
README.md 9/16/2020

1 / 11

Interblockchain Dynamic Network (Version 2.8.55)

Introduction
The NTR internodes network is a dynamic peer to peer network based on the Kamdelia protocol. Each
network node has a preset number of linked nodes. So, each node is to be seen as a star connected in which
the node is connected to its peers neighbours (see figure below). For example, a node may have a limit of 7
peers.

A "star" node can be connected to another "star" node.
Each node maintains its local routing table.
Sending a message to a particular node is performed through an algorithm calculating the shortest
path between the source and destination node.

At the moment, the only supported messenging method is the broadcast function. Hence, each node can
only broadcast a message to all nodes.

WARNING: Do not run any software using the internodes library on a computer also running an Ethereum
server. This disrupts the DPT algorithm.

This library bundles different components for lower-level peer-to-peer connection and message exchange:

Distributed Peer Table (DPT) / Node Discovery
RLPx Transport Protocol
Interblockchain Wire protocol

The library is based on ethereumjs/node-devp2p as well as other sub-libraries (node-* named).

Using the library
The first step is to include the library into your project with:

npm install ntrnetwork

https://medium.com/coinmonks/a-brief-overview-of-kademlia-and-its-use-in-various-decentralized-platforms-da08a7f72b8f
https://github.com/ethereumjs/node-devp2p

README.md 9/16/2020

2 / 11

Then to import the ntrnetwork class and instantiate it. To receive the network transmitted transactions, you
need to subscribe a callback which will receive as parameter network transactions data.
To be added to your code:

const Broadcaster = require('../src/index').Broadcaster;
const broadcaster = new Broadcaster(0x016);
broadcaster.subscribe(myCallback);
myCallback(message_code, transaction) {
 // do something with the transaction
}

To publish a message to all peers:

broadcaster.publish(message_code, data);

Note: In the latest release, the boadcaster class has a new constrauctor requiring to specify a channel ID
expressed as an hexadecimal number. The following numbers are suggested: Testnet1: 0x016; testAlpha:
0x015; production: 0x014;

example: const broadcaster = new Broadcaster(0x016);

Two network monitors are not installed respectively on 138.197.167.83 for testnet and on 138.197.156.204 for
alpha testing. The monitor's status is accessed through the port 9099 on both monitors.

Message types
Note: when the data content is modified, the file src/index.js should be modified to properly catch the
transactionID.

The following message types are defined in the interblockchain/index.js file

STATUS: 0x00: each node sends a status to message to synchronize each other.
TX: 0x02: Transaction message. This, is, restricted to the transfer request documents.
AUDIT: 0x03: auditors send this message as the result of an audit.

These message types are handled in the Interblockchain layer - NTR class (interblockchain/index.html). The
lower level messages are handled in the DPT level - the server class

PING
PONG
FINDNEIGHBOURS
NEIGHBOURS

Environment Variables
MAXPEERS: number (maximum number of peers for a node)
MONITOR: boolean (log output setting)

README.md 9/16/2020

3 / 11

BROADCASTER: boolean (log output setting)
RLPX: boolean (log output setting)
INTERBLOCKCHAIN:boolean (log output setting)
SERVER: boolean (log output setting)
DPT: boolean (log output setting)
PEERS: boolean (log output setting)

TX message example

{
 "nodeID":"interblockchain-11b6f2b9-e7e3-42a9hdgg",
 "ip":"127.65.34.298",
 "transactionID": "12345678987654321",
 "appID": "12345678900000",
 "ticker": "itBTC",
 "sourceNetwork": "Ethereum Network",
 "sourceAddress": "0x4327DDebc9f86cb7dd8e2b899203457a2b3aef91",
 "from": "0xF4c049517e3f9c61e846887f49fb52a7f2f271ce",
 "destinationNetwork": "Bitcoin Network",
 "destinationAddress": "n33npN2oRNJFFpdoxkrm2CVyZAfRGFxALt",
 "tokenContractAddress": "0xb398cebdc41d2935a438659da3f0b01fb583f339",
 "amount": "0.5"
}

AUDIT message example

Note: the following properties: transactionID, nodeID and ip are all automatically added by the
network library. Do not include them into a broadcasted message.

