
1

AN EFFICIENT ALGORITHM FOR LINE CLIPPING IN COMPUTER GRAPHICS

PROGRAMMING

S. R. Kodituwakku1, K. R. Wijeweera1, M. A. P. Chamikara2

1Department of Statistics and Computer Science, Faculty of Science, University of Peradeniya
2Post Graduate Institute of Science, Faculty of Science, University of Peradeniya

Abstract: Most of the line clipping algorithm are based on Cohen-Sutherland and Liang-Barsky

algorithms. These algorithms involve a lot of calculations. This paper proposes a new line clipping

algorithm for 2D space which is more efficient than the existing algorithms. The possible extended

algorithm for 3D space is also presented. The algorithm proposed for the 2D space is compared

against traditional line clipping algorithms. The proposed algorithm was tested for a large number of

random line segments and the results showed that it performs better than the Cohen-Sutherland and

Liang-Barsky algorithms.

Keywords: Computer Graphics Programming, Line Clipping, 2D geometry, 3D geometry

1. INTRODUCTION

Line clipping is a basic and an important operation in computer graphics. There are many

applications of line clipping. For example, line clipping is needed to extract a part of a given

scene for viewing. Generally lines are clipped by using a region that includes the part of the

given scene. It is known as the clipping window and it is a rectangle or a general polygon [2].

The traditional line clipping algorithms include Cohen-Sutherland line clipping algorithm

[1], Liang-Barsky line clipping algorithm [2], Cyrus-Beck line clipping algorithm [3] and

Nicholl-Lee-Nicholl line clipping algorithm [4]. The Cohen-Sutherland and the Liang-Barsky

algorithms can be extended to three-dimensional clipping [1]. The Nicholl-Lee-Nicholl

algorithm performs fewer comparisons and divisions. Therefore, it is faster than others [1].

The major disadvantage of this algorithm is that it can only be applied to two-dimensional

clipping [1]. On the other hand, the Liang-Barsky and the Cohen-Sutherland methods are

easily extended to three-dimensional scenes [1].

The Cohen-Sutherland line clipping algorithm is one of the earliest and most widely used

line clipping methods [2]. In this algorithm, a rectangular clipping window along with a

coding scheme is used to divide the space in to regions. Then, each end point of the line

segment is assigned a region code according to the region which has been occupied by that

point. Then the “AND” and “OR” operations are performed over the region codes of the end

points to decide whether the line segment is inside the clipping window or outside the

clipping window. This algorithm is very faster for simple situations such as line segment is

completely inside or outside of the clipping window. When the line segment cannot be

classified as completely inside or outside, the algorithm needs to be repeated several times to

convert it in to a simple situation. So, if the line segment is intersecting more than two

boundaries of the clipping window, lots of unnecessary computations are involved [1].

2

Cyrus and Beck have proposed another algorithm that deals with the parametric form of the

line [3]. In order to clip a line segment which is neither vertical nor horizontal and lies

entirely within the window, 12 additions, 16 subtractions, 20 multiplications and 4 divisions

are required [2]. Besides, for the general case (the line segments crossing all the boundaries of

the window), the algorithm first makes computations and finds the parameters of the

intersection points. According to the signs of the denominators of the parameters, then it

determines which parts of the line segment is outside of the window. This algorithm mainly

suffers from the above mentioned limitations.

Nicholl-Lee-Nicholl line clipping algorithm makes four rays which pass an endpoint

of the line segment and four vertices of the window, and creates three regions by the four

rays. Then, the algorithm determines which region that the line segment lies in, and finds the

intersections or rejects the line segment. Before finding the intersection points of the line

segment and the window, the algorithm first determines the position of the first endpoint of

the line segment for the nine possible regions relative to the clipping window. If the point is

not in one of the three especial regions, the algorithm has to transform the point to one of the

three especial regions. To find the region in which the other endpoint of the line segment lies,

it compares the slope of the line segment to the slopes of the four rays. Because of that, for the

algorithm, finding the intersection points are efficient, but finding the positions of the two

endpoints of the line segment are more complicated than Cohen-Sutherland line clipping

algorithm [2].

You-dong Liang, Brian A. Barsky and Mel Slater also introduced faster line clipping

algorithm [1, 5]. This algorithm is based on a parametric representation of the line segment. It

is somewhat complicated and inefficient. To clip a line segment which is neither vertical nor

horizontal, it will perform 16 comparisons, 7 subtractions, and 4 divisions [2].

