export declare class Classifier { constructor(modelFilename?: string); loadModel(modelFilename: string): Promise; predict(sentence: string, k: number, callback?: DoneCallback): Promise>; train(command: 'supervised' | 'skipgram' | 'cbow' | 'quantize', options: Options, callback?: DoneCallback): Promise; quantize(options: Options, callback?: DoneCallback); } export declare class Query { constructor(modelFilename: string); nn(word: string, neighbors: number): Promise>; } export interface Options { [key: string]: any; // The following arguments are mandatory input: string; // training file path output: string; // output file path // The following arguments are optional verbose: number; // verbosity level [2] // The following arguments for the dictionary are optional minCount: number; // minimal number of word occurrences [5] minCountLabel: number; // minimal number of label occurrences [0] wordNgrams: number; // max length of word ngram [1] bucket: number; // number of buckets [2000000] minn: number; // min length of char ngram [3] maxn: number; // max length of char ngram [6] t: number; // sampling threshold [0.0001] label: string; // labels prefix [__label__] // The following arguments for training are optional lr: number; // learning rate [0.05] lrUpdateRate: number; // change the rate of updates for the learning rate [100] dim: number; // size of word vectors [100] ws: number; // size of the context window [5] epoch: number; // number of epochs [5] neg: number; // number of negatives sampled [5] loss: 'softmax' | 'hs' | 'ls' | string; // loss function {ns, hs, softmax} [ns] thread: number; // number of threads [12] pretrainedVectors: string; // pretrained word vectors for supervised learning [] saveOutput: boolean; // whether output params should be saved [0] // The following arguments for quantization are optional cutoff: number; // number of words and ngrams to retain [0] retrain: boolean; // finetune embeddings if a cutoff is applied [0] qnorm: boolean; // quantizing the norm separately [0] qout: boolean; // quantizing the classifier [0] dsub: number; // size of each sub-vector [2] } export interface DoneCallback { (error: any, result: any): void }