[−][src]Struct chrono::naive::time::NaiveTime
ISO 8601 time without timezone. Allows for the nanosecond precision and optional leap second representation.
Chrono has a notable policy on the leap second handling, designed to be maximally useful for typical users.
Methods
impl NaiveTime[src]
impl NaiveTimepub fn from_hms(hour: u32, min: u32, sec: u32) -> NaiveTime[src]
pub fn from_hms(hour: u32, min: u32, sec: u32) -> NaiveTimeMakes a new NaiveTime from hour, minute and second.
No leap second is allowed here;
use NaiveTime::from_hms_* methods with a subsecond parameter instead.
Panics on invalid hour, minute and/or second.
Example
use chrono::{NaiveTime, Timelike}; let t = NaiveTime::from_hms(23, 56, 4); assert_eq!(t.hour(), 23); assert_eq!(t.minute(), 56); assert_eq!(t.second(), 4); assert_eq!(t.nanosecond(), 0);
pub fn from_hms_opt(hour: u32, min: u32, sec: u32) -> Option<NaiveTime>[src]
pub fn from_hms_opt(hour: u32, min: u32, sec: u32) -> Option<NaiveTime>Makes a new NaiveTime from hour, minute and second.
No leap second is allowed here;
use NaiveTime::from_hms_*_opt methods with a subsecond parameter instead.
Returns None on invalid hour, minute and/or second.
Example
use chrono::NaiveTime; let hms = |h,m,s| NaiveTime::from_hms_opt(h, m, s); assert!(hms(0, 0, 0).is_some()); assert!(hms(23, 59, 59).is_some()); assert!(hms(24, 0, 0).is_none()); assert!(hms(23, 60, 0).is_none()); assert!(hms(23, 59, 60).is_none());
pub fn from_hms_milli(hour: u32, min: u32, sec: u32, milli: u32) -> NaiveTime[src]
pub fn from_hms_milli(hour: u32, min: u32, sec: u32, milli: u32) -> NaiveTimeMakes a new NaiveTime from hour, minute, second and millisecond.
The millisecond part can exceed 1,000 in order to represent the leap second.
Panics on invalid hour, minute, second and/or millisecond.
Example
use chrono::{NaiveTime, Timelike}; let t = NaiveTime::from_hms_milli(23, 56, 4, 12); assert_eq!(t.hour(), 23); assert_eq!(t.minute(), 56); assert_eq!(t.second(), 4); assert_eq!(t.nanosecond(), 12_000_000);
pub fn from_hms_milli_opt(
hour: u32,
min: u32,
sec: u32,
milli: u32
) -> Option<NaiveTime>[src]
pub fn from_hms_milli_opt(
hour: u32,
min: u32,
sec: u32,
milli: u32
) -> Option<NaiveTime>Makes a new NaiveTime from hour, minute, second and millisecond.
The millisecond part can exceed 1,000 in order to represent the leap second.
Returns None on invalid hour, minute, second and/or millisecond.
Example
use chrono::NaiveTime; let hmsm = |h,m,s,milli| NaiveTime::from_hms_milli_opt(h, m, s, milli); assert!(hmsm(0, 0, 0, 0).is_some()); assert!(hmsm(23, 59, 59, 999).is_some()); assert!(hmsm(23, 59, 59, 1_999).is_some()); // a leap second following 23:59:59 assert!(hmsm(24, 0, 0, 0).is_none()); assert!(hmsm(23, 60, 0, 0).is_none()); assert!(hmsm(23, 59, 60, 0).is_none()); assert!(hmsm(23, 59, 59, 2_000).is_none());
pub fn from_hms_micro(hour: u32, min: u32, sec: u32, micro: u32) -> NaiveTime[src]
pub fn from_hms_micro(hour: u32, min: u32, sec: u32, micro: u32) -> NaiveTimeMakes a new NaiveTime from hour, minute, second and microsecond.
The microsecond part can exceed 1,000,000 in order to represent the leap second.
Panics on invalid hour, minute, second and/or microsecond.
