workflowr 1.1.1