Vaclv Skala proposed a line clipping algorithm for convex polygon window [6]. The

algorithm uses binary search to find the intersections in the clipping window. The complexity

is O (lg N). For the rectangle window, the algorithm does not have an advantage in

comparison with the Cyrus-Beck algorithm [2].

According to Hearn and Baker [1] any line clipping algorithm involves three steps:

1. Test a given line segment to check whether it lays completely inside the clipping

window

2. If not check whether it lies completely outside the clipping window

3. Otherwise perform intersection calculations with one or more clipping boundaries

These three steps lead the algorithm to lot of calculations as explained above. In this

paper, a new line clipping algorithm is proposed without using the traditional three step

procedure. Instead the line segment is directly passed through the algorithm without any

classification. It was tested for a large number of line segments and the results proved that the

algorithm is more efficient than Cohen-Sutherland and Liang-Barksy algorithms.

3

2. METHODOLOGY

This section presents the proposed line clipping algorithm and analyzes its performance.

For line clipping, a rectangular clipping window is considered. Following conventions have

been used to label the rectangular window.

The general equation of a line, y = m * x + c, is used, where m is the gradient and c is

the y-intercept. End points of the line segment are A = (x[0], y[0]) and B = (x[1], y[1]).

2.1 PSEUDO CODE OF THE PROPOSED ALGORITHM FOR 2D SPACE

All the symbols used in the following pseudo code are shown in Fig. 1. To increase the

understandability of the pseudo code we have omitted following cases from it.

1) Line segment is just a point

2) Line segment is parallel to principle axes

Above two cases have been addressed at the implementation stage (See Appendix). Then

the abstract pseudo code is as follows.

// Calculating m and c

For i = 0 to i = 1

 If x[i] < minx

 x[i] = minx;

 y[i] = m * minx + c;

 ElseIf x[i] > maxx

 x[i] = maxx;

 y[i] = m * maxx + c;

 EndIf

 If y[i] < miny

 x[i] = (miny – c) / m;

 y[i] = miny;

 ElseIf y[i] > maxy

 x[i] = (maxy – c) / m;

 y[i] = maxy;

 EndIf

EndFor

x

y

miny

maxy

maxx minx

Fig.1. Clipping window

4

// Initial line is completely outside

If (x[0] - x[1] < 1) AND (x[1] - x[0] < 1)

// Do nothing

Else

// Save the line with end points (x[0], y[0]), (x[1], y[1])

EndIf

2.2 ANALYSIS OF THE ALGORITHM FOR 2D SPACE

This subsection analyzes the proposed algorithm for some of the most important test

cases.

Case 1: Line is completely inside

x[A] != x[B]  true

y[A] != y[B]  true

Consider point A,

x[A] < minx  false

x[A] > maxx  false

y[A] < miny  false

y[A] > maxy  false

Therefore, the initial position of A is not changed.

Consider point B,

x[B] < minx  false

x[B] > maxx  false

y[B] < miny  false

y[B] > maxy  false

Therefore the initial position of B is not changed.

(x[A] - x[B] < 1) && (x[B] - x[A])  false

Therefore, the line with the end points A and B is drawn.

Case 2: Line is completely outside

B

A

Fig.2.Line is completely inside

B

A B’

B’’

A’

Fig.3. Line is completely outside

5

x[A] != x[B]  true

y[A] != y[B]  true

Consider point A,

x[A] < minx  false

x[A] > maxx  false

y[A] < miny  true

Therefore, A  A’

Consider point B,

x[B] < minx  false

x[B] > maxx  true

Therefore, B  B’

y[B’] < miny  true

Therefore, B’  B’’

(x[A’] - x[B’’] < 1) && (x[B’’] - x[A’])  true

Therefore, the line is ignored.

Case 3: Line intersects the clipping window

x[A] != x[B]  true

y[A] != y[B]  true

Consider point A,

x[A] < minx  true

Therefore, A  A’

y[A’] < miny  true

Therefore, A’  A’’

Consider point B,

x[B] < minx  false

x[B] > maxx  true

Therefore, B  B’

y[B’] < miny  false

y[B’] > maxy  true

Therefore, B’  B’’

Therefore, the line with the end points A’’ and B’’ is drawn.