Example
use chrono::{NaiveTime, Timelike}; let t = NaiveTime::from_hms_micro(23, 56, 4, 12_345); assert_eq!(t.hour(), 23); assert_eq!(t.minute(), 56); assert_eq!(t.second(), 4); assert_eq!(t.nanosecond(), 12_345_000);
pub fn from_hms_micro_opt(
hour: u32,
min: u32,
sec: u32,
micro: u32
) -> Option<NaiveTime>[src]
pub fn from_hms_micro_opt(
hour: u32,
min: u32,
sec: u32,
micro: u32
) -> Option<NaiveTime>Makes a new NaiveTime from hour, minute, second and microsecond.
The microsecond part can exceed 1,000,000 in order to represent the leap second.
Returns None on invalid hour, minute, second and/or microsecond.
Example
use chrono::NaiveTime; let hmsu = |h,m,s,micro| NaiveTime::from_hms_micro_opt(h, m, s, micro); assert!(hmsu(0, 0, 0, 0).is_some()); assert!(hmsu(23, 59, 59, 999_999).is_some()); assert!(hmsu(23, 59, 59, 1_999_999).is_some()); // a leap second following 23:59:59 assert!(hmsu(24, 0, 0, 0).is_none()); assert!(hmsu(23, 60, 0, 0).is_none()); assert!(hmsu(23, 59, 60, 0).is_none()); assert!(hmsu(23, 59, 59, 2_000_000).is_none());
pub fn from_hms_nano(hour: u32, min: u32, sec: u32, nano: u32) -> NaiveTime[src]
pub fn from_hms_nano(hour: u32, min: u32, sec: u32, nano: u32) -> NaiveTimeMakes a new NaiveTime from hour, minute, second and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Panics on invalid hour, minute, second and/or nanosecond.
Example
use chrono::{NaiveTime, Timelike}; let t = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678); assert_eq!(t.hour(), 23); assert_eq!(t.minute(), 56); assert_eq!(t.second(), 4); assert_eq!(t.nanosecond(), 12_345_678);
pub fn from_hms_nano_opt(
hour: u32,
min: u32,
sec: u32,
nano: u32
) -> Option<NaiveTime>[src]
pub fn from_hms_nano_opt(
hour: u32,
min: u32,
sec: u32,
nano: u32
) -> Option<NaiveTime>Makes a new NaiveTime from hour, minute, second and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Returns None on invalid hour, minute, second and/or nanosecond.
Example
use chrono::NaiveTime; let hmsn = |h,m,s,nano| NaiveTime::from_hms_nano_opt(h, m, s, nano); assert!(hmsn(0, 0, 0, 0).is_some()); assert!(hmsn(23, 59, 59, 999_999_999).is_some()); assert!(hmsn(23, 59, 59, 1_999_999_999).is_some()); // a leap second following 23:59:59 assert!(hmsn(24, 0, 0, 0).is_none()); assert!(hmsn(23, 60, 0, 0).is_none()); assert!(hmsn(23, 59, 60, 0).is_none()); assert!(hmsn(23, 59, 59, 2_000_000_000).is_none());
pub fn from_num_seconds_from_midnight(secs: u32, nano: u32) -> NaiveTime[src]
pub fn from_num_seconds_from_midnight(secs: u32, nano: u32) -> NaiveTimeMakes a new NaiveTime from the number of seconds since midnight and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Panics on invalid number of seconds and/or nanosecond.
Example
use chrono::{NaiveTime, Timelike}; let t = NaiveTime::from_num_seconds_from_midnight(86164, 12_345_678); assert_eq!(t.hour(), 23); assert_eq!(t.minute(), 56); assert_eq!(t.second(), 4); assert_eq!(t.nanosecond(), 12_345_678);
pub fn from_num_seconds_from_midnight_opt(
secs: u32,
nano: u32
) -> Option<NaiveTime>[src]
pub fn from_num_seconds_from_midnight_opt(
secs: u32,
nano: u32
) -> Option<NaiveTime>Makes a new NaiveTime from the number of seconds since midnight and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Returns None on invalid number of seconds and/or nanosecond.
