
Pangolin
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: October 4th, 2021 - October 18th, 2021

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 7

CONTACTS 7

1 EXECUTIVE OVERVIEW 8

1.1 INTRODUCTION 9

1.2 AUDIT SUMMARY 9

1.3 TEST APPROACH & METHODOLOGY 9

RISK METHODOLOGY 10

1.4 SCOPE 12

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 13

3 FINDINGS & TECH DETAILS 14

3.1 (HAL-01) REWARD PERIOD CAN BE EXTENDED INDEFINITELY - CRITICAL

16

Description 16

Risk Level 21

Recommendation 21

Remediation Plan 21

3.2 (HAL-02) INCORRECT LOGIC IN MINICHEFV2 LEADS TO DOS - HIGH 23

Description 23

Proof of Concept 23

Code Location 24

Risk Level 25

Recommendation 25

Remediation Plan 25

3.3 (HAL-03) LACK OF INTEGER OVERFLOW/UNDERFLOW PROTECTION - MEDIUM

27

1



Description 27

Code Location 27

Risk Level 30

Recommendation 30

Reference 30

Remediation Plan 30

3.4 (HAL-04) FUNCTION MIGRATE MISSING ONLYOWNER MODIFIER - MEDIUM

31

Description 31

Risk Level 32

Recommendation 32

Remediation Plan 32

3.5 (HAL-05) IMPRECISION IN REWARD DISTRIBUTION - LOW 33

Description 33

Risk Level 33

Recommendation 33

Remediation Plan 33

3.6 (HAL-06) MISSING ZERO ADDRESS CHECK - LOW 34

Description 34

Code location 34

Risk Level 36

Recommendation 36

Remediation Plan 36

3.7 (HAL-07) FLOATING PRAGMA - LOW 37

Description 37

2



Code Location 37

Risk Level 37

Recommendation 38

Remediation Plan 38

3.8 (HAL-08) DEPRECATED PRAGMA VERSION OF SOLC - LOW 39

Description 39

Risk Level 39

Recommendation 39

Remediation Plan 39

3.9 (HAL-09) EXPERIMENTAL FEATURES ENABLED - LOW 40

Description 40

Reference 41

Code Location 41

Risk Level 41

Recommendation 41

Remediation Plan 42

3.10 (HAL-10) EXTERNAL CALLS WITHIN A LOOP - LOW 43

Description 43

Code Location 43

Risk Level 46

Recommendation 46

Remediation Plan 46

3.11 (HAL-11) USE OF BLOCK.TIMESTAMP - LOW 47

Description 47

3



Code Location 47

Risk Level 51

Recommendation 51

Remediation Plan 51

3.12 (HAL-12) INCOMPATIBILITY WITH INFLATIONARY TOKENS - LOW 52

Description 52

Example 52

Risk Level 53

Recommendation 54

Remediation Plan 54

3.13 (HAL-13) DIVIDE BEFORE MULTIPLY - LOW 55

Description 55

Code Location 55

Risk Level 58

Recommendation 58

Remediation Plan 59

3.14 (HAL-14) UNUSED VARIABLE/EXPRESSION - INFORMATIONAL 60

Description 60

Code Location 60

Risk Level 64

Recommendation 64

Remediation Plan 64

3.15 (HAL-15) POSSIBLE MISUSE OF PUBLIC FUNCTIONS - INFORMATIONAL

65

Description 65

Risk Level 66

4



Recommendation 66

Remediation Plan 66

3.16 (HAL-16) USE OF INLINE ASSEMBLY - INFORMATIONAL 67

Description 67

Code Location 67

Risk Level 67

Recommendation 68

Reference 68

Remediation Plan 68

3.17 (HAL-17) TAUTOLOGY EXPRESSIONS - INFORMATIONAL 69

Description 69

Code Location 69

Risk Level 70

Recommendation 70

Remediation Plan 70

4 MANUAL TESTING 71

4.1 INTRODUCTION 72

4.2 AIRDROP CONTRACT 73

4.3 COMMUNITYTREASURY CONTRACT 74

4.4 GOVERNORALPHA CONTRACT 75

4.5 LIQUIDITYPOOLMANAGER CONTRACT 78

4.6 LIQUIDITYPOOLMANAGERV2 CONTRACT 82

4.7 PNG CONTRACT 83

4.8 PANGOLINVOTECALCULATOR CONTRACT 86

5



4.9 MINICHEFV2 CONTRACT 87

4.10 REWARDERCOMPLEX & REWARDERSIMPLE CONTRACT 105

4.11 STAKINGREWARDS CONTRACT 109

4.12 TIMELOCK CONTRACT 116

4.13 TREASURYVESTER CONTRACT 117

References 118

4.14 TREASURYVESTERPROXY CONTRACT 119

5 AUTOMATED TESTING 123

5.1 STATIC ANALYSIS REPORT 124

Description 124

Slither results 124

5.2 AUTOMATED SECURITY SCAN 135

Description 135

MythX results 135

6



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 10/04/2021 Roberto Reigada

0.2 Document Updates 10/18/2021 Roberto Reigada

0.3 Document Review 10/18/2021 Roberto Reigada

1.0 Remediation Plan 10/26/2021 Roberto Reigada

1.1 Remediation Plan Review 10/27/2021 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Roberto Reigada Halborn Roberto.Reigada@halborn.com

7

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Roberto.Reigada@halborn.com


8

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

Pangolin engaged Halborn to conduct a security audit on their Governance

smart contracts beginning on October 4th, 2021 and ending on October

18th, 2021. The security assessment was scoped to the smart contracts

provided in the Github repository pangolindex/governance

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and assigned

a full time security engineer to audit the security of the smart contract.