{
 "transactionID": "11b6f2b9-e7e3-42a9hdgg",
 "nodeID":"interblockchain-11b6f2b9-e7e3-42a9hdgg",
 "ip":"127.65.34.298",
 status: true,
 TR: {
 "timestamp": "Wed Oct 31 2018 12:37:17",
 "sourceKey":
"TETH:0x413e71dc2f5ad1b87967a5e01f604d3609d345a4:0x130f6562d441d25a812865527761ee7
246af0297:10000",
 "destKey": "TBCH:2MwSakwx2sy7mXUhmGeE3dKTmhYgNvkzwcR:0:10000",
 "transferRequest": {
 "amount": "0.0001",
 "appID": "382b494b-15ce-4014-8710-d9ca8060b67b",
 "destinationAddress": "2MwSakwx2sy7mXUhmGeE3dKTmhYgNvkzwcR",
 "destinationNetwork": "TBCH",
 "from": "0x130f6562d441D25A812865527761EE7246AF0297",
 "sourceAddress": "0x413e71dc2f5ad1b87967a5e01f604d3609d345a4",
 "sourceNetwork": "TETH",
 "ticker": "ITBCH",

README.md 9/16/2020

4 / 11

 "tokenContractAddress": "0xd1e7560e4b9c6ab0facb450446fbf64c6bd8490a",
 "transactionID": "b4227873-e7e9-4375-b36f-3d1b010280ef",
 "brdcTender": true,
 "onlyReqConf": true
 }
}

REST API of the monitoring node
To get all connected peers to a particular node:

GET nodeDomain/peers

When a transaction is received by a node, it is recorded in memory and kept for 30 seconds. This is preventing
a node to broadcast a transaction already received. When the 30 second is elapsed, the garbagge collector
removes all transactions older than 30 seconds. The collection is transactions kept in memory is obtained by:

GET nodeDomain/tx

Run/Build
This library needs to run in an ECMAScript 2016 and nodeJS version 8.11.2 and up.

Steps:

clone the source code into your project with

git clone https://github.com/Interblockchain/internodes.git

install dependencies registered in the package.json file located in the root directory containing the
Interblockchain wire protocol.

npm install

Include the dependencies into your project (as illustrated in the peer-
communication.interblockchain.js)

const devp2p = require('../src');
const LRUCache = require('lru-cache');
const ms = require('ms');
const assert = require('assert');
const { randomBytes } = require('crypto');

README.md 9/16/2020

5 / 11

const rlp = require('rlp-encoding');
const Buffer = require('safe-buffer').Buffer;
const mac = require('getmac');

Publish the library on NPM

Create an NPM account
Login (npm login)
Verify your npm local subscription (npm whoami)
publish (_npm publish)

Publish the network monitor as a Docker

Build the image (docker build --rm -f "Dockerfile" -t interblockchainlab/internodes:latest .)
Publish the image on DockerHub (docker push interblockchainlab/internodes:latest)

Programming notes:
The main interfunction communicaiton involved in the handshake during the bootstrap stage and node
discovery is illutrated below:

Usage/Examples
An example implementation is included in the test directory, in the file: peer-
communication.interblockchain.js

Classes
All classes of this library are implemented as Node EventEmitter objects and make heavy use of the Node.js
network stack.

You can react on events from the network like this:

dpt.on('peer:added', (peer) => {
 // Do something...
})

README.md 9/16/2020

6 / 11

Basic example to connect to some bootstrap nodes and get basic peer info:

simple

Communicate with peers to read and write new transactions:

peer-communication

Interblockchain Wire Protocol (NTR)
Is an upper layer protocol to transmit message among Interblockchain nodes, see ./src/interblockchain

Usage

When a new peer is added to the network, the peer:added event is fired. The event handler attached to this
event receives as parameter the connected peer object. The first task of this event handler is to send a
status object to the just connected peer. This is sent to the connected peer with the sendStatus() function
as illustrated below.

file:///e%3A/internodes/examples/simple.js
file:///e%3A/internodes/examples/peer-communication.interblockchain.js
file:///e%3A/internodes/src/interblockchain

README.md 9/16/2020

7 / 11

rlpx.on('peer:added', (peer) => {
 ntr.sendStatus({
 networkId: CHAIN_ID,
 networkName: "interblockchain",
 Note:"test in progress"
 });
 // Do something with this messsage :-)
}

When other nodes send their own status message, the latter is trapped by an event handler associated to the
status event. This event is fired only once per peer connected.

eth.once('status', () => {
 // Send an initial message
 ntr.sendMessage()
})

Each message received from other peers is handled by an event handler associated to the message event.

ntr.on('message', async (code, payload) => {
 if (code === devp2p.NTR.MESSAGE_CODES.TX) {
 // Do something with this messsage :-)
 }
})

API

Execution modes

The internodes can be executed as:

an NPM library
a nodejS application

When used as an NPM library the starting class is Broadcaster (located in /src/index.js). When used a nodeJS
application the starting file is app.js, an express based REST endpoint.

ntr.sendStatus(status)

Send initial status message.

status - Status message to send, format { networkId: CHAIN_ID}.

ntr.sendMessage(code, payload)

Send a message.

README.md 9/16/2020

8 / 11

code - The message code, see MESSAGE_CODES for available message types.
payload - Payload as a list, will be rlp-encoded.