Example
use chrono::NaiveTime; let secs = |secs,nano| NaiveTime::from_num_seconds_from_midnight_opt(secs, nano); assert!(secs(0, 0).is_some()); assert!(secs(86399, 999_999_999).is_some()); assert!(secs(86399, 1_999_999_999).is_some()); // a leap second following 23:59:59 assert!(secs(86400, 0).is_none()); assert!(secs(86399, 2_000_000_000).is_none());
pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveTime>[src]
pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveTime>Parses a string with the specified format string and returns a new NaiveTime.
See the format::strftime module
on the supported escape sequences.
Example
use chrono::NaiveTime; assert_eq!(NaiveTime::parse_from_str("23:56:04", "%H:%M:%S"), Ok(NaiveTime::from_hms(23, 56, 4))); assert_eq!(NaiveTime::parse_from_str("pm012345.6789", "%p%I%M%S%.f"), Ok(NaiveTime::from_hms_micro(13, 23, 45, 678_900)));
Date and offset is ignored for the purpose of parsing.
assert_eq!(NaiveTime::parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"), Ok(NaiveTime::from_hms(12, 34, 56)));
Leap seconds are correctly handled by
treating any time of the form hh:mm:60 as a leap second.
(This equally applies to the formatting, so the round trip is possible.)
assert_eq!(NaiveTime::parse_from_str("08:59:60.123", "%H:%M:%S%.f"), Ok(NaiveTime::from_hms_milli(8, 59, 59, 1_123)));
Missing seconds are assumed to be zero, but out-of-bound times or insufficient fields are errors otherwise.
assert_eq!(NaiveTime::parse_from_str("7:15", "%H:%M"), Ok(NaiveTime::from_hms(7, 15, 0))); assert!(NaiveTime::parse_from_str("04m33s", "%Mm%Ss").is_err()); assert!(NaiveTime::parse_from_str("12", "%H").is_err()); assert!(NaiveTime::parse_from_str("17:60", "%H:%M").is_err()); assert!(NaiveTime::parse_from_str("24:00:00", "%H:%M:%S").is_err());
All parsed fields should be consistent to each other, otherwise it's an error.
Here %H is for 24-hour clocks, unlike %I,
and thus can be independently determined without AM/PM.
assert!(NaiveTime::parse_from_str("13:07 AM", "%H:%M %p").is_err());
pub fn format_with_items<'a, I>(&self, items: I) -> DelayedFormat<I> where
I: Iterator<Item = Item<'a>> + Clone, [src]
pub fn format_with_items<'a, I>(&self, items: I) -> DelayedFormat<I> where
I: Iterator<Item = Item<'a>> + Clone, Formats the time with the specified formatting items.
Otherwise it is same to the ordinary format method.
The Iterator of items should be Cloneable,
since the resulting DelayedFormat value may be formatted multiple times.
Example
use chrono::NaiveTime; use chrono::format::strftime::StrftimeItems; let fmt = StrftimeItems::new("%H:%M:%S"); let t = NaiveTime::from_hms(23, 56, 4); assert_eq!(t.format_with_items(fmt.clone()).to_string(), "23:56:04"); assert_eq!(t.format("%H:%M:%S").to_string(), "23:56:04");
pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>>[src]
pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>>Formats the time with the specified format string.
See the format::strftime module
on the supported escape sequences.
This returns a DelayedFormat,
which gets converted to a string only when actual formatting happens.
You may use the to_string method to get a String,
or just feed it into print! and other formatting macros.
(In this way it avoids the redundant memory allocation.)
A wrong format string does not issue an error immediately.
Rather, converting or formatting the DelayedFormat fails.
You are recommended to immediately use DelayedFormat for this reason.