The security engineer is a blockchain and smart-contract security expert

with advanced penetration testing, smart-contract hacking, and deep

knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were addressed

and accepted by the Pangolin team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to uncover

flaws in logic, process,and implementation; automated testing techniques

help enhance coverage of the bridge code and can quickly identify items

that do not follow security best practices. The following phases and

associated tools were used throughout the term of the audit:

9

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/pangolindex/governance/tree/feature/new_rewards


• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity

variables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hotspots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported

functions. (Slither)

• Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security

incident, and the IMPACT should an incident occur. This framework

works for communicating the characteristics and impacts of technology

vulnerabilities. It’s quantitative model ensures repeatable and accurate

measurement while enabling users to see the underlying vulnerability

characteristics that was used to generate the Risk scores. For every

vulnerability, a risk level will be calculated on a scale of 5 to 1 with

5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

10

EX
EC

UT
IV

E
OV

ER
VI

EW



3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

11

EX
EC

UT
IV

E
OV

ER
VI

EW



1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the following governance smart

contracts:

- Airdrop.sol

- CommunityTreasury.sol

- GovernorAlpha.sol

- LiquidityPoolManager.sol

- LiquidityPoolManagerV2.sol

- MiniChefV2.sol

- PNG.sol

- PangolinVoteCalculator.sol

- RewarderComplex.sol

- RewarderSimple.sol

- StakingRewards.sol

- Timelock.sol

- TreasuryVester.sol

- TreasuryVesterProxy.sol

- All contracts inherited by these contracts

Commit ID: 484b16dbf83480906ec9f20f7b4887ed81590330

Fixed Commit ID: aed6d4c1d7e0c7da1c58fea7b8d877e60cf83ad4

12

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/pangolindex/governance/tree/feature/new_rewards
https://github.com/pangolindex/governance/tree/feature/new_rewards


2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

1 1 2 9 4

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-04) (HAL-02)

(HAL-07)
(HAL-08)
(HAL-09)

(HAL-03)

(HAL-16)
(HAL-10)
(HAL-12)
(HAL-13)

(HAL-05)
(HAL-06)

(HAL-14)
(HAL-15)
(HAL-17)

(HAL-11)

13

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - REWARD PERIOD CAN BE
EXTENDED INDEFINITELY

Critical SOLVED - 10/25/2021

HAL02 - INCORRECT LOGIC IN
MINICHEFV2 LEADS TO DOS

High SOLVED - 10/25/2021

HAL03 - LACK OF INTEGER
OVERFLOW/UNDERFLOW PROTECTION

Medium SOLVED - 10/25/2021

HAL04 - FUNCTION MIGRATE MISSING
ONLYOWNER MODIFIER

Medium SOLVED - 10/25/2021

HAL05 - IMPRECISION IN REWARD
DISTRIBUTION

Low RISK ACCEPTED

HAL06 - MISSING ZERO ADDRESS CHECK Low RISK ACCEPTED

HAL07 - FLOATING PRAGMA Low SOLVED - 10/25/2021

HAL08 - DEPRECATED PRAGMA VERSION
OF SOLC

Low RISK ACCEPTED

HAL09 - EXPERIMENTAL FEATURES
ENABLED

Low RISK ACCEPTED

HAL10 - EXTERNAL CALLS WITHIN A LOOP Low RISK ACCEPTED

HAL11 - USE OF BLOCK.TIMESTAMP Low RISK ACCEPTED

HAL12 - INCOMPATIBILITY WITH
INFLATIONARY TOKENS

Low RISK ACCEPTED

HAL13 - DIVIDE BEFORE MULTIPLY Low RISK ACCEPTED

HAL14 - UNUSED VARIABLE/EXPRESSION Informational ACKNOWLEDGED

HAL15 - POSSIBLE MISUSE OF PUBLIC
FUNCTIONS

Informational ACKNOWLEDGED

HAL16 - USE OF INLINE ASSEMBLY Informational ACKNOWLEDGED

HAL17 - TAUTOLOGY EXPRESSIONS Informational ACKNOWLEDGED

14

EX
EC

UT
IV

E
OV

ER
VI

EW



15

FINDINGS & TECH
DETAILS



3.1 (HAL-01) REWARD PERIOD CAN BE
EXTENDED INDEFINITELY - CRITICAL

Description:

In the contract MiniChefV2 the functions fundRewards, extendRewardsViaFunding

and extendRewardsViaFunding perform internally the following function

call:

SUSHI.safeTransfer(address(this), AmountOfTokensToTransfer);

This call does not make much sense as it is transferring tokens from the

smart contract balance to itself address(this) which allows the following

exploitable scenario:

1. Contract MiniChefV2 is deployed.

2. Pool is added by the owner of the contract.

3. Owner of the contract transfer 20e18 SUSHI tokens to the MiniChefV2

contract.

4. Owner of the contract calls minichef.fundRewards(1000000000000000000,

86400, {'from': owner.address}). This means that just 1e18 SUSHI

tokens were set as a reward for a total period of 86400 seconds

(1 day). Once this reward period is finished and the tokens were

harvested by the users, 19e18 SUSHI tokens should still remain in

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



the contract.

5. Attacker calls deposit function, for example depositing 1000 LP

tokens into pool id 0.

43200 seconds (12 hours) later. . .

