import { Math as JSMath } from "./bindings/dom"; export { JSMath }; import { pow_lut, exp_lut, exp2_lut, log_lut, log2_lut, powf_lut, expf_lut, exp2f_lut, logf_lut, log2f_lut } from "./util/math"; import { abs as builtin_abs, ceil as builtin_ceil, clz as builtin_clz, copysign as builtin_copysign, floor as builtin_floor, max as builtin_max, min as builtin_min, sqrt as builtin_sqrt, trunc as builtin_trunc } from "./builtins"; // SUN COPYRIGHT NOTICE // // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // Developed at SunPro, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this software // is freely granted, provided that this notice is preserved. // // Applies to all functions marked with a comment referring here. /** @internal */ // @ts-ignore: decorator @lazy let rempio2_y0: f64, rempio2_y1: f64, res128_hi: u64; /** @internal */ // @ts-ignore: decorator @lazy @inline const PIO2_TABLE = memory.data([ 0x00000000A2F9836E, 0x4E441529FC2757D1, 0xF534DDC0DB629599, 0x3C439041FE5163AB, 0xDEBBC561B7246E3A, 0x424DD2E006492EEA, 0x09D1921CFE1DEB1C, 0xB129A73EE88235F5, 0x2EBB4484E99C7026, 0xB45F7E413991D639, 0x835339F49C845F8B, 0xBDF9283B1FF897FF, 0xDE05980FEF2F118B, 0x5A0A6D1F6D367ECF, 0x27CB09B74F463F66, 0x9E5FEA2D7527BAC7, 0xEBE5F17B3D0739F7, 0x8A5292EA6BFB5FB1, 0x1F8D5D0856033046, 0xFC7B6BABF0CFBC20, 0x9AF4361DA9E39161, 0x5EE61B086599855F, 0x14A068408DFFD880, 0x4D73273106061557 ]); /** @internal */ function R(z: f64): f64 { // Rational approximation of (asin(x)-x)/x^3 const // see: musl/src/math/asin.c and SUN COPYRIGHT NOTICE above pS0 = reinterpret(0x3FC5555555555555), // 1.66666666666666657415e-01 pS1 = reinterpret(0xBFD4D61203EB6F7D), // -3.25565818622400915405e-01 pS2 = reinterpret(0x3FC9C1550E884455), // 2.01212532134862925881e-01 pS3 = reinterpret(0xBFA48228B5688F3B), // -4.00555345006794114027e-02 pS4 = reinterpret(0x3F49EFE07501B288), // 7.91534994289814532176e-04 pS5 = reinterpret(0x3F023DE10DFDF709), // 3.47933107596021167570e-05 qS1 = reinterpret(0xC0033A271C8A2D4B), // -2.40339491173441421878e+00 qS2 = reinterpret(0x40002AE59C598AC8), // 2.02094576023350569471e+00 qS3 = reinterpret(0xBFE6066C1B8D0159), // -6.88283971605453293030e-01 qS4 = reinterpret(0x3FB3B8C5B12E9282); // 7.70381505559019352791e-02 let p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5))))); let q = 1.0 + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4))); return p / q; } /** @internal */ // @ts-ignore: decorator @inline function expo2(x: f64, sign: f64): f64 { // exp(x)/2 for x >= log(DBL_MAX) const // see: musl/src/math/__expo2.c k = 2043, kln2 = reinterpret(0x40962066151ADD8B); // 0x1.62066151add8bp+10 let scale = reinterpret(((0x3FF + k / 2) << 20) << 32); // in directed rounding correct sign before rounding or overflow is important return NativeMath.exp(x - kln2) * (sign * scale) * scale; } /** @internal */ /* Helper function to eventually get bits of π/2 * |x| * * y = π/4 * (frac << clz(frac) >> 11) * return clz(frac) * * Right shift 11 bits to make upper half fit in `double` */ // @ts-ignore: decorator @inline function pio2_right(q0: u64, q1: u64): u64 { // see: jdh8/metallic/blob/master/src/math/double/rem_pio2.c // Bits of π/4 const p0: u64 = 0xC4C6628B80DC1CD1; const p1: u64 = 0xC90FDAA22168C234; const Ox1p_64 = reinterpret(0x3BF0000000000000); // 0x1p-64 const Ox1p_75 = reinterpret(0x3B40000000000000); // 0x1p-75 let shift = clz(q1); q1 = q1 << shift | q0 >> (64 - shift); q0 <<= shift; let lo = umuldi(p1, q1); let hi = res128_hi; let ahi = hi >> 11; let alo = lo >> 11 | hi << 53; let blo = (Ox1p_75 * p0 * q1 + Ox1p_75 * p1 * q0); rempio2_y0 = (ahi + u64(lo < blo)); rempio2_y1 = Ox1p_64 * (alo + blo); return shift; } /** @internal */ // @ts-ignore: decorator @inline function umuldi(u: u64, v: u64): u64 { let u1: u64 , v1: u64, w0: u64, w1: u64, t: u64; u1 = u & 0xFFFFFFFF; v1 = v & 0xFFFFFFFF; u >>= 32; v >>= 32; t = u1 * v1; w0 = t & 0xFFFFFFFF; t = u * v1 + (t >> 32); w1 = t >> 32; t = u1 * v + (t & 0xFFFFFFFF); res128_hi = u * v + w1 + (t >> 32); return (t << 32) + w0; } /** @internal */ function pio2_large_quot(x: f64, u: i64): i32 { // see: jdh8/metallic/blob/master/src/math/double/rem_pio2.c let magnitude = u & 0x7FFFFFFFFFFFFFFF; let offset = (magnitude >> 52) - 1045; let shift = offset & 63; let tblPtr = PIO2_TABLE + ((offset >> 6) << 3); let s0: u64, s1: u64, s2: u64; let b0 = load(tblPtr, 0 << 3); let b1 = load(tblPtr, 1 << 3); let b2 = load(tblPtr, 2 << 3); // Get 192 bits of 0x1p-31 / π with `offset` bits skipped if (shift) { let rshift = 64 - shift; let b3 = load(tblPtr, 3 << 3); s0 = b1 >> rshift | b0 << shift; s1 = b2 >> rshift | b1 << shift; s2 = b3 >> rshift | b2 << shift; } else { s0 = b0; s1 = b1; s2 = b2; } let significand = (u & 0x000FFFFFFFFFFFFF) | 0x0010000000000000; // First 128 bits of fractional part of x/(2π) let blo = umuldi(s1, significand); let bhi = res128_hi; let ahi = s0 * significand; let clo = (s2 >> 32) * (significand >> 32); let plo = blo + clo; let phi = ahi + bhi + u64(plo < clo); // r: u128 = p << 2 let rlo = plo << 2; let rhi = phi << 2 | plo >> 62; // s: i128 = r >> 127 let slo = rhi >> 63; let shi = slo >> 1; let q = (phi >> 62) - slo; let shifter = 0x3CB0000000000000 - (pio2_right(rlo ^ slo, rhi ^ shi) << 52); let signbit = (u ^ rhi) & 0x8000000000000000; let coeff = reinterpret(shifter | signbit); rempio2_y0 *= coeff; rempio2_y1 *= coeff; return q; } /** @internal */ // @ts-ignore: decorator @inline function rempio2(x: f64, u: u64, sign: i32): i32 { const pio2_1 = reinterpret(0x3FF921FB54400000), // 1.57079632673412561417e+00 pio2_1t = reinterpret(0x3DD0B4611A626331), // 6.07710050650619224932e-11 pio2_2 = reinterpret(0x3DD0B4611A600000), // 6.07710050630396597660e-11 pio2_2t = reinterpret(0x3BA3198A2E037073), // 2.02226624879595063154e-21 pio2_3 = reinterpret(0x3BA3198A2E000000), // 2.02226624871116645580e-21 pio2_3t = reinterpret(0x397B839A252049C1), // 8.47842766036889956997e-32 invpio2 = reinterpret(0x3FE45F306DC9C883); // 0.63661977236758134308 let ix = (u >> 32) & 0x7FFFFFFF; if (ASC_SHRINK_LEVEL < 1) { if (ix < 0x4002D97C) { // |x| < 3pi/4, special case with n=+-1 let q = 1, z: f64, y0: f64, y1: f64; if (!sign) { z = x - pio2_1; if (ix != 0x3FF921FB) { // 33+53 bit pi is good enough y0 = z - pio2_1t; y1 = (z - y0) - pio2_1t; } else { // near pi/2, use 33+33+53 bit pi z -= pio2_2; y0 = z - pio2_2t; y1 = (z - y0) - pio2_2t; } } else { // negative x z = x + pio2_1; if (ix != 0x3FF921FB) { // 33+53 bit pi is good enough y0 = z + pio2_1t; y1 = (z - y0) + pio2_1t; } else { // near pi/2, use 33+33+53 bit pi z += pio2_2; y0 = z + pio2_2t; y1 = (z - y0) + pio2_2t; } q = -1; } rempio2_y0 = y0; rempio2_y1 = y1; return q; } } if (ix < 0x413921FB) { // |x| ~< 2^20*pi/2 (1647099) // Use precise Cody Waite scheme let q = nearest(x * invpio2); let r = x - q * pio2_1; let w = q * pio2_1t; // 1st round good to 85 bit let j = ix >> 20; let y0 = r - w; let hi = (reinterpret(y0) >> 32); let i = j - ((hi >> 20) & 0x7FF); if (i > 16) { // 2nd iteration needed, good to 118 let t = r; w = q * pio2_2; r = t - w; w = q * pio2_2t - ((t - r) - w); y0 = r - w; hi = (reinterpret(y0) >> 32); i = j - ((hi >> 20) & 0x7FF); if (i > 49) { // 3rd iteration need, 151 bits acc let t = r; w = q * pio2_3; r = t - w; w = q * pio2_3t - ((t - r) - w); y0 = r - w; } } let y1 = (r - y0) - w; rempio2_y0 = y0; rempio2_y1 = y1; return q; } let q = pio2_large_quot(x, u); return select(-q, q, sign); } /** @internal */ // @ts-ignore: decorator @inline function sin_kern(x: f64, y: f64, iy: i32): f64 { // see: musl/tree/src/math/__sin.c const S1 = reinterpret(0xBFC5555555555549), // -1.66666666666666324348e-01 S2 = reinterpret(0x3F8111111110F8A6), // 8.33333333332248946124e-03 S3 = reinterpret(0xBF2A01A019C161D5), // -1.98412698298579493134e-04 S4 = reinterpret(0x3EC71DE357B1FE7D), // 2.75573137070700676789e-06 S5 = reinterpret(0xBE5AE5E68A2B9CEB), // -2.50507602534068634195e-08 S6 = reinterpret(0x3DE5D93A5ACFD57C); // 1.58969099521155010221e-10 let z = x * x; let w = z * z; let r = S2 + z * (S3 + z * S4) + z * w * (S5 + z * S6); let v = z * x; if (!iy) { return x + v * (S1 + z * r); } else { return x - ((z * (0.5 * y - v * r) - y) - v * S1); } } /** @internal */ // @ts-ignore: decorator @inline function cos_kern(x: f64, y: f64): f64 { // see: musl/tree/src/math/__cos.c const C1 = reinterpret(0x3FA555555555554C), // 4.16666666666666019037e-02 C2 = reinterpret(0xBF56C16C16C15177), // -1.38888888888741095749e-03 C3 = reinterpret(0x3EFA01A019CB1590), // 2.48015872894767294178e-05 C4 = reinterpret(0xBE927E4F809C52AD), // -2.75573143513906633035e-07 C5 = reinterpret(0x3E21EE9EBDB4B1C4), // 2.08757232129817482790e-09 C6 = reinterpret(0xBDA8FAE9BE8838D4); // -1.13596475577881948265e-11 let z = x * x; let w = z * z; let r = z * (C1 + z * (C2 + z * C3)) + w * w * (C4 + z * (C5 + z * C6)); let hz = 0.5 * z; w = 1.0 - hz; return w + (((1.0 - w) - hz) + (z * r - x * y)); } /** @internal */ function tan_kern(x: f64, y: f64, iy: i32): f64 { // see: src/lib/msun/src/k_tan.c const T0 = reinterpret(0x3FD5555555555563), // 3.33333333333334091986e-01 T1 = reinterpret(0x3FC111111110FE7A), // 1.33333333333201242699e-01 T2 = reinterpret(0x3FABA1BA1BB341FE), // 5.39682539762260521377e-02 T3 = reinterpret(0x3F9664F48406D637), // 2.18694882948595424599e-02 T4 = reinterpret(0x3F8226E3E96E8493), // 8.86323982359930005737e-03 T5 = reinterpret(0x3F6D6D22C9560328), // 3.59207910759131235356e-03 T6 = reinterpret(0x3F57DBC8FEE08315), // 1.45620945432529025516e-03 T7 = reinterpret(0x3F4344D8F2F26501), // 5.88041240820264096874e-04 T8 = reinterpret(0x3F3026F71A8D1068), // 2.46463134818469906812e-04 T9 = reinterpret(0x3F147E88A03792A6), // 7.81794442939557092300e-05 T10 = reinterpret(0x3F12B80F32F0A7E9), // 7.14072491382608190305e-05 T11 = reinterpret(0xBEF375CBDB605373), // -1.85586374855275456654e-05 T12 = reinterpret(0x3EFB2A7074BF7AD4); // 2.59073051863633712884e-05 const one = reinterpret(0x3FF0000000000000), // 1.00000000000000000000e+00 pio4 = reinterpret(0x3FE921FB54442D18), // 7.85398163397448278999e-01 pio4lo = reinterpret(0x3C81A62633145C07); // 3.06161699786838301793e-17 let z: f64, r: f64, v: f64, w: f64, s: f64; let hx = (reinterpret(x) >> 32); // high word of x let ix = hx & 0x7FFFFFFF; // high word of |x| let big = ix >= 0x3FE59428; if (big) { // |x| >= 0.6744 if (hx < 0) { x = -x, y = -y; } z = pio4 - x; w = pio4lo - y; x = z + w; y = 0.0; } z = x * x; w = z * z; r = T1 + w * (T3 + w * (T5 + w * (T7 + w * (T9 + w * T11)))); v = z * (T2 + w * (T4 + w * (T6 + w * (T8 + w * (T10 + w * T12))))); s = z * x; r = y + z * (s * (r + v) + y); r += T0 * s; w = x + r; if (big) { v = iy; return (1 - ((hx >> 30) & 2)) * (v - 2.0 * (x - (w * w / (w + v) - r))); } if (iy == 1) return w; let a: f64, t: f64; z = w; z = reinterpret(reinterpret(z) & 