Events

Events emitted:

Event Description

message Message received

status Status info received

RLPx Transport Protocol
Connect to a peer, organize the communication, see ./src/rlpx/

Usage

Create your RLPx object, e.g.:

const rlpx = new devp2p.RLPx(PRIVATE_KEY, {
 dpt: dpt,
 maxPeers: 25,
 capabilities: [
 interblockchain
],
 listenPort: null
})

API

RLPx (extends EventEmitter)

Manages the handshake (ECIES) and the handling of the peer communication (Peer).

new RLPx(privateKey, options)

Creates new RLPx object

privateKey - Key for message encoding/signing.
options.timeout - Peer ping timeout in ms (default: 10s).
options.maxPeers - Max number of peer connections (default: 10).
options.clientId - Client ID string (default example: ethereumjs-devp2p/v2.1.3/darwin-
x64/nodejs).
options.remoteClientIdFilter - Optional list of client ID filter strings (e.g. ['go1.5', 'quorum']).
options.capabilities - Upper layer protocol capabilities, e.g. [devp2p.ETH.eth63,
devp2p.ETH.eth62].
options.listenPort - The listening port for the server or null for default.

file:///e%3A/internodes/src/rlpx/

README.md 9/16/2020

9 / 11

options.dpt - DPT object for the peers to connect to (default: null, no DPT peer management).

rlpx.connect(peer) (async)

Manually connect to peer without DPT.

peer - Peer to connect to, format { id: PEER_ID, address: PEER_ADDRESS, port: PEER_PORT }.

rplx.broadcast(code, message)

Broadcast a message to all connected peers.

code - The message code, see MESSAGE_CODES for available message types.
message - can be an Array, a string

For other connection/utility functions like listen, getPeers see ./src/rlpx/index.js.

Events

Events emitted:

Event Description

peer:added Handshake with peer successful

peer:removed Disconnected from peer

peer:error Error connecting to peer

listening Forwarded from server

close Forwarded from server

error Forwarded from server

Reference

RLPx: Cryptographic Network & Transport Protocol
devp2p wire protocol

Distributed Peer Table (DPT) / Node Discovery
Maintain/manage a list of peers, see ./src/dpt/, also includes node discovery (./src/dpt/server.js)

Usage

Create your peer table:

const dpt = new DPT(Buffer.from(PRIVATE_KEY, 'hex'), {
 endpoint: {
 address: '0.0.0.0',
 udpPort: null,

file:///e%3A/internodes/src/rlpx/index.js
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://github.com/ethereum/wiki/wiki/%C3%90%CE%9EVp2p-Wire-Protocol
file:///e%3A/internodes/src/dpt/
file:///e%3A/internodes/src/dpt/server.js

README.md 9/16/2020

10 / 11

 tcpPort: null
 }
})

Add some bootstrap nodes (or some custom nodes with dpt.addPeer()):

dpt.bootstrap(bootnode).catch((err) => console.error('Something went wrong!'))

API

DPT (extends EventEmitter)

Distributed Peer Table. Manages a Kademlia DHT K-bucket (Kbucket) for storing peer information and a
BanList for keeping a list of bad peers. Server implements the node discovery (ping, pong,
findNeighbours).

new DPT(privateKey, options)

Creates new DPT object

privateKey - Key for message encoding/signing.
options.refreshInterval - Interval in ms for refreshing (calling findNeighbours) the peer list
(default: 60s).
options.createSocket - A datagram (dgram) createSocket function, passed to Server (default:
dgram.createSocket.bind(null, 'udp4')).
options.timeout - Timeout in ms for server ping, passed to Server (default: 10s).
options.endpoint - Endpoint information to send with the server ping, passed to Server (default: {
address: '0.0.0.0', udpPort: null, tcpPort: null }).

dpt.bootstrap(peer) (async)

Uses a peer as new bootstrap peer and calls findNeighbouts.

peer - Peer to be added, format { address: [ADDRESS], udpPort: [UDPPORT], tcpPort:
[TCPPORT] }.

dpt.addPeer(object) (async)

Adds a new peer.

object - Peer to be added, format { address: [ADDRESS], udpPort: [UDPPORT], tcpPort:
[TCPPORT] }.

For other utility functions like getPeer, getPeers see ./src/dpt/index.js.

Events

Events emitted:

file:///e%3A/internodes/src/dpt/index.js

README.md 9/16/2020

11 / 11

Event Description

peer:added Peer added to DHT bucket

peer:removed Peer removed from DHT bucket

peer:new New peer added

listening Forwarded from server

close Forwarded from server

error Forwarded from server

Reference

Node discovery protocol
RLPx - Node Discovery Protocol
Kademlia Peer Selection
Safe Buffer

Todo
Add a list of connection nodes if the main connected node is off and if there not enough internodes
connected.

https://github.com/ethereum/wiki/wiki/Node-discovery-protocol
https://github.com/ethereum/devp2p/blob/master/rlpx.md#node-discovery
https://github.com/ethereum/wiki/wiki/Kademlia-Peer-Selection
https://www.npmjs.com/package/safe-buffer