Example
use chrono::NaiveTime; let t = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678); assert_eq!(t.format("%H:%M:%S").to_string(), "23:56:04"); assert_eq!(t.format("%H:%M:%S%.6f").to_string(), "23:56:04.012345"); assert_eq!(t.format("%-I:%M %p").to_string(), "11:56 PM");
Trait Implementations
impl Timelike for NaiveTime[src]
impl Timelike for NaiveTimefn hour(&self) -> u32[src]
fn hour(&self) -> u32Returns the hour number from 0 to 23.
Example
use chrono::{NaiveTime, Timelike}; assert_eq!(NaiveTime::from_hms(0, 0, 0).hour(), 0); assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).hour(), 23);
fn minute(&self) -> u32[src]
fn minute(&self) -> u32Returns the minute number from 0 to 59.
Example
use chrono::{NaiveTime, Timelike}; assert_eq!(NaiveTime::from_hms(0, 0, 0).minute(), 0); assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).minute(), 56);
fn second(&self) -> u32[src]
fn second(&self) -> u32Returns the second number from 0 to 59.
Example
use chrono::{NaiveTime, Timelike}; assert_eq!(NaiveTime::from_hms(0, 0, 0).second(), 0); assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).second(), 4);
This method never returns 60 even when it is a leap second. (Why?) Use the proper formatting method to get a human-readable representation.
let leap = NaiveTime::from_hms_milli(23, 59, 59, 1_000); assert_eq!(leap.second(), 59); assert_eq!(leap.format("%H:%M:%S").to_string(), "23:59:60");
fn nanosecond(&self) -> u32[src]
fn nanosecond(&self) -> u32Returns the number of nanoseconds since the whole non-leap second. The range from 1,000,000,000 to 1,999,999,999 represents the leap second.
Example
use chrono::{NaiveTime, Timelike}; assert_eq!(NaiveTime::from_hms(0, 0, 0).nanosecond(), 0); assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).nanosecond(), 12_345_678);
Leap seconds may have seemingly out-of-range return values.
You can reduce the range with time.nanosecond() % 1_000_000_000, or
use the proper formatting method to get a human-readable representation.
let leap = NaiveTime::from_hms_milli(23, 59, 59, 1_000); assert_eq!(leap.nanosecond(), 1_000_000_000); assert_eq!(leap.format("%H:%M:%S%.9f").to_string(), "23:59:60.000000000");
fn with_hour(&self, hour: u32) -> Option<NaiveTime>[src]
fn with_hour(&self, hour: u32) -> Option<NaiveTime>Makes a new NaiveTime with the hour number changed.
Returns None when the resulting NaiveTime would be invalid.
Example
use chrono::{NaiveTime, Timelike}; let dt = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678); assert_eq!(dt.with_hour(7), Some(NaiveTime::from_hms_nano(7, 56, 4, 12_345_678))); assert_eq!(dt.with_hour(24), None);
fn with_minute(&self, min: u32) -> Option<NaiveTime>[src]
fn with_minute(&self, min: u32) -> Option<NaiveTime>Makes a new NaiveTime with the minute number changed.
Returns None when the resulting NaiveTime would be invalid.
Example
use chrono::{NaiveTime, Timelike}; let dt = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678); assert_eq!(dt.with_minute(45), Some(NaiveTime::from_hms_nano(23, 45, 4, 12_345_678))); assert_eq!(dt.with_minute(60), None);
fn with_second(&self, sec: u32) -> Option<NaiveTime>[src]
fn with_second(&self, sec: u32) -> Option<NaiveTime>Makes a new NaiveTime with the second number changed.
Returns None when the resulting NaiveTime would be invalid.
As with the second method,
the input range is restricted to 0 through 59.
Example
use chrono::{NaiveTime, Timelike}; let dt = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678); assert_eq!(dt.with_second(17), Some(NaiveTime::from_hms_nano(23, 56, 17, 12_345_678))); assert_eq!(dt.with_second(60), None);
fn with_nanosecond(&self, nano: u32) -> Option<NaiveTime>[src]
fn with_nanosecond(&self, nano: u32) -> Option<NaiveTime>Makes a new NaiveTime with nanoseconds since the whole non-leap second changed.
Returns None when the resulting NaiveTime would be invalid.