6. Attacker calls harvest and receives 500092592592589392 SUSHI tokens.

These tokens are sent through the harvest function:

Listing 1: MiniChefV2.sol - function harvest (Lines 331)

320 function harvest(uint256 pid , address to) public {

321 PoolInfo memory pool = updatePool(pid);

322 UserInfo storage user = userInfo[pid][msg.sender ];

323 int256 accumulatedSushi = int256(user.amount.mul(pool.

accSushiPerShare) / ACC_SUSHI_PRECISION);

324 uint256 _pendingSushi = accumulatedSushi.sub(user.rewardDebt).

toUInt256 ();

325

326 // Effects

327 user.rewardDebt = accumulatedSushi;

328

329 // Interactions

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



330 if (_pendingSushi != 0) {

331 SUSHI.safeTransfer(to , _pendingSushi);

332 }

333

334 IRewarder _rewarder = rewarder[pid];

335 if (address(_rewarder) != address (0)) {

336 _rewarder.onSushiReward( pid , msg.sender , to,

_pendingSushi , user.amount);

337 }

338

339 emit Harvest(msg.sender , pid , _pendingSushi);

340 }

And. . . the exploit itself:

7. User1 calls minichef.extendRewardsViaFunding(19499907407407410608,

0, {'from': user1.address}. Note that the amount specified is the total

balance of SUSHI reward tokens of the MiniChefV2 contract:

This is possible as extendRewardsViaFunding is an external function and

has no onlyOwner modifier. It can be called by anyone:

Listing 2: MiniChefV2.sol - function extendRewardsViaFunding (Lines

459)

451 function extendRewardsViaFunding(uint256 funding , uint256

minExtension) external {

452 require(funding > 0, "MiniChefV2: funding amount cannot be

zero");

453

454 uint256 extensionDuration = funding / sushiPerSecond;

455 require(extensionDuration >= minExtension , "MiniChefV2:

insufficient extension limit");

456

457 rewardsExpiration = rewardsExpiration.add(extensionDuration);

458

459 SUSHI.safeTransfer(address(this), funding);

460

461 emit LogRewardsExpiration(rewardsExpiration);

462 }

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



8. Right after this call the reward period was extended. As the reward

rate is kept, the attacker now can call the harvest function every

fixed periods of time until retrieving the 20e18 total reward tokens:

Listing 3

1 i = 1

2 while i <=40:

3 print (" Iteration -> " + str(i))

4 output.yelloww (" Sleeping 43200 seconds ...")

5 chain.sleep (43200)

6 chain.mine (1)

7 output.yelloww ("Call -> minichef.harvest(0, user1.address , {'

from ': user1.address })")

8 minichef.harvest(0, user1.address , {'from ': user1.address })

9 output.redd(" lptoken1.balanceOf(user1.address) -> " + str(

lptoken1.balanceOf(user1.address)))

10 output.redd(" sushi.balanceOf(user1.address) -> " + str(sushi.

balanceOf(user1.address)))

11 output.greenn (" sushi.balanceOf(minichef.address) -> " + str(

sushi.balanceOf(minichef.address)))

12 i=i+1

ITERATION 1:

ITERATION 10:

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



ITERATION 20:

ITERATION 30:

LAST 3 ITERATIONS:

Even if the owner of the contract only funded 1e18 reward tokens the

attacker managed to steal the total amount: 20e18.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

Halborn recommends adding the onlyOwner modifier to the functions

extendRewardsViaFunding and extendRewardsViaDuration. Also, it is

recommended to review and update accordingly the functions where

SUSHI.safeTransfer is used.

Remediation Plan:

SOLVED: Pangolin team fixed all the functions by using safeTransferFrom

(msg.sender, address(this), funding);.

The issue previously was that safeTransfer(address(this), funding); was

being used. This call was basically transferring the tokens from the smart

contract balance to the smart contract balance which makes no sense.

By using safeTransferFrom(msg.sender, address(this), funding); the

tokens are now being transferred from the person that calls the function

fundRewards, extendRewardsViaFunding and extendRewardsViaFunding to the

smart contract as it was intended in the first place. We can see below

the code changes performed by Pangolin team which totally corrected this

issue. At the left, the old code and at the right, the fixed code:

fundRewards:

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



extendRewardsViaFunding and extendRewardsViaFunding:

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.2 (HAL-02) INCORRECT LOGIC IN
MINICHEFV2 LEADS TO DOS - HIGH

Description:

In the contract MiniChefV2 the function deposit allows any user to deposit

LP tokens into a pool. On the other hand, the function fundRewards allows

the owner of the contract and the funders to set up some rewards for those

users that had deposited tokens into the contract. There is a logic flaw

in the updatePool function that causes a partial Denial of Service under

the following circumstances:

1. Contract MiniChefV2 is deployed.

2. Pool/pools are added by the owner of the contract.

3. A random user calls deposit function, for example depositing 1000

tokens into pool id 0.

4. Owner tries to call fundRewards function but it reverts (underflow).

Proof of Concept:

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Internally, the function fundRewards performs a SUSHI.safeTransfer and

then calls massUpdateAllPools function, which, at the same time, calls

updatePool function.

After the user1’s initial deposit of 1000 tokens, lpSupply variable is

higher than 0, entering the if. Since the contract was just deployed

and fundRewards was never called, the state variable rewardsExpiration

still equals to 0, which means that block.timestamp will always be >=

rewardsExpiration.

This causes the line rewardsExpiration.sub(pool.lastRewardTime); to be

executed. As no uint can be lower than 0, this operation reverts with an

underflow.

Code Location:

Listing 4: MiniChefV2.sol - function updatePool (Lines 261)

254 function updatePool(uint256 pid) public returns (PoolInfo memory

pool) {

255 pool = poolInfo[pid];

256 if (block.timestamp > pool.lastRewardTime) {

257 uint256 lpSupply = lpToken[pid]. balanceOf(address(this));

258 if (lpSupply > 0) {

259 uint256 time = block.timestamp <= rewardsExpiration

260 ? block.timestamp.sub(pool.lastRewardTime)

261 : rewardsExpiration.sub(pool.lastRewardTime);

262 uint256 sushiReward = time.mul(sushiPerSecond).mul(

pool.allocPoint) / totalAllocPoint;

263 pool.accSushiPerShare = pool.accSushiPerShare.add((

sushiReward.mul(ACC_SUSHI_PRECISION) / lpSupply).

to128 ());

264 }

265 pool.lastRewardTime = block.timestamp.to64();

266 poolInfo[pid] = pool;

267 emit PoolUpdate(pid , pool.lastRewardTime , lpSupply , pool.

accSushiPerShare);

268 }

269 }

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Risk Level:

Likelihood - 4

Impact - 4

Recommendation:

It is recommended to modify the updatePool function to take into account

this edge case.