B

A

A’
A’’

B’

B’’

Fig.4. Line is intersecting the boundaries

6

Case 4: Line partially inside the clipping window

x[A] != x[B]  true

y[A] != y[B]  true

Consider point A,

x[A] < minx  false

x[A] > maxx  false

y[A] < miny  false

y[A] > maxy  false

y[A] < miny  true

Therefore, the initial position of A is not changed.

Consider point B,

x[B] < minx  false

x[B] > maxx  true

Therefore, B  B’

x[B’] < miny  true

Therefore, B’  B’’

Therefore, the line with the end points A and B’’ is drawn.

2.3 PSEUDO CODE OF THE PROPOSED ALGORITHM FOR 3D SPACE

In this case an additional coordinate, Z coordinate, is involved. So the end points look

like below.

�������� �� �ℎ� ����,

� − �[0]

�
=

� − �[0]

�
=

� − �[0]

�
; �, �, � ��� ���������

����������, (�[1], �[1], �[1])

�[1] − �[0]

�
=

�[1] − �[0]

�
=

�[1] − �[0]

�

����,
�[1] − �[0]

�
=

�[1] − �[0]

�

(x[0], y[0], z[0])

(x[1], y[1], z[1])

B

Fig.3. Line is partially inside the clipping window

B’

B’’

A

7

�[1] − �[0]

�[1] − �[0]
=

�

�
= �

����,
�[1] − �[0]

�
=

�[1] − �[0]

�

�[1] − �[0]

�[1] − �[0]
=

�

�
= �

Point of intersection with x = p plane,

��,
� − �[0]

�
+ �[0],

� − �[0]

� ∗ �
+ �[0]�

Point of intersection with y = q plane,

�� ∗ (� − �[0]) + �[0], �,
� − �[0]

�
+ �[0]�

Point of intersection with z = r plane,

(� ∗ � ∗ (� − �[0]) + �[0], � ∗ (� − �[0]) + �[0], �)

Pseudo code of the algorithm developed for the 2D space can be extended as follows. To

increase the understandability of the pseudo code we have omitted following cases from it.

1) Line segment is just a point

2) Line segment is parallel to principle planes

Above two cases can be addressed at the implementation stage.

// Calculate a and b

For i = 0 to i = 1

 If x[i] < minx

 y[i] = (minx - x[0]) / a + y[0];

 z[i] = (minx - x[0]) / (a * b) + z[0];

 x[i] = minx;

 ElseIf x[i] > maxx

 y[i] = (maxx - x[0]) / a + y[0];

 z[i] = (maxx - x[0]) / (a * b) + z[0];

 x[i] = maxx;

 EndIf

 If y[i] < miny

 x[i] = a * (miny - y[0]) + x[0];

 z[i] = (miny - y[0]) / b + z[0];

 y[i] = miny;

 ElseIf y[i] > maxy

 x[i] = a * (maxy - y[0]) + x[0];

 z[i] = (maxy - y[0]) / b + z[0];

 y[i] = maxy;

 EndIf

 If z[i] < minz

8

 x[i] = a * b * (minz - z[0]) + x[0];

 y[i] = b * (minz - z[0]) + y[0];

 z[i] = minz;

 ElseIf z[i] > maxz

 x[i] = a * b * (maxz - z[0]) + x[0];

 y[i] = b * (maxz - z[0]) + y[0];

 z[i] = maxz;

 EndIf

EndFor

// Initial line is completely outside

If (x[0] - x[1] < 1) AND (x[1] - x[0] < 1)

 // Do nothing

Else

 // Save the line with end points (x[0], y[0], z[0]), (x[1], y[1], z[1])

EndIf

3. RESULTS AND DISCUSSION

The proposed algorithm for the 2D space was tested for all the possible test cases. The test

results indicated that it performs well in all possible situations. In order to validate the

algorithm, it was compared against the Cohen-Sutherland and Liang-Barsky algorithms. The

following hardware and software were used for testing.

Computer: Intel(R) Pentium(R) Dual CPU; E2180 @ 2.00 GHz; 2.00 GHz, 0.98 GB RAM

IDE Details: Turbo C++; Version 3.0; Copyright(c) 1990, 1992 by Borland International, Inc.

Method: The clip window with values minx = miny = 100 and maxx = maxy = 300 was used

for clipping. Random points were generated in the range 0-399 by using the randomize()

function. These random points were considered as end points to generate random lines.

Number of clock cycles taken by each algorithm to clip 108 random lines were counted using

the clock() function [2]. The results are shown in Table 1.