0xFFFFFFFF00000000); v = r - (z - x); // z + v = r + x t = a = -one / w; // a = -1.0 / w t = reinterpret(reinterpret(t) & 0xFFFFFFFF00000000); s = one + t * z; return t + a * (s + t * v); } /** @internal */ function dtoi32(x: f64): i32 { if (ASC_SHRINK_LEVEL > 0) { const inv32 = 1.0 / 4294967296; return (x - 4294967296 * floor(x * inv32)); } else { let result = 0; let u = reinterpret(x); let e = (u >> 52) & 0x7FF; if (e <= 1023 + 30) { result = x; } else if (e <= 1023 + 30 + 53) { let v = (u & ((1 << 52) - 1)) | (1 << 52); v = v << e - 1023 - 52 + 32; result = (v >> 32); result = select(-result, result, u < 0); } return result; } } // @ts-ignore: decorator @lazy let random_seeded = false; // @ts-ignore: decorator @lazy let random_state0_64: u64, random_state1_64: u64; // @ts-ignore: decorator @lazy let random_state0_32: u32, random_state1_32: u32; function murmurHash3(h: u64): u64 { // Force all bits of a hash block to avalanche h ^= h >> 33; // see: https://github.com/aappleby/smhasher h *= 0xFF51AFD7ED558CCD; h ^= h >> 33; h *= 0xC4CEB9FE1A85EC53; h ^= h >> 33; return h; } function splitMix32(h: u32): u32 { h += 0x6D2B79F5; h = (h ^ (h >> 15)) * (h | 1); h ^= h + (h ^ (h >> 7)) * (h | 61); return h ^ (h >> 14); } export namespace NativeMath { // @ts-ignore: decorator @lazy export const E = reinterpret(0x4005BF0A8B145769); // 2.7182818284590452354 // @ts-ignore: decorator @lazy export const LN2 = reinterpret(0x3FE62E42FEFA39EF); // 0.69314718055994530942 // @ts-ignore: decorator @lazy export const LN10 = reinterpret(0x40026BB1BBB55516); // 2.30258509299404568402 // @ts-ignore: decorator @lazy export const LOG2E = reinterpret(0x3FF71547652B82FE); // 1.4426950408889634074 // @ts-ignore: decorator @lazy export const LOG10E = reinterpret(0x3FDBCB7B1526E50E); // 0.43429448190325182765 // @ts-ignore: decorator @lazy export const PI = reinterpret(0x400921FB54442D18); // 3.14159265358979323846 // @ts-ignore: decorator @lazy export const SQRT1_2 = reinterpret(0x3FE6A09E667F3BCD); // 0.70710678118654752440 // @ts-ignore: decorator @lazy export const SQRT2 = reinterpret(0x3FF6A09E667F3BCD); // 1.41421356237309504880 // @ts-ignore: decorator @lazy export let sincos_sin: f64 = 0; // @ts-ignore: decorator @lazy export let sincos_cos: f64 = 0; // @ts-ignore: decorator @inline export function abs(x: f64): f64 { return builtin_abs(x); } export function acos(x: f64): f64 { // see: musl/src/math/acos.c and SUN COPYRIGHT NOTICE above const pio2_hi = reinterpret(0x3FF921FB54442D18), // 1.57079632679489655800e+00 pio2_lo = reinterpret(0x3C91A62633145C07), // 6.12323399573676603587e-17 Ox1p_120f = reinterpret(0x03800000); let hx = (reinterpret(x) >> 32); let ix = hx & 0x7FFFFFFF; if (ix >= 0x3FF00000) { let lx = reinterpret(x); if ((ix - 0x3FF00000 | lx) == 0) { if (hx < 0) return 2 * pio2_hi + Ox1p_120f; return 0; } return 0 / (x - x); } if (ix < 0x3FE00000) { if (ix <= 0x3C600000) return pio2_hi + Ox1p_120f; return pio2_hi - (x - (pio2_lo - x * R(x * x))); } let s: f64, w: f64, z: f64; if (hx < 0) { // z = (1.0 + x) * 0.5; z = 0.5 + x * 0.5; s = builtin_sqrt(z); w = R(z) * s - pio2_lo; return 2 * (pio2_hi - (s + w)); } // z = (1.0 - x) * 0.5; z = 0.5 - x * 0.5; s = builtin_sqrt(z); let df = reinterpret(reinterpret(s) & 0xFFFFFFFF00000000); let c = (z - df * df) / (s + df); w = R(z) * s + c; return 2 * (df + w); } export function acosh(x: f64): f64 { // see: musl/src/math/acosh.c const s = reinterpret(0x3FE62E42FEFA39EF); let u = reinterpret(x); // Prevent propagation for all input values less than 1.0. // Note musl lib didn't fix this yet. if (u < 0x3FF0000000000000) return (x - x) / 0.0; let e = u >> 52 & 0x7FF; if (e < 0x3FF + 1) return log1p(x - 1 + builtin_sqrt((x - 1) * (x - 1) + 2 * (x - 1))); if (e < 0x3FF + 26) return log(2 * x - 1 / (x + builtin_sqrt(x * x - 1))); return log(x) + s; } export function asin(x: f64): f64 { // see: musl/src/math/asin.c and SUN COPYRIGHT NOTICE above const pio2_hi = reinterpret(0x3FF921FB54442D18), // 1.57079632679489655800e+00 pio2_lo = reinterpret(0x3C91A62633145C07), // 6.12323399573676603587e-17 Ox1p_120f = reinterpret(0x03800000); let hx = (reinterpret(x) >> 32); let ix = hx & 0x7FFFFFFF; if (ix >= 0x3FF00000) { let lx = reinterpret(x); if ((ix - 0x3FF00000 | lx) == 0) return x * pio2_hi + Ox1p_120f; return 0 / (x - x); } if (ix < 0x3FE00000) { if (ix < 0x3E500000 && ix >= 0x00100000) return x; return x + x * R(x * x); } // let z = (1.0 - builtin_abs(x)) * 0.5; let z = 0.5 - builtin_abs(x) * 0.5; let s = builtin_sqrt(z); let r = R(z); if (ix >= 0x3FEF3333) x = pio2_hi - (2 * (s + s * r) - pio2_lo); else { let f = reinterpret(reinterpret(s) & 0xFFFFFFFF00000000); let c = (z - f * f) / (s + f); x = 0.5 * pio2_hi - (2 * s * r - (pio2_lo - 2 * c) - (0.5 * pio2_hi - 2 * f)); } return select(-x, x, hx < 0); } export function asinh(x: f64): f64 { // see: musl/src/math/asinh.c const c = reinterpret(0x3FE62E42FEFA39EF); // 0.693147180559945309417232121458176568 let u = reinterpret(x); let e = u >> 52 & 0x7FF; let y = reinterpret(u & 0x7FFFFFFFFFFFFFFF); if (e >= 0x3FF + 26) y = log(y) + c; else if (e >= 0x3FF + 1) y = log(2 * y + 1 / (builtin_sqrt(y * y + 1) + y)); else if (e >= 0x3FF - 26) y = log1p(y + y * y / (builtin_sqrt(y * y + 1) + 1)); return builtin_copysign(y, x); } export function atan(x: f64): f64 { // see musl/src/math/atan.c and SUN COPYRIGHT NOTICE above const atanhi0 = reinterpret(0x3FDDAC670561BB4F), // 4.63647609000806093515e-01 atanhi1 = reinterpret(0x3FE921FB54442D18), // 7.85398163397448278999e-01 atanhi2 = reinterpret(0x3FEF730BD281F69B), // 9.82793723247329054082e-01 atanhi3 = reinterpret(0x3FF921FB54442D18), // 1.57079632679489655800e+00 atanlo0 = reinterpret(0x3C7A2B7F222F65E2), // 2.26987774529616870924e-17 atanlo1 = reinterpret(0x3C81A62633145C07), // 3.06161699786838301793e-17 atanlo2 = reinterpret(0x3C7007887AF0CBBD), // 1.39033110312309984516e-17 atanlo3 = reinterpret(0x3C91A62633145C07), // 6.12323399573676603587e-17 aT0 = reinterpret(0x3FD555555555550D), // 3.33333333333329318027e-01 aT1 = reinterpret(0xBFC999999998EBC4), // -1.99999999998764832476e-01 aT2 = reinterpret(0x3FC24924920083FF), // 1.42857142725034663711e-01 aT3 = reinterpret(0xBFBC71C6FE231671), // -1.11111104054623557880e-01, aT4 = reinterpret(0x3FB745CDC54C206E), // 9.09088713343650656196e-02 aT5 = reinterpret(0xBFB3B0F2AF749A6D), // -7.69187620504482999495e-02 aT6 = reinterpret(0x3FB10D66A0D03D51), // 6.66107313738753120669e-02 aT7 = reinterpret(0xBFADDE2D52DEFD9A), // -5.83357013379057348645e-02 aT8 = reinterpret(0x3FA97B4B24760DEB), // 4.97687799461593236017e-02 aT9 = reinterpret(0xBFA2B4442C6A6C2F), // -3.65315727442169155270e-02 aT10 = reinterpret(0x3F90AD3AE322DA11), // 1.62858201153657823623e-02 Ox1p_120f = reinterpret(0x03800000); let ix = (reinterpret(x) >> 32); let sx = x; ix &= 0x7FFFFFFF; let z: f64; if (ix >= 0x44100000) { if (isNaN(x)) return x; z = atanhi3 + Ox1p_120f; return builtin_copysign(z, sx); } let id: i32; if (ix < 0x3FDC0000) { if (ix < 0x3E400000) return x; id = -1; } else { x = builtin_abs(x); if (ix < 0x3FF30000) { if (ix < 0x3FE60000) { id = 0; x = (2.0 * x - 1.0) / (2.0 + x); } else { id = 1; x = (x - 1.0) / (x + 1.0); } } else { if (ix < 0x40038000) { id = 2; x = (x - 1.5) / (1.0 + 1.5 * x); } else { id = 3; x = -1.0 / x; } } } z = x * x; let w = z * z; let s1 = z * (aT0 + w * (aT2 + w * (aT4 + w * (aT6 + w * (aT8 + w * aT10))))); let s2 = w * (aT1 + w * (aT3 + w * (aT5 + w * (aT7 + w * aT9)))); let s3 = x * (s1 + s2); if (id < 0) return x - s3; switch (id) { case 0: { z = atanhi0 - ((s3 - atanlo0) - x); break; } case 1: { z = atanhi1 - ((s3 - atanlo1) - x); break; } case 2: { z = atanhi2 - ((s3 - atanlo2) - x); break; } case 3: { z = atanhi3 - ((s3 - atanlo3) - x); break; } default: unreachable(); } return builtin_copysign(z, sx); } export function atanh(x: f64): f64 { // see: musl/src/math/atanh.c let u = reinterpret(x); let e = u >> 52 & 0x7FF; let y = builtin_abs(x); if (e < 0x3FF - 1) { if (e >= 0x3FF - 32) y = 0.5 * log1p(2 * y + 2 * y * y / (1 - y)); } else { y = 0.5 * log1p(2 * (y / (1 - y))); } return builtin_copysign(y, x); } export function atan2(y: f64, x: f64): f64 { // see: musl/src/math/atan2.c and SUN COPYRIGHT NOTICE above const pi_lo = reinterpret(0x3CA1A62633145C07); // 1.2246467991473531772E-16 if (isNaN(x) || isNaN(y)) return x + y; let u = reinterpret(x); let ix = (u >> 32); let lx = u; u = reinterpret(y); let iy = (u >> 32); let ly = u; if ((ix - 0x3FF00000 | lx) == 0) return atan(y); let m = ((iy >> 31) & 1) | ((ix >> 30) & 2); ix = ix & 0x7FFFFFFF; iy = iy & 0x7FFFFFFF; if ((iy | ly) == 0) { switch (m) { case 0: case 1: return y; case 2: return PI; case 3: return -PI; } } if ((ix | lx) == 0) return m & 1 ? -PI / 2 : PI / 2; if (ix == 0x7FF00000) { if (iy == 0x7FF00000) { let t = m & 2 ? 3 * PI / 4 : PI / 4; return m & 1 ? -t : t; } else { let t = m & 2 ? PI : 0; return m & 1 ? -t : t; } } let z: f64; if (ix + (64 << 20) < iy || iy == 0x7FF00000) return m & 1 ? -PI / 2 : PI / 2; if ((m & 2) && iy + (64 << 20) < ix) z = 0; else z = atan(builtin_abs(y / x)); switch (m) { case 0: return z; case 1: return -z; case 2: return PI - (z - pi_lo); case 3: return (z - pi_lo) - PI; } unreachable(); return 0; } export function cbrt(x: f64): f64 { // see: musl/src/math/cbrt.c and SUN COPYRIGHT NOTICE above const B1 = 715094163, B2 = 696219795, P0 = reinterpret(0x3FFE03E60F61E692), // 1.87595182427177009643 P1 = reinterpret(0xBFFE28E092F02420), // -1.88497979543377169875 P2 = reinterpret(0x3FF9F1604A49D6C2), // 1.621429720105354466140 P3 = reinterpret(0xBFE844CBBEE751D9), // -0.758397934778766047437 P4 = reinterpret(0x3FC2B000D4E4EDD7), // 0.145996192886612446982 Ox1p54 = reinterpret(0x4350000000000000); // 0x1p54 let u = reinterpret(x); let hx = (u >> 32) & 0x7FFFFFFF; if (hx >= 0x7FF00000) return x + x; if (hx < 0x00100000) { u = reinterpret(x * Ox1p54); hx = (u >> 32) & 0x7FFFFFFF; if (hx == 0) return x; hx = hx / 3 + B2; } else { hx = hx / 3 + B1; } u &= 1 << 63; u |= hx << 32; let t = reinterpret(u); let r = (t * t) * (t / x); t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4)); t = reinterpret((reinterpret(t) + 0x80000000) & 0xFFFFFFFFC0000000); let s = t * t; r = x / s; r = (r - t) / (2 * t + r); t = t + t * r; return t; } // @ts-ignore: decorator @inline export function ceil(x: f64): f64 { return builtin_ceil(x); } export function clz32(x: f64): f64 { if (!isFinite(x)) return 32; /* * Wasm (MVP) and JS have different approaches for double->int conversions. * * For emulate JS conversion behavior and avoid trapping from wasm we should modulate by MAX_INT * our float-point arguments before actual convertion to integers. */ return builtin_clz(dtoi32(x)); } export function cos(x: f64): f64 { // see: musl/src/math/cos.c let u = reinterpret(x); let ux = u32(u >> 32); let sign = ux >> 31; ux &= 0x7FFFFFFF; // |x| ~< pi/4 if (ux <= 0x3FE921FB) { if (ux < 0x3E46A09E) { // |x| < 2**-27 * sqrt(2) return 1.0; } return cos_kern(x, 0); } // sin(Inf or NaN) is NaN if (ux >= 0x7FF00000) return x - x; // argument reduction needed let n = rempio2(x, u, sign); let y0 = rempio2_y0; let y1 = rempio2_y1; x = n & 1 ? sin_kern(y0, y1, 1) : cos_kern(y0, y1); return (n + 1) & 2 ? -x : x; } export function cosh(x: f64): f64 { // see: musl/src/math/cosh.c let u = reinterpret(x); u &= 0x7FFFFFFFFFFFFFFF; x = reinterpret(u); let w = (u >> 32); let t: f64; if (w < 0x3FE62E42) { if (w < 0x3FF00000 - (26 << 20)) return 1; t = expm1(x); // return 1 + t * t / (2 * (1 + t)); return 1 + t * t / (2 + 2 * t); } if (w < 0x40862E42) { t = exp(x); return 0.5 * (t + 1 / t); } t = expo2(x, 1); return t; } export function exp(x: f64): f64 { // see: musl/src/math/exp.c and SUN COPYRIGHT NOTICE above if (ASC_SHRINK_LEVEL < 1) { return exp_lut(x); } else { const ln2hi = reinterpret(0x3FE62E42FEE00000), // 6.93147180369123816490e-01 ln2lo = reinterpret(0x3DEA39EF35793C76), // 1.90821492927058770002e-10 invln2 = reinterpret(0x3FF71547652B82FE), // 1.44269504088896338700e+00 P1 = reinterpret(0x3FC555555555553E), // 1.66666666666666019037e-01 P2 = reinterpret(0xBF66C16C16BEBD93), // -2.77777777770155933842e-03 P3 = reinterpret(0x3F11566AAF25DE2C), // 6.61375632143793436117e-05 P4 = reinterpret(0xBEBBBD41C5D26BF1), // -1.65339022054652515390e-06 P5 = reinterpret(0x3E66376972BEA4D0), // 4.13813679705723846039e-08 overflow = reinterpret(0x40862E42FEFA39EF), // 709.782712893383973096 underflow = reinterpret(0xC0874910D52D3051), // -745.13321910194110842 Ox1p1023 = reinterpret(0x7FE0000000000000); // 0x1p1023 let hx = u32(reinterpret(x) >> 32); let sign = hx >> 31; hx &= 0x7FFFFFFF; if (hx >= 0x4086232B) { if (isNaN(x)) return x; if (x > overflow) return x * Ox1p1023; if (x < underflow) return 0; } let hi: f64, lo: f64 = 0; let k = 0; if (hx > 0x3FD62E42) { if (hx >= 0x3FF0A2B2) { k = i32(invln2 * x + builtin_copysign(0.5, x)); } else { k = 1 - (sign << 1); } hi = x - k * ln2hi; lo = k * ln2lo; x = hi - lo; } else if (hx > 0x3E300000) { hi = x; } else return 1.0 + x; let xs = x * x; // let c = x - xp2 * (P1 + xp2 * (P2 + xp2 * (P3 + xp2 * (P4 + xp2 * P5)))); let xq = xs * xs; let c = x - (xs * P1 + xq * ((P2 + xs * P3) + xq * (P4 + xs * P5))); let y = 1.0 + (x * c / (2 - c) - lo + hi); return k == 0 ? y : scalbn(y, k); } } export function exp2(x: f64): f64 { return exp2_lut(x); } export function expm1(x: f64): f64 { // see: musl/src/math/expm1.c and SUN COPYRIGHT NOTICE above const o_threshold = reinterpret(0x40862E42FEFA39EF), // 7.09782712893383973096e+02 ln2_hi = reinterpret(0x3FE62E42FEE00000), // 6.93147180369123816490e-01 ln2_lo = reinterpret(0x3DEA39EF35793C76), // 1.90821492927058770002e-10 invln2 = reinterpret(0x3FF71547652B82FE), // 1.44269504088896338700e+00 Q1 = reinterpret(0xBFA11111111110F4), // -3.33333333333331316428e-02 Q2 = reinterpret(0x3F5A01A019FE5585), // 1.58730158725481460165e-03 Q3 = reinterpret(0xBF14CE199EAADBB7), // -7.93650757867487942473e-05 Q4 = reinterpret(0x3ED0CFCA86E65239), // 4.00821782732936239552e-06 Q5 = reinterpret(0xBE8AFDB76E09C32D), // -2.01099218183624371326e-07 Ox1p1023 = reinterpret(0x7FE0000000000000); // 0x1p1023 let u = reinterpret(x); let hx = u32(u >> 32) & 0x7FFFFFFF; let sign = u32(u >> 63); let k = 0; if (hx >= 0x4043687A) { if (isNaN(x)) return x; if (sign) return -1; if (x > o_threshold) return x * Ox1p1023; } let c = 0.0, t: f64; if (hx > 0x3FD62E42) { k = select( 1 - (sign << 1), i32(invln2 * x + builtin_copysign(0.5, x)), hx < 0x3FF0A2B2 ); t = k; let hi = x - t * ln2_hi; let lo = t * ln2_lo; x = hi - lo; c = (hi - x) - lo; } else if (hx < 0x3C900000) return x; let hfx = 0.5 * x; let hxs = x * hfx; // let r1 = 1.0 + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5)))); let hxq = hxs * hxs; let r1 = (1.0 + hxs * Q1) + hxq * ((Q2 + hxs * Q3) + hxq * (Q4 + hxs * Q5)); t = 3.0 - r1 * hfx; let e = hxs * ((r1 - t) / (6.0 - x * t)); if (k == 0) return x - (x * e - hxs); e = x * (e - c) - c; e -= hxs; if (k == -1) return 0.5 * (x - e) - 0.5; if (k == 1) { if (x < -0.25) return -2.0 * (e - (x + 0.5)); return 1.0 + 2.0 * (x - e); } u = (0x3FF + k) << 52; let twopk = reinterpret(u); let y: f64; if (k < 0 || k > 56) { y = x - e + 1.0; if (k == 1024) y = y * 2.0 * Ox1p1023; else y = y * twopk; return y - 1.0; } u = (0x3FF - k) << 52; y = reinterpret(u); if (k < 20) y = (1 - y) - e; else y = 1 - (e + y); return (x + y) * twopk; } // @ts-ignore: decorator @inline export function floor(x: f64): f64 { return builtin_floor(x); } // @ts-ignore: decorator @inline export function fround(x: f64): f64 { return x; } export function hypot(x: f64, y: f64): f64 { // see: musl/src/math/hypot.c const SPLIT = reinterpret(0x41A0000000000000) + 1, // 0x1p27 + 1 Ox1p700 = reinterpret(0x6BB0000000000000), Ox1p_700 = reinterpret(0x1430000000000000); let ux = reinterpret(x); let uy = reinterpret(y); ux &= 0x7FFFFFFFFFFFFFFF; uy &= 0x7FFFFFFFFFFFFFFF; if (ux < uy) { let ut = ux; ux = uy; uy = ut; } let ex = i32(ux >> 52); let ey = i32(uy >> 52); y = reinterpret(uy); if (ey == 0x7FF) return y; x = reinterpret(ux); if (ex == 0x7FF || uy == 0) return x; if (ex - ey > 64) return x + y; let z = 1.0; if (ex > 0x3FF + 510) { z = Ox1p700; x *= Ox1p_700; y *= Ox1p_700; } else if (ey < 0x3FF - 450) { z = Ox1p_700; x *= Ox1p700; y *= Ox1p700; } let c = x * SPLIT; let h = x - c + c; let l = x - h; let hx = x * x; let lx = h * h - hx + (2 * h + l) * l; c = y * SPLIT; h = y - c + c; l = y - h; let hy = y * y; let ly = h * h - hy + (2 * h + l) * l; return z * builtin_sqrt(ly + lx + hy + hx); } export function imul(x: f64, y: f64): f64 { /* * Wasm (MVP) and JS have different approaches for double->int conversions. * * For emulate JS conversion behavior and avoid trapping from wasm we should modulate by MAX_INT * our float-point arguments before actual convertion to integers. */ if (!isFinite(x + y)) return 0; return dtoi32(x) * dtoi32(y); } export function log(x: f64): f64 { // see: musl/src/math/log.c and SUN COPYRIGHT NOTICE above if (ASC_SHRINK_LEVEL < 1) { return log_lut(x); } else { const ln2_hi = reinterpret(0x3FE62E42FEE00000), // 6.93147180369123816490e-01 ln2_lo = reinterpret(0x3DEA39EF35793C76), // 1.90821492927058770002e-10 Lg1 = reinterpret(0x3FE5555555555593), // 6.666666666666735130e-01 Lg2 = reinterpret(0x3FD999999997FA04), // 3.999999999940941908e-01 Lg3 = reinterpret(0x3FD2492494229359), // 2.857142874366239149e-01 Lg4 = reinterpret(0x3FCC71C51D8E78AF), // 2.222219843214978396e-01 Lg5 = reinterpret(0x3FC7466496CB03DE), // 1.818357216161805012e-01 Lg6 = reinterpret(0x3FC39A09D078C69F), // 1.531383769920937332e-01 Lg7 = reinterpret(0x3FC2F112DF3E5244), // 1.479819860511658591e-01 Ox1p54 = reinterpret(0x4350000000000000); // 0x1p54 let u = reinterpret(x); let hx = u32(u >> 32); let k = 0; let sign = hx >> 31; if (sign || hx < 0x00100000) { if (u << 1 == 0) return -1 / (x * x); if (sign) return (x - x) / 0.0; k -= 54; x *= Ox1p54; u = reinterpret(x); hx = u32(u >> 32); } else if (hx >= 0x7FF00000) { return x; } else if (hx == 0x3FF00000 && u << 32 == 0) { return 0; } hx += 0x3FF00000 - 0x3FE6A09E; k += (hx >> 20) - 0x3FF; hx = (hx & 0x000FFFFF) + 0x3FE6A09E; u = hx << 32 | (u & 0xFFFFFFFF); x = reinterpret(u); let f = x - 1.0; let hfsq = 0.5 * f * f; let s = f / (2.0 + f); let z = s * s; let w = z * z; let t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); let t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); let r = t2 + t1; let dk = k; return s * (hfsq + r) + dk * ln2_lo - hfsq + f + dk * ln2_hi; } } export function log10(x: f64): f64 { // see: musl/src/math/log10.c and SUN COPYRIGHT NOTICE above const ivln10hi = reinterpret(0x3FDBCB7B15200000), // 4.34294481878168880939e-01 ivln10lo = reinterpret(0x3DBB9438CA9AADD5), // 2.50829467116452752298e-11 log10_2hi = reinterpret(0x3FD34413509F6000), // 3.01029995663611771306e-01 log10_2lo = reinterpret(0x3D59FEF311F12B36), // 3.69423907715893078616e-13 Lg1 = reinterpret(0x3FE5555555555593), // 6.666666666666735130e-01 Lg2 = reinterpret(0x3FD999999997FA04), // 3.999999999940941908e-01 Lg3 = reinterpret(0x3FD2492494229359), // 2.857142874366239149e-01 Lg4 = reinterpret(0x3FCC71C51D8E78AF), // 2.222219843214978396e-01 Lg5 = reinterpret(0x3FC7466496CB03DE), // 1.818357216161805012e-01 Lg6 = reinterpret(0x3FC39A09D078C69F), // 1.531383769920937332e-01 Lg7 = reinterpret(0x3FC2F112DF3E5244), // 1.479819860511658591e-01 Ox1p54 = reinterpret(0x4350000000000000); // 0x1p54 let u = reinterpret(x); let hx = u32(u >> 32); let k = 0; let sign = hx >> 31; if (sign || hx < 0x00100000) { if (u << 1 == 0) return -1 / (x * x); if (sign) return (x - x) / 0.0; k -= 54; x *= Ox1p54; u = reinterpret(x); hx = u32(u >> 32); } else if (hx >= 0x7FF00000) { return x; } else if (hx == 0x3FF00000 && u << 32 == 0) { return 0; } hx += 0x3FF00000 - 0x3FE6A09E; k += i32(hx >> 20) - 0x3FF; hx = (hx & 0x000FFFFF) + 0x3FE6A09E; u = hx << 32 | (u & 0xFFFFFFFF); x = reinterpret(u); let f = x - 1.0; let hfsq = 0.5 * f * f; let s = f / (2.0 + f); let z = s * s; let w = z * z; let t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); let t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); let r = t2 + t1; let hi = f - hfsq; u = reinterpret(hi); u &= 0xFFFFFFFF00000000; hi = reinterpret(u); let lo = f - hi - hfsq + s * (hfsq + r); let val_hi = hi * ivln10hi; let dk = k; let y = dk * log10_2hi; let val_lo = dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi; w = y + val_hi; val_lo += (y - w) + val_hi; return val_lo + w; } export function log1p(x: f64): f64 { // see: musl/src/math/log1p.c and SUN COPYRIGHT NOTICE above const ln2_hi = reinterpret(0x3FE62E42FEE00000), // 6.93147180369123816490e-01 ln2_lo = reinterpret(0x3DEA39EF35793C76), // 1.90821492927058770002e-10 Lg1 = reinterpret(0x3FE5555555555593), // 6.666666666666735130e-01 Lg2 = reinterpret(0x3FD999999997FA04), // 3.999999999940941908e-01 Lg3 = reinterpret(0x3FD2492494229359), // 2.857142874366239149e-01 Lg4 = reinterpret(0x3FCC71C51D8E78AF), // 2.222219843214978396e-01 Lg5 = reinterpret(0x3FC7466496CB03DE), // 1.818357216161805012e-01 Lg6 = reinterpret(0x3FC39A09D078C69F), // 1.531383769920937332e-01 Lg7 = reinterpret(0x3FC2F112DF3E5244); // 1.479819860511658591e-01 let u = reinterpret(x); let hx = u32(u >> 32); let k = 1; let c = 0.0, f = 0.0; if (hx < 0x3FDA827A || bool(hx >> 31)) { if (hx >= 0xBFF00000) { if (x == -1) return x / 0.0; return (x - x) / 0.0; } if (hx << 1 < 0x3CA00000 << 1) return x; if (hx <= 0xBFD2BEC4) { k = 0; c = 0; f = x; } } else if (hx >= 0x7FF00000) return x; if (k) { u = reinterpret(1 + x); let hu = u32(u >> 32); hu += 0x3FF00000 - 0x3FE6A09E; k = i32(hu >> 20) - 0x3FF; if (k < 54) { let uf = reinterpret(u); c = k >= 2 ? 