Remediation Plan:

SOLVED: Pangolin team solved this issue. This edge case was handled with

the following code. At the left, the old code and at the right, the fixed

code:

We can see, how in the fixed code, the edge case is taken into account.

When block.timestamp > rewardsExpiration and rewardsExpiration <= pool.

lastRewardTime time will be set to zero avoiding the previous underflow.

Below we can see the execution of this edge case and how now is correctly

handled:

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.3 (HAL-03) LACK OF INTEGER
OVERFLOW/UNDERFLOW PROTECTION -
MEDIUM

Description:

In computer programming, an integer overflow occurs when an arithmetic

operation attempts to create a numeric value that is outside of the range

that can be represented with a given number of bits, either larger than

the maximum or lower than the minimum value. Some of the operations in the

contracts are using SafeMath correctly, other operations are not using

SafeMath but make use of some of the SafeMath functions and others do not

use any kind of SafeMath making the operations vulnerable to overflows

and underflows.

Code Location:

LiquidityPoolManager - Overflow

Listing 5: LiquidityPoolManager.sol (Lines 268,278)

245 function calculateReturns () public {

246 require (! readyToDistribute , 'LiquidityPoolManager ::

calculateReturns: Previous returns not distributed. Call

distributeTokens ()');

247 require(unallocatedPng > 0, 'LiquidityPoolManager ::

calculateReturns: No PNG to allocate. Call vestAllocation ()

.');

248 if (pngPairs.length () > 0) {

249 require (!( avaxPngPair == address (0)), '

LiquidityPoolManager :: calculateReturns: Avax/PNG Pair

not set');

250 }

251

252 // Calculate total liquidity

253 distribution = new uint []( numPools);

254 uint totalLiquidity = 0;

255

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



256 // Add liquidity from AVAX pairs

257 for (uint i = 0; i < avaxPairs.length (); i++) {

258 uint pairLiquidity = getAvaxLiquidity(avaxPairs.at(i));

259 distribution[i] = pairLiquidity;

260 totalLiquidity = SafeMath.add(totalLiquidity ,

pairLiquidity);

261 }

262

263 // Add liquidity from PNG pairs

264 if (pngPairs.length () > 0) {

265 uint conversionRatio = getAvaxPngRatio ();

266 for (uint i = 0; i < pngPairs.length (); i++) {

267 uint pairLiquidity = getPngLiquidity(pngPairs.at(i),

conversionRatio);

268 distribution[i + avaxPairs.length ()] = pairLiquidity;

269 totalLiquidity = SafeMath.add(totalLiquidity ,

pairLiquidity);

270 }

271 }

272

273 // Calculate tokens for each pool

274 uint transferred = 0;

275 for (uint i = 0; i < distribution.length; i++) {

276 uint pairTokens = distribution[i].mul(unallocatedPng).div(

totalLiquidity);

277 distribution[i] = pairTokens;

278 transferred = transferred + pairTokens;

279 }

280 readyToDistribute = true;

281 }

LiquidityPoolManager - Underflow 1

Listing 6: LiquidityPoolManager.sol (Lines 296)

287 function distributeTokens () public nonReentrant {

288 require(readyToDistribute , 'LiquidityPoolManager ::

distributeTokens: Previous returns not allocated. Call

calculateReturns ()');

289 readyToDistribute = false;

290 address stakeContract;

291 uint rewardTokens;

292 for (uint i = 0; i < distribution.length; i++) {

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



293 if (i < avaxPairs.length ()) {

294 stakeContract = stakes[avaxPairs.at(i)];

295 } else {

296 stakeContract = stakes[pngPairs.at(i - avaxPairs.

length ())];

297 }

298 rewardTokens = distribution[i];

299 if (rewardTokens > 0) {

300 require(IPNG(png).transfer(stakeContract , rewardTokens

), 'LiquidityPoolManager :: distributeTokens:

Transfer failed ');

301 StakingRewards(stakeContract).notifyRewardAmount(

rewardTokens);

302 }

303 }

304 unallocatedPng = 0;

305 }

LiquidityPoolManager - Underflow 2

Listing 7: LiquidityPoolManager.sol (Lines 322)

314 function distributeTokensSinglePool(uint pairIndex) external

nonReentrant {

315 require(readyToDistribute , 'LiquidityPoolManager ::

distributeTokensSinglePool: Previous returns not allocated.

Call calculateReturns ()');

316 require(pairIndex < numPools , 'LiquidityPoolManager ::

distributeTokensSinglePool: Index out of bounds ');

317

318 address stakeContract;

319 if (pairIndex < avaxPairs.length ()) {

320 stakeContract = stakes[avaxPairs.at(pairIndex)];

321 } else {

322 stakeContract = stakes[pngPairs.at(pairIndex - avaxPairs.

length ())];

323 }

324

325 uint rewardTokens = distribution[pairIndex ];

326 if (rewardTokens > 0) {

327 distribution[pairIndex] = 0;

328 require(IPNG(png).transfer(stakeContract , rewardTokens), '

LiquidityPoolManager :: distributeTokens: Transfer failed

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



');

329 StakingRewards(stakeContract).notifyRewardAmount(

rewardTokens);

330 }

331 }

• Same overflows/underflows are also present in LiquidityPoolManagerV2

.sol.

• Some mathematical operations in MiniChefV2.sol, PNG.sol and

TreasuryVester.sol are not making use of SafeMath making them

vulnerable as well (see MythX output).