As with the nanosecond method,
the input range can exceed 1,000,000,000 for leap seconds.
Example
use chrono::{NaiveTime, Timelike}; let dt = NaiveTime::from_hms_nano(23, 56, 4, 12_345_678); assert_eq!(dt.with_nanosecond(333_333_333), Some(NaiveTime::from_hms_nano(23, 56, 4, 333_333_333))); assert_eq!(dt.with_nanosecond(2_000_000_000), None);
Leap seconds can theoretically follow any whole second. The following would be a proper leap second at the time zone offset of UTC-00:03:57 (there are several historical examples comparable to this "non-sense" offset), and therefore is allowed.
assert_eq!(dt.with_nanosecond(1_333_333_333), Some(NaiveTime::from_hms_nano(23, 56, 4, 1_333_333_333)));
fn num_seconds_from_midnight(&self) -> u32[src]
fn num_seconds_from_midnight(&self) -> u32Returns the number of non-leap seconds past the last midnight.
Example
use chrono::{NaiveTime, Timelike}; assert_eq!(NaiveTime::from_hms(1, 2, 3).num_seconds_from_midnight(), 3723); assert_eq!(NaiveTime::from_hms_nano(23, 56, 4, 12_345_678).num_seconds_from_midnight(), 86164); assert_eq!(NaiveTime::from_hms_milli(23, 59, 59, 1_000).num_seconds_from_midnight(), 86399);
fn hour12(&self) -> (bool, u32)[src]
fn hour12(&self) -> (bool, u32)Returns the hour number from 1 to 12 with a boolean flag, which is false for AM and true for PM. Read more
impl Clone for NaiveTime[src]
impl Clone for NaiveTimefn clone(&self) -> NaiveTime[src]
fn clone(&self) -> NaiveTimeReturns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)1.0.0[src]
fn clone_from(&mut self, source: &Self)Performs copy-assignment from source. Read more
impl Copy for NaiveTime[src]
impl Copy for NaiveTimeimpl Eq for NaiveTime[src]
impl Eq for NaiveTimeimpl PartialOrd<NaiveTime> for NaiveTime[src]
impl PartialOrd<NaiveTime> for NaiveTimefn partial_cmp(&self, other: &NaiveTime) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &NaiveTime) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &NaiveTime) -> bool[src]
fn lt(&self, other: &NaiveTime) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &NaiveTime) -> bool[src]
fn le(&self, other: &NaiveTime) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &NaiveTime) -> bool[src]
fn gt(&self, other: &NaiveTime) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &NaiveTime) -> bool[src]
fn ge(&self, other: &NaiveTime) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl PartialEq<NaiveTime> for NaiveTime[src]
impl PartialEq<NaiveTime> for NaiveTimefn eq(&self, other: &NaiveTime) -> bool[src]
fn eq(&self, other: &NaiveTime) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &NaiveTime) -> bool[src]
fn ne(&self, other: &NaiveTime) -> boolThis method tests for !=.
impl Ord for NaiveTime[src]
impl Ord for NaiveTimefn cmp(&self, other: &NaiveTime) -> Ordering[src]
fn cmp(&self, other: &NaiveTime) -> OrderingThis method returns an Ordering between self and other. Read more
fn max(self, other: Self) -> Self1.21.0[src]
fn max(self, other: Self) -> SelfCompares and returns the maximum of two values. Read more
fn min(self, other: Self) -> Self1.21.0[src]
fn min(self, other: Self) -> SelfCompares and returns the minimum of two values. Read more
impl Hash for NaiveTime[src]
impl Hash for NaiveTimeNaiveTime can be used as a key to the hash maps (in principle).
