Safe HaskellSafe-Infered

Structures.Structures

Description

This particular file contains the auxilliary definitions of data that are required by different classifiers

Synopsis

Documentation

type ClassName = String

The name of the class.

type FeatureVector = [Feature]

The feature vector

type Feature = Double

Each of the feature is a double value, the interpretation will be based on the distribution type to be used.

type Probability = Double

just better readability

data DataSet

data set, i.e. the input. each of the feature vector is a point and the classes contain the corresponding class the particular feature belongs to. The size of the points and the classes should be same

Constructors

DataSet 

Instances

Show DataSet 

type Probe = ClassName -> Feature -> Probability

Probe is basically a function that gives the probability of a feature having a particular value for a particular className

type FeatureData = [Feature]

this is same feature for different input points

type ClassData = [ClassName]

this is the parallel data for classes corresponding to the input

type TestDataCollect = [FeatureVector]

Collection of feature vectors

data DistributionType

specifies the type of the distribution used to fit the training data for a particular feature Source of Description : MathWork Normal - Gaussian Mvmn - Multivariate multinomial distribution Mn - Multinomial distribution

Constructors

Normal 
Kernel 
Mvmn 
Mn 

Instances

data PriorType

This defines which prior probablity to use. Empirical - Depends on the training data. Uniform - Equal probablity for all classes Specific - User provided probability

Instances

Show PriorType 

type DataPoint = (FeatureVector, ClassName)

data point, is the combination of point and its class data DataPoint = DataPoint { point::FeatureVector ,className :: ClassName }

type DataCollect = [DataPoint]

alternative to DataSet but in this classes or points are not directly separable

data DType

distance measure type DType = String

Constructors

Euclidean 
Manhattan 
DefaultDT 

data Resolve

Resolution method

Constructors

Last 
First 
DefaultR 

type NeighbourNum = Int

The number of neighbours the KNN uses

type ConflictControl = String

ROMIL

type Label = String

NITESH

data C45Dtree

Constructors

C45Dtree 

Fields

c45Classify :: Datum -> Label
 

data DecisionTree

Constructors

Leaf (Maybe Label) 
Node 

newtype Datum

Constructors

Datum 

Fields

attributes :: [(Attribute, Feature)]
 

Instances

Show Datum 

data Labelled

Constructors

Labelled 

Fields

label :: String
 
point :: Datum
 

Instances

Show Labelled 

data Attribute

Constructors

Nominal 

Fields

attName :: String
 
possibleValues :: [Feature]
 
Numeric 

Fields

attName :: String
 

Instances

Eq Attribute 
Show Attribute 

data DataSetGen

General definition of Dataset to unify the interface