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

Currently not all the smart contracts and the operations within them

are using the SafeMath library which makes some operations vulnerable to

overflows/underflows. In those contracts with Solidity versions <0.8.0

it is recommended to use the SafeMath library for arithmetic operations

consistently throughout ALL the mathematical operations in the smart

contract system.

Reference:

Ethereum Smart Contract Best Practices - Integer Overflow and Underflow

Remediation Plan:

SOLVED: Pangolin team successfully protected the overflow/underflow

vulnerable functions.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://consensys.github.io/smart-contract-best-practices/known_attacks/#integer-overflow-and-underflow


3.4 (HAL-04) FUNCTION MIGRATE
MISSING ONLYOWNER MODIFIER - MEDIUM

Description:

In the contract MiniChefV2.sol the function migrate() allows migrating

LP tokens to another LP contract through the migrator contract.

Listing 8: MiniChefV2.sol - migrate functions (Lines 189,203,204,205)

188 function setMigrator(IMigratorChef _migrator) public onlyOwner {

189 require (! migrationDisabled , "MiniChefV2: migration has been

disabled");

190 migrator = _migrator;

191 emit MigratorSet(address(_migrator));

192 }

193

194 /// @notice Permanently disable the `migrator ` functionality.

195 /// This can only effectively be called once.

196 function disableMigrator () public onlyOwner {

197 migrationDisabled = true;

198 emit MigratorDisabled ();

199 }

200

201 /// @notice Migrate LP token to another LP contract through the `

migrator ` contract.

202 /// @param _pid The index of the pool. See `poolInfo `.

203 function migrate(uint256 _pid) public {

204 require (! migrationDisabled , "MiniChefV2: migration has been

disabled");

205 require(address(migrator) != address (0), "MiniChefV2: no migrator

set");

206 IERC20 _lpToken = lpToken[_pid];

207 uint256 bal = _lpToken.balanceOf(address(this));

208 _lpToken.approve(address(migrator), bal);

209 IERC20 newLpToken = migrator.migrate(_lpToken);

210 require(bal == newLpToken.balanceOf(address(this)), "MiniChefV2:

migrated balance must match");

211 lpToken[_pid] = newLpToken;

212 emit Migrate(_pid);

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



213 }

As we can see, migrate function can be called by anyone as long as

migrationDisabled equals False and migrator address is set. Initially,

after the contract deployment, migrationDisabled is already initialized

with the value False and the migrator address would equal to address(0).

This means that as soon as the function setMigrator is called by the

owner of the contract setting the migrator address, anyone would be able

to call the migrate function.

Risk Level:

Likelihood - 2

Impact - 4

Recommendation:

It is recommended to add the onlyOwner modifier also to the migrate

function.

Remediation Plan:

SOLVED: Pangolin team added the onlyOwner modifier to the migrate

function.

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.5 (HAL-05) IMPRECISION IN REWARD
DISTRIBUTION - LOW

Description:

The contract StakingRewards.sol allows the users that previously had

deposited some tokens to withdraw them and claim some PNG tokens as a

reward. The function getRewardForDuration() shows how many PNG tokens

will be given as a reward. Due to some imprecision in the calculation

of the rewards, the users will receive less PNG tokens than the actual

amount deserved. For example:

Risk Level:

Likelihood - 3

Impact - 2

Recommendation:

It is recommended to define some precision values as constants at the

beginning of the contracts and use them in the mathematical operations

in order to avoid/reduce the loss of precision.

Remediation Plan:

RISK ACCEPTED: Pangolin team accepts this risk.

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.6 (HAL-06) MISSING ZERO ADDRESS
CHECK - LOW

Description:

Some constructors and functions are missing address validation. Every

address should be validated and checked that is different than zero.

Code location:

Airdrop.sol

- constructor(address png_, address uni_, address sushi_, address owner_,

address remainderDestination_)

- function setRemainderDestination(address remainderDestination_)

- function setowner(address owner_)

- function whitelistAddress(address addr, uint96 pngOut)

- function whitelistAddresses(address[] memory addrs, uint96[] memory

pngOuts)

CommunityTreasure.sol

- constructor(address png_)

GovernorAlpha.sol

- constructor(address timelock_, address png_, address guardian_)

MiniChefV2.sol

- constructor(IERC20 _sushi, address _firstOwner)

- function deposit(uint256 pid, uint256 amount, address to)

- function withdraw(uint256 pid, uint256 amount, address to)

- function harvest(uint256 pid, address to)

- function withdrawAndHarvest(uint256 pid, uint256 amount, address to)

- function emergencyWithdraw(uint256 pid, address to)

- function addFunder(address _funder)

- function removeFunder(address _funder)

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



PNG.sol

- constructor(address account)

- function delegate(address delegatee)

- function delegateBySig(address delegatee, uint nonce, uint expiry,

uint8 v, bytes32 r, bytes32 s)

PangolinVoteCalculator.sol

- constructor(address _png, address _liquidityManager)

- function changeLiquidityPoolManager(address _liquidityManager)

RewarderComplex.sol

- constructor (IERC20 _rewardToken, uint256 _tokenPerBlock, address _-

MASTERCHEF_V2)

- function onSushiReward (uint256 pid, address _user, address to, uint256,

uint256 lpToken)

- function pendingTokens(uint256 pid, address user, uint256)

- function pendingToken(uint256 _pid, address _user)

RewarderSimple.sol

- constructor (uint256 _rewardMultiplier, IERC20 _rewardToken, address

_MASTERCHEF_V2)

- function onSushiReward (uint256, address user, address to, uint256

sushiAmount, uint256)

StakingRewards.sol

- constructor

- function recoverERC20(address tokenAddress, uint256 tokenAmount)

Timelock.sol

- constructor(address admin_, uint delay_)

- function setPendingAdmin(address pendingAdmin_)

- function queueTransaction(address target, uint value, string memory

signature, bytes memory data, uint eta)

- function cancelTransaction(address target, uint value, string memory

signature, bytes memory data, uint eta)

- function executeTransaction(address target, uint value, string memory

signature, bytes memory data, uint eta)

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



TreasuryVester.sol

- constructor(address png_)

TreasuryVesterProxy.sol

- constructor(address _png, address _treasuryVester, address _treasury,

address _chef)

Risk Level:

Likelihood - 3

Impact - 2

Recommendation:

It is recommended to validate that every address input is different than

zero.