1 - (uf - x) : x - (uf - 1); c /= uf; } else c = 0; hu = (hu & 0x000FFFFF) + 0x3FE6A09E; u = hu << 32 | (u & 0xFFFFFFFF); f = reinterpret(u) - 1; } let hfsq = 0.5 * f * f; let s = f / (2.0 + f); let z = s * s; let w = z * z; let t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); let t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); let r = t2 + t1; let dk = k; return s * (hfsq + r) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi; } export function log2(x: f64): f64 { // see: musl/src/math/log2.c and SUN COPYRIGHT NOTICE above if (ASC_SHRINK_LEVEL < 1) { return log2_lut(x); } else { const ivln2hi = reinterpret(0x3FF7154765200000), // 1.44269504072144627571e+00 ivln2lo = reinterpret(0x3DE705FC2EEFA200), // 1.67517131648865118353e-10 Lg1 = reinterpret(0x3FE5555555555593), // 6.666666666666735130e-01 Lg2 = reinterpret(0x3FD999999997FA04), // 3.999999999940941908e-01 Lg3 = reinterpret(0x3FD2492494229359), // 2.857142874366239149e-01 Lg4 = reinterpret(0x3FCC71C51D8E78AF), // 2.222219843214978396e-01 Lg5 = reinterpret(0x3FC7466496CB03DE), // 1.818357216161805012e-01 Lg6 = reinterpret(0x3FC39A09D078C69F), // 1.531383769920937332e-01 Lg7 = reinterpret(0x3FC2F112DF3E5244), // 1.479819860511658591e-01 Ox1p54 = reinterpret(0x4350000000000000); // 1p54 let u = reinterpret(x); let hx = u32(u >> 32); let k = 0; let sign = hx >> 31; if (sign || hx < 0x00100000) { if (u << 1 == 0) return -1 / (x * x); if (sign) return (x - x) / 0.0; k -= 54; x *= Ox1p54; u = reinterpret(x); hx = u32(u >> 32); } else if (hx >= 0x7FF00000) { return x; } else if (hx == 0x3FF00000 && u << 32 == 0) { return 0; } hx += 0x3FF00000 - 0x3FE6A09E; k += i32(hx >> 20) - 0x3FF; hx = (hx & 0x000FFFFF) + 0x3FE6A09E; u = hx << 32 | (u & 0xFFFFFFFF); x = reinterpret(u); let f = x - 1.0; let hfsq = 0.5 * f * f; let s = f / (2.0 + f); let z = s * s; let w = z * z; let t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); let t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); let r = t2 + t1; let hi = f - hfsq; u = reinterpret(hi); u &= 0xFFFFFFFF00000000; hi = reinterpret(u); let lo = f - hi - hfsq + s * (hfsq + r); let val_hi = hi * ivln2hi; let val_lo = (lo + hi) * ivln2lo + lo * ivln2hi; let y = k; w = y + val_hi; val_lo += (y - w) + val_hi; val_hi = w; return val_lo + val_hi; } } // @ts-ignore: decorator @inline export function max(value1: f64, value2: f64): f64 { return builtin_max(value1, value2); } // @ts-ignore: decorator @inline export function min(value1: f64, value2: f64): f64 { return builtin_min(value1, value2); } export function pow(x: f64, y: f64): f64 { // see: musl/src/math/pow.c and SUN COPYRIGHT NOTICE above // TODO: remove this fast pathes after introduced own mid-end IR with "stdlib call simplify" transforms if (builtin_abs(y) <= 2) { if (y == 2.0) return x * x; if (y == 0.5) { return select( builtin_abs(builtin_sqrt(x)), Infinity, x != -Infinity ); } if (y == -1.0) return 1 / x; if (y == 1.0) return x; if (y == 0.0) return 1.0; } if (ASC_SHRINK_LEVEL < 1) { return pow_lut(x, y); } else { const dp_h1 = reinterpret(0x3FE2B80340000000), // 5.84962487220764160156e-01 dp_l1 = reinterpret(0x3E4CFDEB43CFD006), // 1.35003920212974897128e-08 two53 = reinterpret(0x4340000000000000), // 9007199254740992.0 huge = reinterpret(0x7E37E43C8800759C), // 1e+300 tiny = reinterpret(0x01A56E1FC2F8F359), // 1e-300 L1 = reinterpret(0x3FE3333333333303), // 5.99999999999994648725e-01 L2 = reinterpret(0x3FDB6DB6DB6FABFF), // 4.28571428578550184252e-01 L3 = reinterpret(0x3FD55555518F264D), // 3.33333329818377432918e-01 L4 = reinterpret(0x3FD17460A91D4101), // 2.72728123808534006489e-01 L5 = reinterpret(0x3FCD864A93C9DB65), // 2.30660745775561754067e-01 L6 = reinterpret(0x3FCA7E284A454EEF), // 2.06975017800338417784e-01 P1 = reinterpret(0x3FC555555555553E), // 1.66666666666666019037e-01 P2 = reinterpret(0xBF66C16C16BEBD93), // -2.77777777770155933842e-03 P3 = reinterpret(0x3F11566AAF25DE2C), // 6.61375632143793436117e-05 P4 = reinterpret(0xBEBBBD41C5D26BF1), // -1.65339022054652515390e-06 P5 = reinterpret(0x3E66376972BEA4D0), // 4.13813679705723846039e-08 lg2 = reinterpret(0x3FE62E42FEFA39EF), // 6.93147180559945286227e-01 lg2_h = reinterpret(0x3FE62E4300000000), // 6.93147182464599609375e-01 lg2_l = reinterpret(0xBE205C610CA86C39), // -1.90465429995776804525e-09 ovt = reinterpret(0x3C971547652B82FE), // 8.0085662595372944372e-017 cp = reinterpret(0x3FEEC709DC3A03FD), // 9.61796693925975554329e-01 cp_h = reinterpret(0x3FEEC709E0000000), // 9.61796700954437255859e-01 cp_l = reinterpret(0xBE3E2FE0145B01F5), // -7.02846165095275826516e-09 ivln2 = reinterpret(0x3FF71547652B82FE), // 1.44269504088896338700e+00 ivln2_h = reinterpret(0x3FF7154760000000), // 1.44269502162933349609e+00 ivln2_l = reinterpret(0x3E54AE0BF85DDF44), // 1.92596299112661746887e-08 inv3 = reinterpret(0x3FD5555555555555); // 0.3333333333333333333333 let u_ = reinterpret(x); let hx = i32(u_ >> 32); let lx = u_; u_ = reinterpret(y); let hy = i32(u_ >> 32); let ly = u_; let ix = hx & 0x7FFFFFFF; let iy = hy & 0x7FFFFFFF; if ((iy | ly) == 0) return 1.0; // x**0 = 1, even if x is NaN // if (hx == 0x3FF00000 && lx == 0) return 1.0; // C: 1**y = 1, even if y is NaN, JS: NaN if ( // NaN if either arg is NaN ix > 0x7FF00000 || (ix == 0x7FF00000 && lx != 0) || iy > 0x7FF00000 || (iy == 0x7FF00000 && ly != 0) ) return x + y; let yisint = 0, k: i32; if (hx < 0) { if (iy >= 0x43400000) yisint = 2; else if (iy >= 0x3FF00000) { k = (iy >> 20) - 0x3FF; let offset = select(52, 20, k > 20) - k; let Ly = select(ly, iy, k > 20); let jj = Ly >> offset; if ((jj << offset) == Ly) yisint = 2 - (jj & 1); } } if (ly == 0) { if (iy == 0x7FF00000) { // y is +-inf if (((ix - 0x3FF00000) | lx) == 0) return NaN; // C: (-1)**+-inf is 1, JS: NaN else if (ix >= 0x3FF00000) return hy >= 0 ? y : 0.0; // (|x|>1)**+-inf = inf,0 else return hy >= 0 ? 0.0 : -y; // (|x|<1)**+-inf = 0,inf } if (iy == 0x3FF00000) { if (hy >= 0) return x; return 1 / x; } if (hy == 0x40000000) return x * x; if (hy == 0x3FE00000) { if (hx >= 0) return builtin_sqrt(x); } } let ax = builtin_abs(x), z: f64; if (lx == 0) { if (ix == 0 || ix == 0x7FF00000 || ix == 0x3FF00000) { z = ax; if (hy < 0) z = 1.0 / z; if (hx < 0) { if (((ix - 0x3FF00000) | yisint) == 0) { let d = z - z; z = d / d; } else if (yisint == 1) z = -z; } return z; } } let s = 1.0; if (hx < 0) { if (yisint == 0) { let d = x - x; return d / d; } if (yisint == 1) s = -1.0; } let t1: f64, t2: f64, p_h: f64, p_l: f64, r: f64, t: f64, u: f64, v: f64, w: f64; let j: i32, n: i32; if (iy > 0x41E00000) { if (iy > 0x43F00000) { if (ix <= 0x3FEFFFFF) return hy < 0 ? huge * huge : tiny * tiny; if (ix >= 0x3FF00000) return hy > 0 ? huge * huge : tiny * tiny; } if (ix < 0x3FEFFFFF) return hy < 0 ? s * huge * huge : s * tiny * tiny; if (ix > 0x3FF00000) return hy > 0 ? s * huge * huge : s * tiny * tiny; t = ax - 1.0; w = (t * t) * (0.5 - t * (inv3 - t * 0.25)); u = ivln2_h * t; v = t * ivln2_l - w * ivln2; t1 = u + v; t1 = reinterpret(reinterpret(t1) & 0xFFFFFFFF00000000); t2 = v - (t1 - u); } else { let ss: f64, s2: f64, s_h: f64, s_l: f64, t_h: f64, t_l: f64; n = 0; if (ix < 0x00100000) { ax *= two53; n -= 53; ix = (reinterpret(ax) >> 32); } n += (ix >> 20) - 0x3FF; j = ix & 0x000FFFFF; ix = j | 0x3FF00000; if (j <= 0x3988E) k = 0; else if (j < 0xBB67A) k = 1; else { k = 0; n += 1; ix -= 0x00100000; } ax = reinterpret(reinterpret(ax) & 0xFFFFFFFF | (ix << 32)); let bp = select(1.5, 1.0, k); // k ? 1.5 : 1.0 u = ax - bp; v = 1.0 / (ax + bp); ss = u * v; s_h = ss; s_h = reinterpret(reinterpret(s_h) & 0xFFFFFFFF00000000); t_h = reinterpret(u64(((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18)) << 32); t_l = ax - (t_h - bp); s_l = v * ((u - s_h * t_h) - s_h * t_l); s2 = ss * ss; r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); r += s_l * (s_h + ss); s2 = s_h * s_h; t_h = 3.0 + s2 + r; t_h = reinterpret(reinterpret(t_h) & 0xFFFFFFFF00000000); t_l = r - ((t_h - 3.0) - s2); u = s_h * t_h; v = s_l * t_h + t_l * ss; p_h = u + v; p_h = reinterpret(reinterpret(p_h) & 0xFFFFFFFF00000000); p_l = v - (p_h - u); let z_h = cp_h * p_h; let dp_l = select(dp_l1, 0.0, k); let z_l = cp_l * p_h + p_l * cp + dp_l; t = n; let dp_h = select(dp_h1, 0.0, k); t1 = ((z_h + z_l) + dp_h) + t; t1 = reinterpret(reinterpret(t1) & 0xFFFFFFFF00000000); t2 = z_l - (((t1 - t) - dp_h) - z_h); } let y1 = y; y1 = reinterpret(reinterpret(y1) & 0xFFFFFFFF00000000); p_l = (y - y1) * t1 + y * t2; p_h = y1 * t1; z = p_l + p_h; u_ = reinterpret(z); j = u32(u_ >> 32); let i = u_; if (j >= 0x40900000) { if (((j - 0x40900000) | i) != 0) return s * huge * huge; if (p_l + ovt > z - p_h) return s * huge * huge; } else if ((j & 0x7FFFFFFF) >= 0x4090CC00) { if (((j - 0xC090CC00) | i) != 0) return s * tiny * tiny; if (p_l <= z - p_h) return s * tiny * tiny; } i = j & 0x7FFFFFFF; k = (i >> 20) - 0x3FF; n = 0; if (i > 0x3FE00000) { n = j + (0x00100000 >> (k + 1)); k = ((n & 0x7FFFFFFF) >> 20) - 0x3FF; t = 0.0; t = reinterpret(u64(n & ~(0x000FFFFF >> k)) << 32); n = ((n & 0x000FFFFF) | 0x00100000) >> (20 - k); if (j < 0) n = -n; p_h -= t; } t = p_l + p_h; t = reinterpret(reinterpret(t) & 0xFFFFFFFF00000000); u = t * lg2_h; v = (p_l - (t - p_h)) * lg2 + t * lg2_l; z = u + v; w = v - (z - u); t = z * z; t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); r = (z * t1) / (t1 - 2.0) - (w + z * w); z = 1.0 - (r - z); j = u32(reinterpret(z) >> 32); j += n << 20; if ((j >> 20) <= 0) z = scalbn(z, n); else z = reinterpret(reinterpret(z) & 0xFFFFFFFF | (j << 32)); return s * z; } } export function seedRandom(value: i64): void { // Instead zero seed use golden ratio: // phi = (1 + sqrt(5)) / 2 // trunc(2^64 / phi) = 0x9e3779b97f4a7c15 if (value == 0) value = 0x9e3779b97f4a7c15; random_state0_64 = murmurHash3(value); random_state1_64 = murmurHash3(~random_state0_64); random_state0_32 = splitMix32(value); random_state1_32 = splitMix32(random_state0_32); random_seeded = true; } export function random(): f64 { // see: v8/src/base/utils/random-number-generator.cc if (!random_seeded) seedRandom(reinterpret(seed())); let s1 = random_state0_64; let s0 = random_state1_64; random_state0_64 = s0; s1 ^= s1 << 23; s1 ^= s1 >> 17; s1 ^= s0; s1 ^= s0 >> 26; random_state1_64 = s1; let r = (s0 >> 12) | 0x3FF0000000000000; return reinterpret(r) - 1; } export function round(x: f64): f64 { if (ASC_SHRINK_LEVEL > 0) { return builtin_ceil(x) - f64(builtin_ceil(x) - 0.5 > x); } else { let roundUp = builtin_ceil(x); return select(roundUp, roundUp - 1.0, roundUp - 0.5 <= x); } } export function sign(x: f64): f64 { if (ASC_SHRINK_LEVEL > 0) { return select(builtin_copysign(1, x), x, builtin_abs(x) > 0); } else { return select(1, select(-1, x, x < 0), x > 0); } } // @ts-ignore: decorator @inline export function signbit(x: f64): bool { return bool(reinterpret(x) >>> 63); } export function sin(x: f64): f64 { // see: musl/src/math/sin.c let u = reinterpret(x); let ux = u32(u >> 32); let sign = ux >> 31; ux &= 0x7FFFFFFF; // |x| ~< pi/4 if (ux <= 0x3FE921FB) { if (ux < 0x3E500000) { // |x| < 2**-26 return x; } return sin_kern(x, 0.0, 0); } // sin(Inf or NaN) is NaN if (ux >= 0x7FF00000) return x - x; // argument reduction needed let n = rempio2(x, u, sign); let y0 = rempio2_y0; let y1 = rempio2_y1; x = n & 1 ? cos_kern(y0, y1) : sin_kern(y0, y1, 1); return n & 2 ? -x : x; } export function sinh(x: f64): f64 { // see: musl/src/math/sinh.c let u = reinterpret(x) & 0x7FFFFFFFFFFFFFFF; let a = reinterpret(u); let w = u32(u >> 32); let h = builtin_copysign(0.5, x); if (w < 0x40862E42) { let t = expm1(a); if (w < 0x3FF00000) { if (w < 0x3FF00000 - (26 << 20)) return x; return h * (2 * t - t * t / (t + 1)); } return h * (t + t / (t + 1)); } return expo2(a, 2 * h); } // @ts-ignore: decorator @inline export function sqrt(x: f64): f64 { return builtin_sqrt(x); } export function tan(x: f64): f64 { // see: musl/src/math/tan.c let u = reinterpret(x); let ux = u32(u >> 32); let sign = ux >>> 31; ux &= 0x7FFFFFFF; // |x| ~< pi/4 if (ux <= 0x3FE921FB) { if (ux < 0x3E400000) { // |x| < 2**-27 return x; } return tan_kern(x, 0.0, 1); } // tan(Inf or NaN) is NaN if (ux >= 0x7FF00000) return x - x; let n = rempio2(x, u, sign); return tan_kern(rempio2_y0, rempio2_y1, 1 - ((n & 1) << 1)); } export function tanh(x: f64): f64 { // see: musl/src/math/tanh.c let u = reinterpret(x); u &= 0x7FFFFFFFFFFFFFFF; let y = reinterpret(u); let w = u32(u >> 32); let t: f64; if (w > 0x3FE193EA) { if (w > 0x40340000) { t = 1 - 0 / y; } else { t = expm1(2 * y); t = 1 - 2 / (t + 2); } } else if (w > 0x3FD058AE) { t = expm1(2 * y); t = t / (t + 2); } else if (w >= 0x00100000) { t = expm1(-2 * y); t = -t / (t + 2); } else t = y; return builtin_copysign(t, x); } // @ts-ignore: decorator @inline export function trunc(x: f64): f64 { return builtin_trunc(x); } export function scalbn(x: f64, n: i32): f64 { // see: https://git.musl-libc.org/cgit/musl/tree/src/math/scalbn.c const Ox1p53 = reinterpret(0x4340000000000000), Ox1p1023 = reinterpret(0x7FE0000000000000), Ox1p_1022 = reinterpret(0x0010000000000000); let y = x; if (n > 1023) { y *= Ox1p1023; n -= 1023; if (n > 1023) { y *= Ox1p1023; n = builtin_min(n - 1023, 1023); } } else if (n < -1022) { // make sure final n < -53 to avoid double // rounding in the subnormal range y *= Ox1p_1022 * Ox1p53; n += 1022 - 53; if (n < -1022) { y *= Ox1p_1022 * Ox1p53; n = builtin_max(n + 1022 - 53, -1022); } } return y * reinterpret((0x3FF + n) << 52); } export function mod(x: f64, y: f64): f64 { // see: musl/src/math/fmod.c if (builtin_abs(y) == 1.0) { // x % 1, x % -1 ==> sign(x) * abs(x - 1.0 * trunc(x / 1.0)) // TODO: move this rule to compiler's optimization pass. // It could be apply for any x % C_pot, where "C_pot" is pow of two const. return builtin_copysign(x - builtin_trunc(x), x); } let ux = reinterpret(x); let uy = reinterpret(y); let ex = i64(ux >> 52 & 0x7FF); let ey = i64(uy >> 52 & 0x7FF); let sx = ux >> 63; let uy1 = uy << 1; if (uy1 == 0 || ex == 0x7FF || isNaN(y)) { let m = x * y; return m / m; } let ux1 = ux << 1; if (ux1 <= uy1) { return x * f64(ux1 != uy1); } if (!ex) { ex -= builtin_clz(ux << 12); ux <<= 1 - ex; } else { ux &= u64(-1) >> 12; ux |= 1 << 52; } if (!ey) { ey -= builtin_clz(uy << 12); uy <<= 1 - ey; } else { uy &= u64(-1) >> 12; uy |= 1 << 52; } while (ex > ey) { if (ux >= uy) { if (ux == uy) return 0 * x; ux -= uy; } ux <<= 1; --ex; } if (ux >= uy) { if (ux == uy) return 0 * x; ux -= uy; } // for (; !(ux >> 52); ux <<= 1) --ex; let shift = builtin_clz(ux << 11); ex -= shift; ux <<= shift; if (ex > 0) { ux -= 1 << 52; ux |= ex << 52; } else { ux >>= -ex + 1; } return reinterpret(ux | (sx << 63)); } export function rem(x: f64, y: f64): f64 { // see: musl/src/math/remquo.c let ux = reinterpret(x); let uy = reinterpret(y); let ex = i64(ux >> 52 & 0x7FF); let ey = i64(uy >> 52 & 0x7FF); if (uy << 1 == 0 || ex == 0x7FF || isNaN(y)) { let m = x * y; return m / m; } if (ux << 1 == 0) return x; let uxi = ux; if (!ex) { ex -= builtin_clz(uxi << 12); uxi <<= 1 - ex; } else { uxi &= u64(-1) >> 12; uxi |= 1 << 52; } if (!ey) { ey -= builtin_clz(uy << 12); uy <<= 1 - ey; } else { uy &= u64(-1) >> 12; uy |= 1 << 52; } let q: u32 = 0; do { if (ex < ey) { if (ex + 1 == ey) break; // goto end return x; } while (ex > ey) { if (uxi >= uy) { uxi -= uy; ++q; } uxi <<= 1; q <<= 1; --ex; } if (uxi >= uy) { uxi -= uy; ++q; } if (uxi == 0) ex = -60; else { let shift = builtin_clz(uxi << 11); ex -= shift; uxi <<= shift; } break; } while (false); // end: if (ex > 0) { uxi -= 1 << 52; uxi |= ex << 52; } else { uxi >>= -ex + 1; } x = reinterpret(uxi); y = builtin_abs(y); let x2 = x + x; if (ex == ey || (ex + 1 == ey && (x2 > y || (x2 == y && (q & 1))))) { x -= y; // ++q; } return ux < 0 ? -x : x; } export function sincos(x: f64): void { // see: musl/tree/src/math/sincos.c let u = reinterpret(x); let ux = u32(u >> 32); let sign = ux >> 31; ux &= 0x7FFFFFFF; if (ux <= 0x3FE921FB) { // |x| ~<= π/4 if (ux < 0x3E46A09E) { // if |x| < 2**-27 * sqrt(2) sincos_sin = x; sincos_cos = 1; return; } sincos_sin = sin_kern(x, 0, 0); sincos_cos = cos_kern(x, 0); return; } // sin(Inf or NaN) is NaN if (ux >= 0x7F800000) { let xx = x - x; sincos_sin = xx; sincos_cos = xx; return; } // general argument reduction needed let n = rempio2(x, u, sign); let y0 = rempio2_y0; let y1 = rempio2_y1; let s = sin_kern(y0, y1, 1); let c = cos_kern(y0, y1); let sin = s, cos = c; if (n & 1) { sin = c; cos = -s; } if (n & 2) { sin = -sin; cos = -cos; } sincos_sin = sin; sincos_cos = cos; } } // @ts-ignore: decorator @lazy let rempio2f_y: f64; // @ts-ignore: decorator @lazy @inline const PIO2F_TABLE = memory.data([ 0xA2F9836E4E441529, 0xFC2757D1F534DDC0, 0xDB6295993C439041, 0xFE5163ABDEBBC561 ]); function Rf(z: f32): f32 { // Rational approximation of (asin(x)-x)/x^3 const // see: musl/src/math/asinf.c and SUN COPYRIGHT NOTICE above pS0 = reinterpret(0x3E2AAA75), // 1.6666586697e-01f pS1 = reinterpret(0xBD2F13BA), // -4.2743422091e-02f pS2 = reinterpret(0xBC0DD36B), // -8.6563630030e-03f qS1 = reinterpret(0xBF34E5AE); // -7.0662963390e-01f let p = z * (pS0 + z * (pS1 + z * pS2)); let q: f32 = 1 + z * qS1; return p / q; } // @ts-ignore: decorator @inline function expo2f(x: f32, sign: f32): f32 { // exp(x)/2 for x >= log(DBL_MAX) const // see: musl/src/math/__expo2f.c k = 235, kln2 = reinterpret(0x4322E3BC); // 0x1.45c778p+7f let scale = reinterpret(u32(0x7F + (k >> 1)) << 23); // in directed rounding correct sign before rounding or overflow is important return NativeMathf.exp(x - kln2) * (sign * scale) * scale; } // @ts-ignore: decorator @inline function pio2f_large_quot(x: f32, u: i32): i32 { // see: jdh8/metallic/blob/master/src/math/float/rem_pio2f.c const coeff = reinterpret(0x3BF921FB54442D18); // π * 0x1p-65 = 8.51530395021638647334e-20 let offset = (u >> 23) - 152; let shift = u64(offset & 63); let tblPtr = PIO2F_TABLE + (offset >> 6 << 3); let b0 = load(tblPtr, 0 << 3); let b1 = load(tblPtr, 1 << 3); let lo: u64; if (shift > 32) { let b2 = load(tblPtr, 2 << 3); lo = b2 >> (96 - shift); lo |= b1 << (shift - 32); } else { lo = b1 >> (32 - shift); } let hi = (b1 >> (64 - shift)) | (b0 << shift); let mantissa: u64 = (u & 0x007FFFFF) | 0x00800000; let product = mantissa * hi + (mantissa * lo >> 32); let r: i64 = product << 2; let q = i32((product >> 62) + (r >>> 63)); rempio2f_y = copysign(coeff, x) * r; return q; } // @ts-ignore: decorator @inline function rempio2f(x: f32, u: u32, sign: i32): i32 { // see: jdh8/metallic/blob/master/src/math/float/rem_pio2f.c const pi2hi = reinterpret(0x3FF921FB50000000), // 1.57079631090164184570 pi2lo = reinterpret(0x3E5110B4611A6263), // 1.58932547735281966916e-8 _2_pi = reinterpret(0x3FE45F306DC9C883); // 0.63661977236758134308 if (u < 0x4DC90FDB) { // π * 0x1p28 let q = nearest(x * _2_pi); rempio2f_y = x - q * pi2hi - q * pi2lo; return q; } let q = pio2f_large_quot(x, u); return select(-q, q, sign); } // |sin(x)/x - s(x)| < 2**-37.5 (~[-4.89e-12, 4.824e-12]). // @ts-ignore: decorator @inline function sin_kernf(x: f64): f32 { // see: musl/tree/src/math/__sindf.c const S1 = reinterpret(0xBFC5555554CBAC77), // -0x15555554cbac77.0p-55 S2 = reinterpret(0x3F811110896EFBB2), // 0x111110896efbb2.0p-59 S3 = reinterpret(0xBF2A00F9E2CAE774), // -0x1a00f9e2cae774.0p-65 S4 = reinterpret(0x3EC6CD878C3B46A7); // 0x16cd878c3b46a7.0p-71 let z = x * x; let w = z * z; let r = S3 + z * S4; let s = z * x; return f32((x + s * (S1 + z * S2)) + s * w * r); } // |cos(x) - c(x)| < 2**-34.1 (~[-5.37e-11, 5.295e-11]). // @ts-ignore: decorator @inline function cos_kernf(x: f64): f32 { // see: musl/tree/src/math/__cosdf.c const C0 = reinterpret(0xBFDFFFFFFD0C5E81), // -0x1ffffffd0c5e81.0p-54 C1 = reinterpret(0x3FA55553E1053A42), // 0x155553e1053a42.0p-57 C2 = reinterpret(0xBF56C087E80F1E27), // -0x16c087e80f1e27.0p-62 C3 = reinterpret(0x3EF99342E0EE5069); // 0x199342e0ee5069.0p-68 let z = x * x; let w = z * z; let r = C2 + z * C3; return f32(((1 + z * C0) + w * C1) + (w * z) * r); } // |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). // @ts-ignore: decorator @inline function tan_kernf(x: f64, odd: i32): f32 { // see: musl/tree/src/math/__tandf.c const T0 = reinterpret(0x3FD5554D3418C99F), // 0x15554d3418c99f.0p-54 T1 = reinterpret(0x3FC112FD38999F72), // 0x1112fd38999f72.0p-55 T2 = reinterpret(0x3FAB54C91D865AFE), // 0x1b54c91d865afe.0p-57 T3 = reinterpret(0x3F991DF3908C33CE), // 0x191df3908c33ce.0p-58 T4 = reinterpret(0x3F685DADFCECF44E), // 0x185dadfcecf44e.0p-61 T5 = reinterpret(0x3F8362B9BF971BCD); // 0x1362b9bf971bcd.0p-59 let z = x * x; let r = T4 + z * T5; let t = T2 + z * T3; let w = z * z; let s = z * x; let u = T0 + z * T1; r = (x + s * u) + (s * w) * (t + w * r); return f32(odd ? -1 / r : r); } // See: jdh8/metallic/src/math/float/log2f.c and jdh8/metallic/src/math/float/kernel/atanh.h // @ts-ignore: decorator @inline function log2f(x: f64): f64 { const log2e = reinterpret(0x3FF71547652B82FE), // 1.44269504088896340736 c0 = reinterpret(0x3FD555554FD9CAEF), // 0.33333332822728226129 c1 = reinterpret(0x3FC999A7A8AF4132), // 0.20000167595436263505 c2 = reinterpret(0x3FC2438D79437030), // 0.14268654271188685375 c3 = reinterpret(0x3FBE2F663B001C97); // 0.11791075649681414150 let i = reinterpret(x); let exponent = (i - 0x3FE6A09E667F3BCD) >> 52; x = reinterpret(i - (exponent << 52)); x = (x - 1) / (x + 1); let xx = x * x; let y = x + x * xx * (c0 + c1 * xx + (c2 + c3 * xx) * (xx * xx)); return (2 * log2e) * y + exponent; } // See: jdh8/metallic/src/math/float/exp2f.h and