 Table.1. Number of clock cycles comparison of the proposed algorithm verses traditional algorithms

Step Cohen-Sutherland Liang-Barsky Proposed algorithm
1 2596 2452 2296
2 2593 2452 2296
3 2594 2452 2296
4 2595 2452 2296
5 2596 2451 2296
6 2593 2451 2296
7 2593 2452 2296
8 2592 2451 2296
9 2593 2452 2296
10 2594 2451 2296

9

The results shown in Table 1 prove that the proposed algorithm is faster than both

Cohen-Sutherland and Liang-Barsky algorithms. Average ratios can be calculated using

following equation.

������� ����� =
∑ ����� ������ ��� ����������� �������ℎ�

∑ ����� ������ ��� �������� �������ℎ�

Average Ratio (Cohen-Sutherland: Proposed) = 25939/22960=1.1297

Average Ration (Liang-Barsky: Proposed) = 24516/22960=1.0677

Therefore the proposed algorithm is 1.13 times faster than Cohen-Sutherland algorithm

and 1.07 times faster than Liang-Barsky algorithm.

4. CONCLUSION

A new algorithm for line clipping in 2D space was introduced. Additionally possibility of

expanding it for 3D space was discussed. Algorithm proposed for the 2D space was tested and

compared against two well known algorithms. According to the test results, it is faster than

the traditional algorithms. Therefore the proposed algorithm can be successfully used in

applications where line clipping involved since its performance is better. Even the line

segment is completely outside the proposed algorithm needs to calculate some of the

intersection points. That is a disadvantage of the proposed method compared to the traditional

two algorithms that were tested above. But in all the other cases the performance of the

proposed algorithm is better.

REFERENCES

1. D. Hearn and M. P. Baker (1998), Computer Graphics, C Version, 2nd Edition, Prentice

Hall, Inc., Upper Saddle River, p. 224-248.

2. Wenjun Huang (2010), The Line Clipping Algorithm Basing on Affine Transformation,

Intelligent Information Management, 2,380-385, Published Online June 2010

(http://www.SciRP.org/journal/iim)

3. M. Cyrus and J. Beck (1978), Generalized Two and Three Dimensional Clipping,

Computers and Graphics, Vol. 3, No. 1, pp. 23-28.

4. T. M. Nicholl, D. T. Lee and R. A. Nicholl (1987), An Efficient New Algorithm for 2-D

Line Clipping: Its Development and Analysis, Computers and Graphics, Vol. 21, No. 4,

pp. 253-262.

5. C. B. Chen and F. Lu (2006), Computer Graphics Basis, Publishing House of Electronics

Industry, Beijing, pp.167-168.

6. V. Skala (1994), O (lg N) Line clipping Algorithm in E, Computers and Graphics, Vol.

18, No. 4, pp. 517-527.

10

APPENDIX

IMPLEMENTATION OF THE PROPOSED ALGORITHM FOR 2D SPACE

Implementation of the proposed algorithm for the 2D window has been developed

using C++ programming language. Here all the test cases have been considered. The source

code is as follows.

void clipMY(double x[],double y[],double minx,double miny,double maxx,double maxy)

{

// gradient and y-intercept of the line

double m,c;

int i;

// non vertical lines

if(x[0]!=x[1])

{

 // non vertical and non horizontal lines

 if(y[0]!=y[1])

 {

 // calculate the gradient

 m=(y[0]-y[1])/(x[0]-x[1]);

 // calculate the y-intercept

 c=(x[0]*y[1]-x[1]*y[0])/(x[0]-x[1]);

 for(i=0;i<2;i++)

 {

 if(x[i]<minx)

 {

 x[i]=minx;

 y[i]=m*minx+c;

 }

 else if(x[i]>maxx)

 {

 x[i]=maxx;

 y[i]=m*maxx+c;

 }

 if(y[i]<miny)

 {

 x[i]=(miny-c)/m;

 y[i]=miny;

 }

 else if(y[i]>maxy)

 {

11

 x[i]=(maxy-c)/m;

 y[i]=maxy;

 }

 }

 // initial line is completely outside

 if((x[0]-x[1]<1) && (x[1]-x[0]<1))

 {

 // do nothing

 }

 // draw the clipped line

 else

 {

 setcolor(15);

 line(x[0],y[0],x[1],y[1]);