Remediation Plan:

RISK ACCEPTED: Pangolin team accepts this risk.

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.7 (HAL-07) FLOATING PRAGMA - LOW

Description:

Contracts should be deployed with the same compiler version and flags

used during development and testing. Locking the pragma helps to ensure

that contracts do not accidentally get deployed using another pragma.

For example, an outdated pragma version might introduce bugs that affect

the contract system negatively or recently released pragma versions may

have unknown security vulnerabilities.

Code Location:

Listing 9

1 TreasuryVesterProxy.sol :1: pragma solidity 0.8.0;

2 StakingRewards.sol :1: pragma solidity ^0.7.6;

3 RewarderComplex.sol :3: pragma solidity 0.6.12;

4 Timelock.sol :1: pragma solidity ^0.5.16;

5 CommunityTreasury.sol :1: pragma solidity ^0.7.6;

6 GovernorAlpha.sol :1: pragma solidity ^0.5.16;

7 LiquidityPoolManagerV2.sol :1: pragma solidity ^0.7.6;

8 RewarderSimple.sol :3: pragma solidity 0.6.12;

9 PNG.sol :1: pragma solidity ^0.5.16;

10 LiquidityPoolManager.sol :1: pragma solidity ^0.7.6;

11 MiniChefV2.sol :3: pragma solidity 0.6.12;

12 PangolinVoteCalculator.sol :1: pragma solidity 0.8.0;

13 Airdrop.sol :2: pragma solidity ^0.8.0;

14 TreasuryVester.sol :1: pragma solidity ^0.7.6;

Risk Level:

Likelihood - 1

Impact - 3

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

Consider locking the pragma version. It is not recommended to use a

floating pragma in production. It is possible to lock the pragma by

fixing the version both in truffle-config.js for Truffle framework or in

hardhat.config.js for HardHat framework.

Remediation Plan:

SOLVED: The version was locked in the hardhat.config.js file.

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.8 (HAL-08) DEPRECATED PRAGMA
VERSION OF SOLC - LOW

Description:

The pragma versions of Solc used by the smart contracts are:

- ˆ0.5.16

- 0.6.12

- ˆ0.7.6

- ˆ0.8.0

While the old versions are still functional, and most security issues

are mitigated by using other utility contracts such as SafeMath.sol, the

risk to the long-term sustainability and integrity of the solidity code

increases.

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

At the time of this audit, the current version is already at 0.8.

When possible, use the updated pragma versions to take advantage of

new features, for example, after the Solidity version 0.8.0 Arithmetic

operations revert on underflow and overflow by default. By using this

version, utility contracts like SafeMath.sol would not be needed.

Remediation Plan:

RISK ACCEPTED: Pangolin team accepts this risk.

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.9 (HAL-09) EXPERIMENTAL FEATURES
ENABLED - LOW

Description:

The use of experimental features could be dangerous on live deployments.

The experimental ABI encoder does not handle non-integer values shorter

than 32 bytes properly. This applies to bytesNN types, bool, enum and

other types when they are part of an array or a struct and encoded directly

from storage. This means these storage references have to be used directly

inside abi.encode(. . . ) as arguments in external function calls or

in event data without prior assignment to a local variable. Using return

does not trigger the bug. The types bytesNN and bool will result in

corrupted data while enum might lead to an invalid revert.

Furthermore, arrays with elements shorter than 32 bytes may not be handled

correctly even if the base type is an integer type. Encoding such arrays

in the way described above can lead to other data in the encoding being

overwritten if the number of elements encoded is not a multiple of the

number of elements that fit a single slot. If nothing follows the array

in the encoding (note that dynamically-sized arrays are always encoded

after statically-sized arrays with statically-sized content), or if only

a single array is encoded, no other data is overwritten. There are known

bugs that are publicly released while using this feature. However, the

bug only manifests itself when all the following conditions are met:

1. Storage data involving arrays or structs is sent directly to an

external function call, to abi.encode or to event data without prior

assignment to a local (memory) variable.

2. There is an array that contains elements with size less than 32

bytes or a struct that has elements that share a storage slot or

members of type bytesNN shorter than 32 bytes.

In addition to that, in the following situations, your code is NOT

affected:

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



1. If all the structs or arrays only use uint256 or int256 types.

2. If you only use integer types (that may be shorter) and only encode

at most one array at a time.

3. If you only return such data and do not use it in abi.encode, external

calls or event data.

ABIEncoderV2 is enabled to be able to pass struct type into a function both

web3 and another contract. Naturally, any bug can have wildly varying

consequences depending on the program control flow, but we expect that

this is more likely to lead to malfunction than exploitability. The bug,

when triggered, will under certain circumstances send corrupt parameters

on method invocations to other contracts.

Reference:

https://blog.ethereum.org/2019/03/26/solidity-optimizer-and-abiencoderv2-bug/

Code Location:

Listing 10

1 RewarderComplex.sol :4: pragma experimental ABIEncoderV2;

2 GovernorAlpha.sol :2: pragma experimental ABIEncoderV2;

3 PNG.sol :2: pragma experimental ABIEncoderV2;

4 MiniChefV2.sol :4: pragma experimental ABIEncoderV2;

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

When possible, do not use experimental features in the final live

deployment. Validate and check that all the conditions above are true

for integers and arrays (i.e. all using uint256).