Practically this also takes account of fractional seconds, so it is not recommended. (For the obvious reason this also distinguishes leap seconds from non-leap seconds.)
fn hash<H: Hasher>(&self, state: &mut H)[src]
fn hash<H: Hasher>(&self, state: &mut H)Feeds this value into the given [Hasher]. Read more
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, 1.3.0[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, Feeds a slice of this type into the given [Hasher]. Read more
impl Display for NaiveTime[src]
impl Display for NaiveTimefn fmt(&self, f: &mut Formatter) -> Result[src]
fn fmt(&self, f: &mut Formatter) -> ResultFormats the value using the given formatter. Read more
impl Debug for NaiveTime[src]
impl Debug for NaiveTimefn fmt(&self, f: &mut Formatter) -> Result[src]
fn fmt(&self, f: &mut Formatter) -> ResultFormats the value using the given formatter. Read more
impl FromStr for NaiveTime[src]
impl FromStr for NaiveTimetype Err = ParseError
The associated error which can be returned from parsing.
fn from_str(s: &str) -> ParseResult<NaiveTime>[src]
fn from_str(s: &str) -> ParseResult<NaiveTime>Parses a string s to return a value of this type. Read more
impl Add<Duration> for NaiveTime[src]
impl Add<Duration> for NaiveTimetype Output = NaiveTime
The resulting type after applying the + operator.
fn add(self, rhs: Duration) -> NaiveTime[src]
fn add(self, rhs: Duration) -> NaiveTimePerforms the + operation.
impl Sub<NaiveTime> for NaiveTime[src]
impl Sub<NaiveTime> for NaiveTimetype Output = Duration
The resulting type after applying the - operator.
fn sub(self, rhs: NaiveTime) -> Duration[src]
fn sub(self, rhs: NaiveTime) -> DurationPerforms the - operation.
impl Sub<Duration> for NaiveTime[src]
impl Sub<Duration> for NaiveTimetype Output = NaiveTime
The resulting type after applying the - operator.
fn sub(self, rhs: Duration) -> NaiveTime[src]
fn sub(self, rhs: Duration) -> NaiveTimePerforms the - operation.
impl Encodable for NaiveTime[src]
impl Encodable for NaiveTimefn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error>[src]
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error>Serialize a value using an Encoder.
impl Decodable for NaiveTime[src]
impl Decodable for NaiveTimeAuto Trait Implementations
Blanket Implementations
impl<T> From for T[src]
impl<T> From for Timpl<T, U> Into for T where
U: From<T>, [src]
impl<T, U> Into for T where
U: From<T>, impl<T> ToString for T where
T: Display + ?Sized, [src]
impl<T> ToString for T where
T: Display + ?Sized, impl<T> ToOwned for T where
T: Clone, [src]
impl<T> ToOwned for T where
T: Clone, type Owned = T
fn to_owned(&self) -> T[src]
fn to_owned(&self) -> TCreates owned data from borrowed data, usually by cloning. Read more
fn clone_into(&self, target: &mut T)[src]
fn clone_into(&self, target: &mut T)🔬 This is a nightly-only experimental API. (toowned_clone_into)
recently added
Uses borrowed data to replace owned data, usually by cloning. Read more
impl<T, U> TryFrom for T where
T: From<U>, [src]
impl<T, U> TryFrom for T where
T: From<U>, type Error = !
try_from)The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>try_from)Performs the conversion.
impl<T> Borrow for T where
T: ?Sized, [src]
impl<T> Borrow for T where
T: ?Sized, impl<T> BorrowMut for T where
T: ?Sized, [src]
impl<T> BorrowMut for T where
T: ?Sized, fn borrow_mut(&mut self) -> &mut T[src]
fn borrow_mut(&mut self) -> &mut TMutably borrows from an owned value. Read more
impl<T, U> TryInto for T where
U: TryFrom<T>, [src]
impl<T, U> TryInto for T where
U: TryFrom<T>, type Error = <U as TryFrom<T>>::Error
try_from)The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>try_from)Performs the conversion.
impl<T> Any for T where
T: 'static + ?Sized, [src]
impl<T> Any for T where
T: 'static + ?Sized, fn get_type_id(&self) -> TypeId[src]
fn get_type_id(&self) -> TypeId🔬 This is a nightly-only experimental API. (get_type_id)
this method will likely be replaced by an associated static
Gets the TypeId of self. Read more