jdh8/metallic/blob/master/src/math/float/kernel/exp2f.h // @ts-ignore: decorator @inline function exp2f(x: f64): f64 { const c0 = reinterpret(0x3FE62E4302FCC24A), // 6.931471880289532425e-1 c1 = reinterpret(0x3FCEBFBE07D97B91), // 2.402265108421173406e-1 c2 = reinterpret(0x3FAC6AF6CCFC1A65), // 5.550357105498874537e-2 c3 = reinterpret(0x3F83B29E3CE9AEF6), // 9.618030771171497658e-3 c4 = reinterpret(0x3F55F0896145A89F), // 1.339086685300950937e-3 c5 = reinterpret(0x3F2446C81E384864); // 1.546973499989028719e-4 if (x < -1022) return 0; if (x >= 1024) return Infinity; let n = nearest(x); x -= n; let xx = x * x; let y = 1 + x * (c0 + c1 * x + (c2 + c3 * x) * xx + (c4 + c5 * x) * (xx * xx)); return reinterpret(reinterpret(y) + (n << 52)); } export namespace NativeMathf { // @ts-ignore: decorator @lazy export const E = NativeMath.E; // @ts-ignore: decorator @lazy export const LN2 = NativeMath.LN2; // @ts-ignore: decorator @lazy export const LN10 = NativeMath.LN10; // @ts-ignore: decorator @lazy export const LOG2E = NativeMath.LOG2E; // @ts-ignore: decorator @lazy export const LOG10E = NativeMath.LOG10E; // @ts-ignore: decorator @lazy export const PI = NativeMath.PI; // @ts-ignore: decorator @lazy export const SQRT1_2 = NativeMath.SQRT1_2; // @ts-ignore: decorator @lazy export const SQRT2 = NativeMath.SQRT2; // @ts-ignore: decorator @lazy export let sincos_sin: f32 = 0; // @ts-ignore: decorator @lazy export let sincos_cos: f32 = 0; // @ts-ignore: decorator @inline export function abs(x: f32): f32 { return builtin_abs(x); } export function acos(x: f32): f32 { // see: musl/src/math/acosf.c and SUN COPYRIGHT NOTICE above const pio2_hi = reinterpret(0x3FC90FDA), // 1.5707962513e+00f pio2_lo = reinterpret(0x33A22168), // 7.5497894159e-08f Ox1p_120f = reinterpret(0x03800000); // 0x1p-120f let hx = reinterpret(x); let ix = hx & 0x7FFFFFFF; if (ix >= 0x3F800000) { if (ix == 0x3F800000) { return select(2 * pio2_hi + Ox1p_120f, 0, hx < 0); } return 0 / (x - x); } if (ix < 0x3F000000) { if (ix <= 0x32800000) return pio2_hi + Ox1p_120f; return pio2_hi - (x - (pio2_lo - x * Rf(x * x))); } let z: f32, w: f32, s: f32; if (hx < 0) { // z = (1 + x) * 0.5; z = 0.5 + x * 0.5; s = builtin_sqrt(z); w = Rf(z) * s - pio2_lo; return 2 * (pio2_hi - (s + w)); } // z = (1 - x) * 0.5; z = 0.5 - x * 0.5; s = builtin_sqrt(z); hx = reinterpret(s); let df = reinterpret(hx & 0xFFFFF000); let c = (z - df * df) / (s + df); w = Rf(z) * s + c; return 2 * (df + w); } export function acosh(x: f32): f32 { // see: musl/src/math/acoshf.c const s = reinterpret(0x3F317218); // 0.693147180559945309417232121458176568f let u = reinterpret(x); let a = u & 0x7FFFFFFF; if (a < 0x3F800000 + (1 << 23)) { // |x| < 2, invalid if x < 1 let xm1 = x - 1; return log1p(xm1 + builtin_sqrt(xm1 * (xm1 + 2))); } if (u < 0x3F800000 + (12 << 23)) { // 2 <= x < 0x1p12 return log(2 * x - 1 / (x + builtin_sqrt(x * x - 1))); } // x >= 0x1p12 or x <= -2 or NaN return log(x) + s; } export function asin(x: f32): f32 { // see: musl/src/math/asinf.c and SUN COPYRIGHT NOTICE above const pio2 = reinterpret(0x3FC90FDB), // 1.570796326794896558e+00f Ox1p_120f = reinterpret(0x03800000); // 0x1p-120f let sx = x; let hx = reinterpret(x) & 0x7FFFFFFF; if (hx >= 0x3F800000) { if (hx == 0x3F800000) return x * pio2 + Ox1p_120f; return 0 / (x - x); } if (hx < 0x3F000000) { if (hx < 0x39800000 && hx >= 0x00800000) return x; return x + x * Rf(x * x); } // let z: f32 = (1 - builtin_abs(x)) * 0.5; let z: f32 = 0.5 - builtin_abs(x) * 0.5; let s = builtin_sqrt(z); // sic x = f32(pio2 - 2 * (s + s * Rf(z))); return builtin_copysign(x, sx); } export function asinh(x: f32): f32 { // see: musl/src/math/asinhf.c const c = reinterpret(0x3F317218); // 0.693147180559945309417232121458176568f let u = reinterpret(x) & 0x7FFFFFFF; let y = reinterpret(u); if (u >= 0x3F800000 + (12 << 23)) y = log(y) + c; else if (u >= 0x3F800000 + (1 << 23)) y = log(2 * y + 1 / (builtin_sqrt(y * y + 1) + y)); else if (u >= 0x3F800000 - (12 << 23)) y = log1p(y + y * y / (builtin_sqrt(y * y + 1) + 1)); return builtin_copysign(y, x); } export function atan(x: f32): f32 { // see: musl/src/math/atanf.c and SUN COPYRIGHT NOTICE above const atanhi0 = reinterpret(0x3EED6338), // 4.6364760399e-01f atanhi1 = reinterpret(0x3F490FDA), // 7.8539812565e-01f atanhi2 = reinterpret(0x3F7B985E), // 9.8279368877e-01f atanhi3 = reinterpret(0x3FC90FDA), // 1.5707962513e+00f atanlo0 = reinterpret(0x31AC3769), // 5.0121582440e-09f atanlo1 = reinterpret(0x33222168), // 3.7748947079e-08f atanlo2 = reinterpret(0x33140FB4), // 3.4473217170e-08f atanlo3 = reinterpret(0x33A22168), // 7.5497894159e-08f aT0 = reinterpret(0x3EAAAAA9), // 3.3333328366e-01f aT1 = reinterpret(0xBE4CCA98), // -1.9999158382e-01f aT2 = reinterpret(0x3E11F50D), // 1.4253635705e-01f aT3 = reinterpret(0xBDDA1247), // -1.0648017377e-01f aT4 = reinterpret(0x3D7CAC25), // 6.1687607318e-02f Ox1p_120f = reinterpret(0x03800000); // 0x1p-120f let ix = reinterpret(x); let sx = x; ix &= 0x7FFFFFFF; let z: f32; if (ix >= 0x4C800000) { if (isNaN(x)) return x; z = atanhi3 + Ox1p_120f; return builtin_copysign(z, sx); } let id: i32; if (ix < 0x3EE00000) { if (ix < 0x39800000) return x; id = -1; } else { x = builtin_abs(x); if (ix < 0x3F980000) { if (ix < 0x3F300000) { id = 0; x = (2.0 * x - 1.0) / (2.0 + x); } else { id = 1; x = (x - 1.0) / (x + 1.0); } } else { if (ix < 0x401C0000) { id = 2; x = (x - 1.5) / (1.0 + 1.5 * x); } else { id = 3; x = -1.0 / x; } } } z = x * x; let w = z * z; let s1 = z * (aT0 + w * (aT2 + w * aT4)); let s2 = w * (aT1 + w * aT3); let s3 = x * (s1 + s2); if (id < 0) return x - s3; switch (id) { case 0: { z = atanhi0 - ((s3 - atanlo0) - x); break; } case 1: { z = atanhi1 - ((s3 - atanlo1) - x); break; } case 2: { z = atanhi2 - ((s3 - atanlo2) - x); break; } case 3: { z = atanhi3 - ((s3 - atanlo3) - x); break; } default: unreachable(); } return builtin_copysign(z, sx); } export function atanh(x: f32): f32 { // see: musl/src/math/atanhf.c let u = reinterpret(x); let y = builtin_abs(x); if (u < 0x3F800000 - (1 << 23)) { if (u >= 0x3F800000 - (32 << 23)) y = 0.5 * log1p(2 * y * (1.0 + y / (1 - y))); } else y = 0.5 * log1p(2 * (y / (1 - y))); return builtin_copysign(y, x); } export function atan2(y: f32, x: f32): f32 { // see: musl/src/math/atan2f.c and SUN COPYRIGHT NOTICE above const pi = reinterpret(0x40490FDB), // 3.1415927410e+00f pi_lo = reinterpret(0xB3BBBD2E); // -8.7422776573e-08f if (isNaN(x) || isNaN(y)) return x + y; let ix = reinterpret(x); let iy = reinterpret(y); if (ix == 0x3F800000) return atan(y); let m = u32(((iy >> 31) & 1) | ((ix >> 30) & 2)); ix &= 0x7FFFFFFF; iy &= 0x7FFFFFFF; if (iy == 0) { switch (m) { case 0: case 1: return y; case 2: return pi; case 3: return -pi; } } if (ix == 0) return m & 1 ? -pi / 2 : pi / 2; if (ix == 0x7F800000) { if (iy == 0x7F800000) { let t: f32 = m & 2 ? 3 * pi / 4 : pi / 4; return m & 1 ? -t : t; } else { let t: f32 = m & 2 ? pi : 0.0; return m & 1 ? -t : t; } } if (ix + (26 << 23) < iy || iy == 0x7F800000) return m & 1 ? -pi / 2 : pi / 2; let z: f32; if ((m & 2) && iy + (26 << 23) < ix) z = 0.0; else z = atan(builtin_abs(y / x)); switch (m) { case 0: return z; case 1: return -z; case 2: return pi - (z - pi_lo); case 3: return (z - pi_lo) - pi; } unreachable(); return 0; } export function cbrt(x: f32): f32 { // see: musl/src/math/cbrtf.c and SUN COPYRIGHT NOTICE above const B1 = 709958130, B2 = 642849266, Ox1p24f = reinterpret(0x4B800000); let u = reinterpret(x); let hx = u & 0x7FFFFFFF; if (hx >= 0x7F800000) return x + x; if (hx < 0x00800000) { if (hx == 0) return x; u = reinterpret(x * Ox1p24f); hx = u & 0x7FFFFFFF; hx = hx / 3 + B2; } else { hx = hx / 3 + B1; } u &= 0x80000000; u |= hx; let t = reinterpret(u); let r = t * t * t; t = t * (x + x + r) / (x + r + r); r = t * t * t; t = t * (x + x + r) / (x + r + r); return t; } // @ts-ignore: decorator @inline export function ceil(x: f32): f32 { return builtin_ceil(x); } export function clz32(x: f32): f32 { if (!isFinite(x)) return 32; return builtin_clz(dtoi32(x)); } export function cos(x: f32): f32 { // see: musl/src/math/cosf.c const c1pio2 = reinterpret(0x3FF921FB54442D18), // M_PI_2 * 1 c2pio2 = reinterpret(0x400921FB54442D18), // M_PI_2 * 2 c3pio2 = reinterpret(0x4012D97C7F3321D2), // M_PI_2 * 3 c4pio2 = reinterpret(0x401921FB54442D18); // M_PI_2 * 4 let ux = reinterpret(x); let sign = ux >> 31; ux &= 0x7FFFFFFF; if (ux <= 0x3F490FDA) { // |x| ~<= π/4 if (ux < 0x39800000) { // |x| < 2**-12 // raise inexact if x != 0 return 1; } return cos_kernf(x); } if (ASC_SHRINK_LEVEL < 1) { if (ux <= 0x407B53D1) { // |x| ~<= 5π/4 if (ux > 0x4016CBE3) { // |x| ~> 3π/4 return -cos_kernf(sign ? x + c2pio2 : x - c2pio2); } else { return sign ? sin_kernf(x + c1pio2) : sin_kernf(c1pio2 - x); } } if (ux <= 0x40E231D5) { // |x| ~<= 9π/4 if (ux > 0x40AFEDDF) { // |x| ~> 7π/4 return cos_kernf(sign ? x + c4pio2 : x - c4pio2); } else { return sign ? sin_kernf(-x - c3pio2) : sin_kernf(x - c3pio2); } } } // cos(Inf or NaN) is NaN if (ux >= 0x7F800000) return x - x; // general argument reduction needed let n = rempio2f(x, ux, sign); let y = rempio2f_y; let t = n & 1 ? sin_kernf(y) : cos_kernf(y); return (n + 1) & 2 ? -t : t; } export function cosh(x: f32): f32 { // see: musl/src/math/coshf.c let u = reinterpret(x); u &= 0x7FFFFFFF; x = reinterpret(u); if (u < 0x3F317217) { if (u < 0x3F800000 - (12 << 23)) return 1; let t = expm1(x); // return 1 + t * t / (2 * (1 + t)); return 1 + t * t / (2 + 2 * t); } if (u < 0x42B17217) { let t = exp(x); // return 0.5 * (t + 1 / t); return 0.5 * t + 0.5 / t; } return expo2f(x, 1); } // @ts-ignore: decorator @inline export function floor(x: f32): f32 { return builtin_floor(x); } export function exp(x: f32): f32 { // see: musl/src/math/expf.c and SUN COPYRIGHT NOTICE above if (ASC_SHRINK_LEVEL < 1) { return expf_lut(x); } else { const ln2hi = reinterpret(0x3F317200), // 6.9314575195e-1f ln2lo = reinterpret(0x35BFBE8E), // 1.4286067653e-6f invln2 = reinterpret(0x3FB8AA3B), // 1.4426950216e+0f P1 = reinterpret(0x3E2AAA8F), // 1.6666625440e-1f P2 = reinterpret(0xBB355215), // -2.7667332906e-3f Ox1p127f = reinterpret(0x7F000000); // 0x1p+127f let hx = reinterpret(x); let sign = hx >> 31; hx &= 0x7FFFFFFF; if (hx >= 0x42AEAC50) { if (hx > 0x7F800000) return x; // NaN if (hx >= 0x42B17218) { if (!sign) return x * Ox1p127f; else if (hx >= 0x42CFF1B5) return 0; } } let hi: f32, lo: f32; let k: i32; if (hx > 0x3EB17218) { if (hx > 0x3F851592) { k = i32(invln2 * x + builtin_copysign(0.5, x)); } else { k = 1 - (sign << 1); } hi = x - k * ln2hi; lo = k * ln2lo; x = hi - lo; } else if (hx > 0x39000000) { k = 0; hi = x; lo = 0; } else { return 1 + x; } let xx = x * x; let c = x - xx * (P1 + xx * P2); let y: f32 = 1 + (x * c / (2 - c) - lo + hi); return k == 0 ? y : scalbn(y, k); } } export