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://blog.ethereum.org/2019/03/26/solidity-optimizer-and-abiencoderv2-bug/


Remediation Plan:

RISK ACCEPTED: Pangolin team accepts this risk.

42

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.10 (HAL-10) EXTERNAL CALLS WITHIN
A LOOP - LOW

Description:

Calls inside a loop might lead to a Denial of Service attack. If the i

variable iterates up to a very high value or is reset by the external

functions called, this could cause a Denial of Service.

Code Location:

MiniChefV2.sol

Listing 11: MiniChefV2.sol (Lines 238,239,246,247)

236 function massUpdatePools(uint256 [] calldata pids) external {

237 uint256 len = pids.length;

238 for (uint256 i = 0; i < len; ++i) {

239 updatePool(pids[i]);

240 }

241 }

242

243 /// @notice Update reward variables for all pools. Be careful of

gas spending!

244 function massUpdateAllPools () public {

245 uint256 len = poolInfo.length;

246 for (uint256 pid = 0; pid < len; ++pid) {

247 updatePool(pid);

248 }

249 }

LiquidityPoolManager.sol

Listing 12: LiquidityPoolManager.sol (Lines 292,300,301)

287 function distributeTokens () public nonReentrant {

288 require(readyToDistribute , 'LiquidityPoolManager ::

distributeTokens: Previous returns not allocated. Call

calculateReturns ()');

43

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



289 readyToDistribute = false;

290 address stakeContract;

291 uint rewardTokens;

292 for (uint i = 0; i < distribution.length; i++) {

293 if (i < avaxPairs.length ()) {

294 stakeContract = stakes[avaxPairs.at(i)];

295 } else {

296 stakeContract = stakes[pngPairs.at(i - avaxPairs.

length ())];

297 }

298 rewardTokens = distribution[i];

299 if (rewardTokens > 0) {

300 require(IPNG(png).transfer(stakeContract , rewardTokens

), 'LiquidityPoolManager :: distributeTokens:

Transfer failed ');

301 StakingRewards(stakeContract).notifyRewardAmount(

rewardTokens);

302 }

303 }

304 unallocatedPng = 0;

305 }

LiquidityPoolManagerV2.sol

Listing 13: LiquidityPoolManagerV2.sol (Lines 378,386,387)

372 function distributeTokens () public nonReentrant {

373 require(readyToDistribute , 'LiquidityPoolManager ::

distributeTokens: Previous returns not allocated. Call

calculateReturns ()');

374 readyToDistribute = false;

375 address stakeContract;

376 uint rewardTokens;

377 for (uint i = 0; i < distribution.length; i++) {

378 if (i < avaxPairs.length ()) {

379 stakeContract = stakes[avaxPairs.at(i)];

380 } else {

381 stakeContract = stakes[pngPairs.at(i - avaxPairs.

length ())];

382 }

383 rewardTokens = distribution[i];

384 if (rewardTokens > 0) {

385 require(IPNG(png).transfer(stakeContract , rewardTokens

44

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



), 'LiquidityPoolManager :: distributeTokens:

Transfer failed ');

386 StakingRewards(stakeContract).notifyRewardAmount(

rewardTokens);

387 }

388 }

389 unallocatedPng = 0;

390 }

PangolinVoteCalculator.sol

Listing 14: PangolinVoteCalculator.sol (Lines 39,59)

38 function getVotesFromFarming(address voter , address [] calldata

farms) external view returns (uint votes) {

39 for (uint i; i<farms.length; i++) {

40 IPangolinPair pair = IPangolinPair(farms[i]);

41 IStakingRewards staking = IStakingRewards(liquidityManager

.stakes(farms[i]));

42

43 // Handle pairs that are no longer whitelisted

44 if (address(staking) == address (0)) continue;

45

46 uint pair_total_PNG = png.balanceOf(farms[i]);

47 uint pair_total_PGL = pair.totalSupply (); // Could

initially be 0 in rare situations

48

49 uint PGL_hodling = pair.balanceOf(voter);

50 uint PGL_staking = staking.balanceOf(voter);

51

52 uint pending_PNG = staking.earned(voter);

53

54 votes += (( PGL_hodling + PGL_staking) * pair_total_PNG) /

pair_total_PGL + pending_PNG;

55 }

56 }

57

58 function getVotesFromStaking(address voter , address [] calldata

stakes) external view returns (uint votes) {

59 for (uint i; i<stakes.length; i++) {

60 IStakingRewards staking = IStakingRewards(stakes[i]);

61

62 uint staked_PNG = staking.stakingToken () == address(png) ?

45

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



staking.balanceOf(voter) : uint (0);

63

64 uint pending_PNG = staking.rewardsToken () == address(png)

? staking.earned(voter) : uint (0);

65

66 votes += (staked_PNG + pending_PNG);

67 }

68 }

RewarderComplex.sol

Listing 15: RewarderComplex.sol (Lines 154,155)

152 function massUpdatePools(uint256 [] calldata pids) external {

153 uint256 len = pids.length;

154 for (uint256 i = 0; i < len; ++i) {

155 updatePool(pids[i]);

156 }

157 }

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

If possible, use pull over push strategy for external calls.

Remediation Plan:

RISK ACCEPTED: Pangolin team accepts this risk.

46

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.11 (HAL-11) USE OF
BLOCK.TIMESTAMP - LOW

Description:

During a manual review, we noticed the use of block.timestamp. The

contract developers should be aware that this does not mean current time.

Miners can influence the value of block.timestamp to perform Maximal

Extractable Value (MEV) attacks. The use of block.timestamp creates

a risk that miners could perform time manipulation to influence price

oracles. Miners can modify the timestamp by up to 900 seconds.