 }

 }

 // horizontal lines

 else

 {

 // initial line is completely outside

 if((y[0]<=miny) || (y[0]>=maxy))

 {

 // do nothing

 }

 else

 {

 for(i=0;i<2;i++)

 {

 if(x[i]<minx)

 {

 x[i]=minx;

 }

 else if(x[i]>maxx)

 {

 x[i]=maxx;

 }

 }

 // initial line is completely outside

 if((x[0]-x[1]<1) && (x[1]-x[0]<1))

 {

 // do nothing

 }

 // draw the clipped line

 else

12

 {

 setcolor(15);

 line(x[0],y[0],x[1],y[1]);

 }

 }

 }

}

// vertical lines

else

{

 // initial line is just a point

 if(y[0]==y[1])

 {

 // initial point is outside

 if((y[0]<=miny) || (y[0]>=maxy))

 {

 // do nothing

 }

 // initial point is outside

 else if((x[0]<=minx) || (x[0]>=maxx))

 {

 // do nothing

 }

 // initial point is inside

 else

 {

 putpixel(x[0],y[0],15);

 }

 }

 // initial line is completely outside

 else if((x[0]<=minx) || (x[0]>=maxx))

 {

 // do nothing

 }

 else

 {

 for(i=0;i<2;i++)

 {

 if(y[i]<miny)

 {

 y[i]=miny;

 }

 else if(y[i]>maxy)

13

 {

 y[i]=maxy;

 }

 }

 // initial line is completely outside

 if((y[0]-y[1]<1) && (y[1]-y[0]<1))

 {

 // do nothing

 }

 // draw the clipped line

 else

 {

 setcolor(15);

 line(x[0],y[0],x[1],y[1]);

 }

 }

}

}

Saluka Ranasinghe Kodituwakku is an associate professor at the Department of Statistics and
Computer Science, Faculty of Science, University of Peradeniya, Sri Lanka. His research interests
include Database Systems, Distributed Computing, Role Based Access Control Systems, and Software
Engineering. Email: salukak@pdn.ac.lk

Kasun Ranga Wijeweera is an undergraduate following a Computer Science Special degree at the
Department of Statistics and Computer Science, Faculty of Science, University of Peradeniya, Sri
Lanka. His research interests include Computational Geometry, Computer Graphics, Image
Processing, Computer Vision, and Artificial Intelligence. Email: krw19870829@gmail.com

M. A. Pathum Chamikara is working as a research assistant at the Post Graduate Institute of Science
(PGIS), University of Peradeniya, Sri Lanka. He received his BSc (Special) degree in Computer
Science from University of Peradeniya, Sri Lanka (2010). His research interests include Crime
Analysis, GIS (Geographic Information Systems), Image Processing, Computer Vision, and Artificial
Intelligence. Email: pathumchamikara@gmail.com

Note: The above paper has been published as,

S. R. Kodituwakku, K. R. Wijeweera, M. A. P. Chamikara, An Efficient Algorithm for Line
Clipping in Computer Graphics Programming, Ceylon Journal of Science (Physical Sciences)
17 (2013) 1-7.

	Saluka Ranasinghe Kodituwakku is an associate professor at the Department of Statistics and Computer Science, Faculty of Science, University of Peradeniya, Sri Lanka. His research interests include Database Systems, Distributed Computing, Role Based Access Control Systems, and Software Engineering. Email: salukak@pdn.ac.lk

	Kasun Ranga Wijeweera is an undergraduate following a Computer Science Special degree at the Department of Statistics and Computer Science, Faculty of Science, University of Peradeniya, Sri Lanka. His research interests include Computational Geometry, Computer Graphics, Image Processing, Computer Vision, and Artificial Intelligence. Email: krw19870829@gmail.com

	M. A. Pathum Chamikara is working as a research assistant at the Post Graduate Institute of Science (PGIS), University of Peradeniya, Sri Lanka. He received his BSc (Special) degree in Computer Science from University of Peradeniya, Sri Lanka (2010). His research interests include Crime Analysis, GIS (Geographic Information Systems), Image Processing, Computer Vision, and Artificial Intelligence. Email: pathumchamikara@gmail.com

	Note: The above paper has been published as,

	S. R. Kodituwakku, K. R. Wijeweera, M. A. P. Chamikara, An Efficient Algorithm for Line Clipping in Computer Graphics Programming, Ceylon Journal of Science (Physical Sciences) 17 (2013) 1-7.