function exp2(x: f32): f32 { return exp2f_lut(x); } export function expm1(x: f32): f32 { // see: musl/src/math/expm1f.c and SUN COPYRIGHT NOTICE above const ln2_hi = reinterpret(0x3F317180), // 6.9313812256e-01f ln2_lo = reinterpret(0x3717F7D1), // 9.0580006145e-06f invln2 = reinterpret(0x3FB8AA3B), // 1.4426950216e+00f Q1 = reinterpret(0xBD088868), // -3.3333212137e-02f Q2 = reinterpret(0x3ACF3010), // 1.5807170421e-03f Ox1p127f = reinterpret(0x7F000000); // 0x1p+127f let u = reinterpret(x); let hx = u & 0x7FFFFFFF; let sign = u >> 31; if (hx >= 0x4195B844) { if (hx > 0x7F800000) return x; if (sign) return -1; if (hx > 0x42B17217) { // x > log(FLT_MAX) x *= Ox1p127f; return x; } } let c: f32 = 0.0, t: f32, k: i32; if (hx > 0x3EB17218) { k = select( 1 - (sign << 1), i32(invln2 * x + builtin_copysign(0.5, x)), hx < 0x3F851592 ); t = k; let hi = x - t * ln2_hi; let lo = t * ln2_lo; x = hi - lo; c = (hi - x) - lo; } else if (hx < 0x33000000) { return x; } else k = 0; let hfx: f32 = 0.5 * x; let hxs: f32 = x * hfx; let r1: f32 = 1.0 + hxs * (Q1 + hxs * Q2); t = 3.0 - r1 * hfx; let e = hxs * ((r1 - t) / (6.0 - x * t)); if (k == 0) return x - (x * e - hxs); e = x * (e - c) - c; e -= hxs; if (k == -1) return 0.5 * (x - e) - 0.5; if (k == 1) { if (x < -0.25) return -2.0 * (e - (x + 0.5)); return 1.0 + 2.0 * (x - e); } u = (0x7F + k) << 23; let twopk = reinterpret(u); let y: f32; if (k < 0 || k > 56) { y = x - e + 1.0; if (k == 128) y = y * 2.0 * Ox1p127f; else y = y * twopk; return y - 1.0; } u = (0x7F - k) << 23; y = reinterpret(u); if (k < 20) y = (1 - y) - e; else y = 1 - (e + y); return (x + y) * twopk; } // @ts-ignore: decorator @inline export function fround(x: f32): f32 { return x; } export function hypot(x: f32, y: f32): f32 { // see: musl/src/math/hypotf.c const Ox1p90f = reinterpret(0x6C800000), Ox1p_90f = reinterpret(0x12800000); let ux = reinterpret(x); let uy = reinterpret(y); ux &= 0x7FFFFFFF; uy &= 0x7FFFFFFF; if (ux < uy) { let ut = ux; ux = uy; uy = ut; } x = reinterpret(ux); y = reinterpret(uy); if (uy == 0xFF << 23) return y; if (ux >= 0xFF << 23 || uy == 0 || ux - uy >= 25 << 23) return x + y; let z: f32 = 1; if (ux >= (0x7F + 60) << 23) { z = Ox1p90f; x *= Ox1p_90f; y *= Ox1p_90f; } else if (uy < (0x7F - 60) << 23) { z = Ox1p_90f; x *= Ox1p90f; y *= Ox1p90f; } return z * builtin_sqrt(f32(x * x + y * y)); } // @ts-ignore: decorator @inline export function imul(x: f32, y: f32): f32 { /* * Wasm (MVP) and JS have different approaches for double->int conversions. * * For emulate JS conversion behavior and avoid trapping from wasm we should modulate by MAX_INT * our float-point arguments before actual convertion to integers. */ if (!isFinite(x + y)) return 0; return (dtoi32(x) * dtoi32(y)); } export function log(x: f32): f32 { // see: musl/src/math/logf.c and SUN COPYRIGHT NOTICE above if (ASC_SHRINK_LEVEL < 1) { return logf_lut(x); } else { const ln2_hi = reinterpret(0x3F317180), // 6.9313812256e-01f ln2_lo = reinterpret(0x3717F7D1), // 9.0580006145e-06f Lg1 = reinterpret(0x3F2AAAAA), // 0xaaaaaa.0p-24f Lg2 = reinterpret(0x3ECCCE13), // 0xccce13.0p-25f Lg3 = reinterpret(0x3E91E9EE), // 0x91e9ee.0p-25f Lg4 = reinterpret(0x3E789E26), // 0xf89e26.0p-26f Ox1p25f = reinterpret(0x4C000000); let u = reinterpret(x); let k = 0; let sign = u >> 31; if (sign || u < 0x00800000) { if (u << 1 == 0) return -1 / (x * x); if (sign) return (x - x) / 0; k -= 25; x *= Ox1p25f; u = reinterpret(x); } else if (u >= 0x7F800000) { return x; } else if (u == 0x3F800000) { return 0; } u += 0x3F800000 - 0x3F3504F3; k += i32(u >> 23) - 0x7F; u = (u & 0x007FFFFF) + 0x3F3504F3; x = reinterpret(u); let f = x - 1.0; let s = f / (2.0 + f); let z = s * s; let w = z * z; let t1 = w * (Lg2 + w * Lg4); let t2 = z * (Lg1 + w * Lg3); let r = t2 + t1; let hfsq = 0.5 * f * f; let dk = k; return s * (hfsq + r) + dk * ln2_lo - hfsq + f + dk * ln2_hi; } } export function log10(x: f32): f32 { // see: musl/src/math/log10f.c and SUN COPYRIGHT NOTICE above const ivln10hi = reinterpret(0x3EDE6000), // 4.3432617188e-01f ivln10lo = reinterpret(0xB804EAD9), // -3.1689971365e-05f log10_2hi = reinterpret(0x3E9A2080), // 3.0102920532e-01f log10_2lo = reinterpret(0x355427DB), // 7.9034151668e-07f Lg1 = reinterpret(0x3F2AAAAA), // 0xaaaaaa.0p-24f, 0.66666662693f Lg2 = reinterpret(0x3ECCCE13), // 0xccce13.0p-25f, 0.40000972152f Lg3 = reinterpret(0x3E91E9EE), // 0x91e9ee.0p-25f, 0.28498786688f Lg4 = reinterpret(0x3E789E26), // 0xf89e26.0p-26f, 0.24279078841f Ox1p25f = reinterpret(0x4C000000); // 0x1p25f let ux = reinterpret(x); let k = 0; let sign = ux >> 31; if (sign || ux < 0x00800000) { if (ux << 1 == 0) return -1 / (x * x); if (sign) return (x - x) / 0.0; k -= 25; x *= Ox1p25f; ux = reinterpret(x); } else if (ux >= 0x7F800000) { return x; } else if (ux == 0x3F800000) { return 0; } ux += 0x3F800000 - 0x3F3504F3; k += i32(ux >> 23) - 0x7F; ux = (ux & 0x007FFFFF) + 0x3F3504F3; x = reinterpret(ux); let f = x - 1.0; let s = f / (2.0 + f); let z = s * s; let w = z * z; let t1 = w * (Lg2 + w * Lg4); let t2 = z * (Lg1 + w * Lg3); let r = t2 + t1; let hfsq: f32 = 0.5 * f * f; let hi = f - hfsq; ux = reinterpret(hi); ux &= 0xFFFFF000; hi = reinterpret(ux); let lo = f - hi - hfsq + s * (hfsq + r); let dk = k; return dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi + hi * ivln10hi + dk * log10_2hi; } export function log1p(x: f32): f32 { // see: musl/src/math/log1pf.c and SUN COPYRIGHT NOTICE above const ln2_hi = reinterpret(0x3F317180), // 6.9313812256e-01 ln2_lo = reinterpret(0x3717F7D1), // 9.0580006145e-06 Lg1 = reinterpret(0x3F2AAAAA), // 0xaaaaaa.0p-24f, 0.66666662693f Lg2 = reinterpret(0x3ECCCE13), // 0xccce13.0p-25f, 0.40000972152f Lg3 = reinterpret(0x3E91E9EE), // 0x91e9ee.0p-25f, 0.28498786688f Lg4 = reinterpret(0x3E789E26); // 0xf89e26.0p-26f, 0.24279078841f let ix = reinterpret(x); let c: f32 = 0; let f: f32 = 0; let k = 1; if (ix < 0x3ED413D0 || bool(ix >> 31)) { if (ix >= 0xBF800000) { if (x == -1) return x / 0.0; return (x - x) / 0.0; } if (ix << 1 < 0x33800000 << 1) return x; if (ix <= 0xBE95F619) { k = 0; c = 0; f = x; } } else if (ix >= 0x7F800000) return x; if (k) { let uf: f32 = 1 + x; let iu = reinterpret(uf); iu += 0x3F800000 - 0x3F3504F3; k = i32(iu >> 23) - 0x7F; if (k < 25) { c = k >= 2 ? 1 - (uf - x) : x - (uf - 1); c /= uf; } else c = 0; iu = (iu & 0x007FFFFF) + 0x3F3504F3; f = reinterpret(iu) - 1; } let s = f / (2.0 + f); let z = s * s; let w = z * z; let t1 = w * (Lg2 + w * Lg4); let t2 = z * (Lg1 + w * Lg3); let r = t2 + t1; let hfsq: f32 = 0.5 * f * f; let dk = k; return s * (hfsq + r) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi; } export function log2(x: f32): f32 { // see: musl/src/math/log2f.c and SUN COPYRIGHT NOTICE above if (ASC_SHRINK_LEVEL < 1) { return log2f_lut(x); } else { const ivln2hi = reinterpret(0x3FB8B000), // 1.4428710938e+00f ivln2lo = reinterpret(0xB9389AD4), // -1.7605285393e-04 Lg1 = reinterpret(0x3F2AAAAA), // 0xaaaaaa.0p-24f, 0.66666662693f Lg2 = reinterpret(0x3ECCCE13), // 0xccce13.0p-25f, 0.40000972152f Lg3 = reinterpret(0x3E91E9EE), // 0x91e9ee.0p-25f, 0.28498786688f Lg4 = reinterpret(0x3E789E26), // 0xf89e26.0p-26f, 0.24279078841f Ox1p25f = reinterpret(0x4C000000); // 0x1p25f let ux = reinterpret(x); let k = 0; let sign = ux >> 31; if (sign || ux < 0x00800000) { if (ux << 1 == 0) return -1 / (x * x); if (sign) return (x - x) / 0.0; k -= 25; x *= Ox1p25f; ux = reinterpret(x); } else if (ux >= 0x7F800000) { return x; } else if (ux == 0x3F800000) { return 0; } ux += 0x3F800000 - 0x3F3504F3; k += i32(ux >> 23) - 0x7F; ux = (ux & 0x007FFFFF) + 0x3F3504F3; x = reinterpret(ux); let f = x - 1.0; let s = f / (2.0 + f); let z = s * s; let w = z * z; let t1 = w * (Lg2 + w * Lg4); let t2 = z * (Lg1 + w * Lg3); let r = t2 + t1; let hfsq: f32 = 0.5 * f * f; let hi = f - hfsq; let u = reinterpret(hi); u &= 0xFFFFF000; hi = reinterpret(u); let lo: f32 = f - hi - hfsq + s * (hfsq + r); let dk = k; return (lo + hi) * ivln2lo + lo * ivln2hi + hi * ivln2hi + dk; } } // @ts-ignore: decorator @inline export function max(value1: f32, value2: f32): f32 { return builtin_max(value1, value2); } // @ts-ignore: decorator @inline export function min(value1: f32, value2: f32): f32 { return builtin_min(value1, value2); } export function pow(x: f32, y: f32): f32 { // TODO: remove this fast pathes after introduced own mid-end IR with "stdlib call simplify" transforms if (builtin_abs(y) <= 2) { if (y == 2.0) return x * x; if (y == 0.5) { return select( builtin_abs(builtin_sqrt(x)), Infinity, x != -Infinity ); } if (y == -1.0) return 1 / x; if (y == 1.0) return x; if (y == 0.0) return 1.0; } if (ASC_SHRINK_LEVEL < 1) { // see: musl/src/math/powf.c return powf_lut(x, y); } else { // based on: jdh8/metallic/src/math/float/powf.c if (y == 0) return 1; // @ts-ignore: cast if (isNaN(x) | isNaN(y)) { return NaN; } let sign: u32 = 0; let uy = reinterpret(y); let ux = reinterpret(x); let sx = ux >> 31; ux &= 0x7FFFFFFF; if (sx && nearest(y) == y) { x = -x; sx = 0; sign = u32(nearest(y * 0.5) != y * 0.5) << 31; } let m: u32; if (ux == 0x3F800000) { // x == 1 m = sx | u32((uy & 0x7FFFFFFF) == 0x7F800000) ? 0x7FC00000 : 0x3F800000; } else if (ux == 0) { m = uy < 0 ? 0x7F800000 : 0; } else if (ux == 0x7F800000) { m = uy < 0 ? 0 : 0x7F800000; } else if (sx) { m = 0x7FC00000; } else { m = reinterpret(exp2f(y * log2f(x))); } return reinterpret(m | sign); } } // @ts-ignore: decorator @inline export function seedRandom(value: i64): void { NativeMath.seedRandom(value); } // Using xoroshiro64starstar from http://xoshiro.di.unimi.it/xoroshiro64starstar.c export function random(): f32 { if (!random_seeded) seedRandom(reinterpret(seed())); let s0 = random_state0_32; let s1 = random_state1_32; let r = rotl(s0 * 0x9E3779BB, 5) * 5; s1 ^= s0; random_state0_32 = rotl(s0, 26) ^ s1 ^ (s1 << 9); random_state1_32 = rotl(s1, 13); return reinterpret((r >> 9) | (127 << 23)) - 1.0; } export function round(x: f32): f32 { if (ASC_SHRINK_LEVEL > 0) { return builtin_ceil(x) - f32(builtin_ceil(x) - 0.5 > x); } else { let roundUp = builtin_ceil(x); return select(roundUp, roundUp - 1.0, roundUp - 0.5 <= x); } } export function sign(x: f32): f32 { if (ASC_SHRINK_LEVEL > 0) { return select(builtin_copysign(1, x), x, builtin_abs(x) > 0); } else { return select(1, select(-1, x, x < 0), x > 0); } } // @ts-ignore: decorator @inline export function signbit(x: f32): bool { return (reinterpret(x) >>> 31); } export function sin(x: f32): f32 { // see: musl/src/math/sinf.c const s1pio2 = reinterpret(0x3FF921FB54442D18), // M_PI_2 * 1 s2pio2 = reinterpret(0x400921FB54442D18), // M_PI_2 * 2 s3pio2 = reinterpret(0x4012D97C7F3321D2), // M_PI_2 * 3 s4pio2 = reinterpret(0x401921FB54442D18); // M_PI_2 * 4 let ux = reinterpret(x); let sign = ux >> 31; ux &= 0x7FFFFFFF; if (ux <= 0x3F490FDA) { // |x| ~<= π/4 if (ux < 0x39800000) { // |x| < 2**-12 return x; } return sin_kernf(x); } if (ASC_SHRINK_LEVEL < 1) { if (ux <= 0x407B53D1) { // |x| ~<= 5π/4 if (ux <= 0x4016CBE3) { // |x| ~<= 3π/4 return sign ? -cos_kernf(x + s1pio2) : cos_kernf(x - s1pio2); } return sin_kernf(-(sign ? x + s2pio2 : x - s2pio2)); } if (ux <= 0x40E231D5) { // |x| ~<= 9π/4 if (ux <= 0x40AFEDDF) { // |x| ~<= 7π/4 return sign ? cos_kernf(x + s3pio2) : -cos_kernf(x - s3pio2); } return sin_kernf(sign ? x + s4pio2 : x - s4pio2); } } // sin(Inf or NaN) is NaN if (ux >= 0x7F800000) return x - x; let n = rempio2f(x, ux, sign); let y = rempio2f_y; let t = n & 1 ? cos_kernf(y) : sin_kernf(y); return n & 2 ? -t : t; } export function sinh(x: f32): f32 { // see: musl/src/math/sinhf.c let u = reinterpret(x) & 0x7FFFFFFF; let a = reinterpret(u); let h = builtin_copysign(0.5, x); if (u < 0x42B17217) { let t = expm1(a); if (u < 0x3F800000) { if (u < 0x3F800000 - (12 << 23)) return x; return h * (2 * t - t * t / (t + 1)); } return h * (t + t / (t + 1)); } return expo2f(a, 2 * h); } // @ts-ignore: decorator @inline export function sqrt(x: f32): f32 { return builtin_sqrt(x); } export function tan(x: f32): f32 { // see: musl/src/math/tanf.c const t1pio2 = reinterpret(0x3FF921FB54442D18), // 1 * M_PI_2 t2pio2 = reinterpret(0x400921FB54442D18), // 2 * M_PI_2 t3pio2 = reinterpret(0x4012D97C7F3321D2), // 3 * M_PI_2 t4pio2 = reinterpret(0x401921FB54442D18); // 4 * M_PI_2 let ux = reinterpret(x); let sign = ux >> 31; ux &= 0x7FFFFFFF; if (ux <= 0x3F490FDA) { // |x| ~<= π/4 if (ux < 0x39800000) { // |x| < 2**-12 return x; } return tan_kernf(x, 0); } if (ASC_SHRINK_LEVEL < 1) { if (ux <= 0x407B53D1) { // |x| ~<= 5π/4 if (ux <= 0x4016CBE3) { // |x| ~<= 3π/4 return tan_kernf((sign ? x + t1pio2 : x - t1pio2), 1); } else { return tan_kernf((sign ? x + t2pio2 : x - t2pio2), 0); } } if (ux <= 0x40E231D5) { // |x| ~<= 9π/4 if (ux <= 0x40AFEDDF) { // |x| ~<= 7π/4 return tan_kernf((sign ? x + t3pio2 : x - t3pio2), 1); } else { return tan_kernf((sign ? x + t4pio2 : x - t4pio2), 0); } } } // tan(Inf or NaN) is NaN if (ux >= 0x7F800000) return x - x; // argument reduction let n = rempio2f(x, ux, sign); let y = rempio2f_y; return tan_kernf(y, n & 1); } export function tanh(x: f32): f32 { // see: musl/src/math/tanhf.c let u = reinterpret(x); u &= 0x7FFFFFFF; let y = reinterpret(u); let t: f32; if (u > 0x3F0C9F54) { if (u > 0x41200000) t = 1 + 0 / y; else { t = expm1(2 * y); t = 1 - 2 / (t + 2); } } else if (u > 0x3E82C578) { t = expm1(2 * y); t = t / (t + 2); } else if (u >= 0x00800000) { t = expm1(-2 * y); t = -t / (t + 2); } else t = y; return builtin_copysign(t, x); } // @ts-ignore: decorator @inline export function trunc(x: f32): f32 { return builtin_trunc(x); } export function scalbn(x: f32, n: i32): f32 { // see: https://git.musl-libc.org/cgit/musl/tree/src/math/scalbnf.c const Ox1p24f = reinterpret(0x4B800000), Ox1p127f = reinterpret(0x7F000000), Ox1p_126f = reinterpret(0x00800000); let y = x; if (n > 127) { y *= Ox1p127f; n -= 127; if (n > 127) { y *= Ox1p127f; n = builtin_min(n - 127, 127); } } else if (n < -126) { y *= Ox1p_126f * Ox1p24f; n += 126 - 24; if (n < -126) { y *= Ox1p_126f * Ox1p24f; n = builtin_max(n + 126 - 24, -126); } } return y * reinterpret((0x7F + n) << 23); } export function mod(x: f32, y: f32): f32 { // see: musl/src/math/fmodf.c if (builtin_abs(y) == 1.0) { // x % 1, x % -1 ==> sign(x) * abs(x - 1.0 * trunc(x / 1.0)) // TODO: move this rule to compiler's optimization pass. // It could be apply for any x % C_pot, where "C_pot" is pow of two const. return builtin_copysign(x - builtin_trunc(x), x); } let ux = reinterpret(x); let uy = reinterpret(y); let ex = i32(ux >> 23 & 0xFF); let ey = i32(uy >> 23 & 0xFF); let sm = ux & 0x80000000; let uy1 = uy << 1; if (uy1 == 0 || ex == 0xFF || isNaN(y)) { let m = x * y; return m / m; } let ux1 = ux << 1; if (ux1 <= uy1) { return x * f32(ux1 != uy1); } if (!ex) { ex -= builtin_clz(ux << 9); ux <<= 1 - ex; } else { ux &= -1 >> 9; ux |= 1 << 23; } if (!ey) { ey -= builtin_clz(uy << 9); uy <<= 1 - ey; } else { uy &= u32(-1) >> 9; uy |= 1 << 23; } while (ex > ey) { if (ux >= uy) { if (ux == uy) return 0 * x; ux -= uy; } ux <<= 1; --ex; } if (ux >= uy) { if (ux == uy) return 0 * x; ux -= uy; } // for (; !(ux >> 23); ux <<= 1) --ex; let shift = builtin_clz(ux << 8); ex -= shift; ux <<= shift; if (ex > 0) { ux -= 1 << 23; ux |= ex << 23; } else { ux >>= -ex + 1; } return reinterpret(ux | sm); } export function rem(x: f32, y: f32): f32 { // see: musl/src/math/remquof.c let ux = reinterpret(x); let uy = reinterpret(y); let ex = i32(ux >> 23 & 0xFF); let ey = i32(uy >> 23 & 0xFF); let uxi = ux; if (uy << 1 == 0 || ex == 0xFF || isNaN(y)) return (x * y) / (x * y); if (ux << 1 == 0) return x; if (!ex) { ex -= builtin_clz(uxi << 9); uxi <<= 1 - ex; } else { uxi &= u32(-1) >> 9; uxi |= 1 << 23; } if (!ey) { ey -= builtin_clz(uy << 9); uy <<= 1 - ey; } else { uy &= u32(-1) >> 9; uy |= 1 << 23; } let q = 0; do { if (ex < ey) { if (ex + 1 == ey) break; // goto end return x; } while (ex > ey) { if (uxi >= uy) { uxi -= uy; ++q; } uxi <<= 1; q <<= 1; --ex; } if (uxi >= uy) { uxi -= uy; ++q; } if (uxi == 0) ex = -30; else { let shift = builtin_clz(uxi << 8); ex -= shift; uxi <<= shift; } break; } while (false); // end: if (ex > 0) { uxi -= 1 << 23; uxi |= ex << 23; } else { uxi >>= -ex + 1; } x = reinterpret(uxi); y = builtin_abs(y); let x2 = x + x; if (ex == ey || (ex + 1 == ey && (x2 > y || (x2 == y && bool(q & 1))))) { x -= y; // q++; } return ux < 0 ? -x : x; } export function sincos(x: f32): void { // see: musl/tree/src/math/sincosf.c const s1pio2 = reinterpret(0x3FF921FB54442D18), // 1 * M_PI_2 s2pio2 = reinterpret(0x400921FB54442D18), // 2 * M_PI_2 s3pio2 = reinterpret(0x4012D97C7F3321D2), // 3 * M_PI_2 s4pio2 = reinterpret(0x401921FB54442D18); // 4 * M_PI_2 let ux = reinterpret(x); let sign = ux >> 31; ux &= 0x7FFFFFFF; if (ux <= 0x3F490FDA) { // |x| ~<= π/4 if (ux < 0x39800000) { // |x| < 2**-12 sincos_sin = x; sincos_cos = 1; return; } sincos_sin = sin_kernf(x); sincos_cos = cos_kernf(x); return; } if (ASC_SHRINK_LEVEL < 1) { if (ux <= 0x407B53D1) { // |x| ~<= 5π/4 if (ux <= 0x4016CBE3) { // |x| ~<= 3π/4 if (sign) { sincos_sin = -cos_kernf(x + s1pio2); sincos_cos = sin_kernf(x + s1pio2); } else { sincos_sin = cos_kernf(s1pio2 - x); sincos_cos = sin_kernf(s1pio2 - x); } return; } // -sin(x + c) is not correct if x+c could be 0: -0 vs +0 sincos_sin = -sin_kernf(sign ? x + s2pio2 : x - s2pio2); sincos_cos = -cos_kernf(sign ? x + s2pio2 : x - s2pio2); return; } if (ux <= 0x40E231D5) { // |x| ~<= 9π/4 if (ux <= 0x40AFEDDF) { // |x| ~<= 7π/4 if (sign) { sincos_sin = cos_kernf(x + s3pio2); sincos_cos = -sin_kernf(x + s3pio2); } else { sincos_sin = -cos_kernf(x - s3pio2); sincos_cos = sin_kernf(x - s3pio2); } return; } sincos_sin = sin_kernf(sign ? x + s4pio2 : x - s4pio2); sincos_cos = cos_kernf(sign ? x + s4pio2 : x - s4pio2); return; } } // sin(Inf or NaN) is NaN if (ux >= 0x7F800000) { let xx = x - x; sincos_sin = xx; sincos_cos = xx; return; } // general argument reduction needed let n = rempio2f(x, ux, sign); let y = rempio2f_y; let s = sin_kernf(y); let c = cos_kernf(y); let sin = s, cos = c; if (n & 1) { sin = c; cos = -s; } if (n & 2) { sin = -sin; cos = -cos; } sincos_sin = sin; sincos_cos = cos; } } export function ipow32(x: i32, e: i32): i32 { let out = 1; if (ASC_SHRINK_LEVEL < 1) { if (x == 2) { return select(1 << e, 0, e < 32); } if (e <= 0) { if (x == -1) return select(-1, 1, e & 1); return i32(e == 0) | i32(x == 1); } else if (e == 1) return x; else if (e == 2) return x * x; else if (e < 32) { let log = 32 - clz(e); // 32 = 2 ^ 5, so need only five cases. // But some extra cases needs for properly overflowing switch (log) { case 5: { if (e & 1) out *= x; e >>>= 1; x *= x; } case 4: { if (e & 1) out *= x; e >>>= 1; x *= x; } case 3: { if (e & 1) out *= x; e >>>= 1; x *= x; } case 2: { if (e & 1) out *= x; e >>>= 1; x *= x; } case 1: { if (e & 1) out *= x; } } return out; } } while (e) { if (e & 1) out *= x; e >>>= 1; x *= x; } return out; } export function ipow64(x: i64, e: i64): i64 { let out: i64 = 1; if (ASC_SHRINK_LEVEL < 1) { if (x == 2) { return select(1 << e, 0, e < 64); } if (e <= 0) { if (x == -1) return select(-1, 1, e & 1); return i64(e == 0) | i64(x == 1); } else if (e == 1) return x; else if (e == 2) return x * x; else if (e < 64) { let log = 64 - clz(e); // 64 = 2 ^ 6, so need only six cases. // But some extra cases needs for properly overflowing switch (log) { case 6: { if (e & 1) out *= x; e >>>= 1; x *= x; } case 5: { if (e & 1) out *= x; e >>>= 1; x *= x; } case 4: { if (e & 1) out *= x; e >>>= 1; x *= x; } case 3: { if (e & 1) out *= x; e >>>= 1; x *= x; } case 2: { if (e & 1) out *= x; e >>>= 1; x *= x; } case 1: { if (e & 1) out *= x; } } return out; } } while (e) { if (e & 1) out *= x; e >>>= 1; x *= x; } return out; } /* TODO: In compile time if only exponent is constant we could replace ipow32/ipow64 by shortest addition chains which usually faster than exponentiation by squaring for ipow32 and e < 32: let b: i32, c: i32, d: i32, h: i32, k: i32, g: i32; switch (e) { case 1: return x; case 2: return x * x; case 3: return x * x * x; case 4: return (b = x * x) * b; case 5: return (b = x * x) * b * x; case 6: return (b = x * x) * b * b; case 7: return (b = x * x) * b * b * x; case 8: return (d = (b = x * x) * b) * d; case 9: return (c = x * x * x) * c * c; case 10: return (d = (b = x * x) * b) * d * b; case 11: return (d = (b = x * x) * b) * d * b * x; case 12: return (d = (b = x * x) * b) * d * d; case 13: return (d = (b = x * x) * b) * d * d * x; case 14: return (d = (b = x * x) * b) * d * d * b; case 15: return (k = (b = x * x) * b * x) * k * k; case 16: return (h = (d = (b = x * x) * b) * d) * h; case 17: return (h = (d = (b = x * x) * b) * d) * h * x; case 18: return (h = (d = (b = x * x) * b) * d * x) * h; case 19: return (h = (d = (b = x * x) * b) * d * x) * h * x; case 20: return (h = (k = (b = x * x) * b * x) * k) * h; case 21: return (h = (k = (b = x * x) * b * x) * k) * h * x; case 22: return (g = (h = (k = (b = x * x) * b * x) * k) * x) * g; case 23: return (h = (d = (c = (b = x * x) * x) * b) * d) * h * c; case 24: return (h = (d = (c = x * x * x) * c) * d) * h; case 25: return (h = (d = (c = x * x * x) * c) * d) * h * x; case 26: return (g = (h = (d = (c = x * x * x) * c) * d) * x) * g; case 27: return (h = (d = (c = x * x * x) * c) * d) * h * c; case 28: return (h = (d = (c = x * x * x) * c * x) * d) * h; case 29: return (h = (d = (c = x * x * x) * c * x) * d) * h * x; case 30: return (h = (d = (c = x * x * x) * c) * d * c) * h; case 31: return (h = (d = (c = x * x * x) * c) * d * c) * h * x; } for ipow64: TODO switch (e) { case 32: ... case 63: } */