Code Location:

StakingRewards.sol

Listing 16: StakingRewards.sol (Lines 54)

53 function lastTimeRewardApplicable () public view returns (uint256)

{

54 return Math.min(block.timestamp , periodFinish);

55 }

Listing 17: StakingRewards.sol (Lines 123,126,138,139)

122 function notifyRewardAmount(uint256 reward) external onlyOwner

updateReward(address (0)) {

123 if (block.timestamp >= periodFinish) {

124 rewardRate = reward.div(rewardsDuration);

125 } else {

126 uint256 remaining = periodFinish.sub(block.timestamp);

127 uint256 leftover = remaining.mul(rewardRate);

128 rewardRate = reward.add(leftover).div(rewardsDuration);

129 }

130

131 // Ensure the provided reward amount is not more than the

balance in the contract.

132 // This keeps the reward rate in the right range , preventing

overflows due to

47

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



133 // very high values of rewardRate in the earned and

rewardsPerToken functions;

134 // Reward + leftover must be less than 2^256 / 10^18 to avoid

overflow.

135 uint balance = rewardsToken.balanceOf(address(this));

136 require(rewardRate <= balance.div(rewardsDuration), "Provided

reward too high");

137

138 lastUpdateTime = block.timestamp;

139 periodFinish = block.timestamp.add(rewardsDuration);

140 emit RewardAdded(reward);

141 }

Listing 18: StakingRewards.sol (Lines 152)

150 function setRewardsDuration(uint256 _rewardsDuration) external

onlyOwner {

151 require(

152 block.timestamp > periodFinish ,

153 "Previous rewards period must be complete before changing

the duration for the new period"

154 );

155 require(_rewardsDuration > 0, "Reward duration can't be zero")

;

156 rewardsDuration = _rewardsDuration;

157 emit RewardsDurationUpdated(rewardsDuration);

158 }

TreasuryVester.sol

Listing 19: TreasuryVester.sol (Lines 91,102)

88 function claim () external nonReentrant returns (uint) {

89 require(vestingEnabled , 'TreasuryVester :: claim: vesting not

enabled ');

90 require(msg.sender == recipient , 'TreasuryVester :: claim: only

recipient can claim ');

91 require(block.timestamp >= lastUpdate + vestingCliff , '

TreasuryVester :: claim: not time yet');

92

93 // If we've finished a halving period , reduce the amount

94 if (nextSlash == 0) {

48

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



95 nextSlash = halvingPeriod - 1;

96 vestingAmount = vestingAmount / 2;

97 } else {

98 nextSlash = nextSlash.sub (1);

99 }

100

101 // Update the timelock

102 lastUpdate = block.timestamp;

103

104 // Distribute the tokens

105 IERC20(png).safeTransfer(recipient , vestingAmount);

106 emit TokensVested(vestingAmount , recipient);

107

108 return vestingAmount;

109 }

GovernorAlpha.sol

Listing 20: GovernorAlpha.sol

152 uint startTime = add256(block.timestamp , votingDelay ());

153 uint endTime = add256(block.timestamp , add256(votingPeriod (),

votingDelay ()));

Listing 21: GovernorAlpha.sol (Lines 183)

180 function queue(uint proposalId) public {

181 require(state(proposalId) == ProposalState.Succeeded , "

GovernorAlpha :: queue: proposal can only be queued if it is

succeeded");

182 Proposal storage proposal = proposals[proposalId ];

183 uint eta = add256(block.timestamp , timelock.delay ());

184 for (uint i = 0; i < proposal.targets.length; i++) {

185 _queueOrRevert(proposal.targets[i], proposal.values[i],

proposal.signatures[i], proposal.calldatas[i], eta);

186 }

187 proposal.eta = eta;

188 emit ProposalQueued(proposalId , eta);

189 }

49

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 22: GovernorAlpha.sol (Lines 235,237,245)

230 function state(uint proposalId) public view returns (ProposalState

) {

231 require(proposalCount >= proposalId && proposalId > 0, "

GovernorAlpha :: state: invalid proposal id");

232 Proposal storage proposal = proposals[proposalId ];

233 if (proposal.canceled) {

234 return ProposalState.Canceled;

235 } else if (block.timestamp <= proposal.startTime) {

236 return ProposalState.Pending;

237 } else if (block.timestamp <= proposal.endTime) {

238 return ProposalState.Active;

239 } else if (proposal.forVotes <= proposal.againstVotes) {

240 return ProposalState.Defeated;

241 } else if (proposal.eta == 0) {

242 return ProposalState.Succeeded;

243 } else if (proposal.executed) {

244 return ProposalState.Executed;

245 } else if (block.timestamp >= add256(proposal.eta , timelock.

GRACE_PERIOD ())) {

246 return ProposalState.Expired;

247 } else {

248 return ProposalState.Queued;

249 }

250 }

MiniChefV2.sol

Listing 23: MiniChefV2.sol

1 MiniChefV2.sol :144: lastRewardTime: block.timestamp.to64(),

2 MiniChefV2.sol :224: if (block.timestamp > pool.lastRewardTime &&

lpSupply != 0) {

3 MiniChefV2.sol :225: uint256 time = block.timestamp <=

rewardsExpiration

4 MiniChefV2.sol :226: ? block.timestamp.sub(pool.lastRewardTime)

5 MiniChefV2.sol :256: if (block.timestamp > pool.lastRewardTime) {

6 MiniChefV2.sol :259: uint256 time = block.timestamp <=

rewardsExpiration

7 MiniChefV2.sol :260: ? block.timestamp.sub(pool.lastRewardTime)

8 MiniChefV2.sol :265: pool.lastRewardTime = block.timestamp.to64();

9 MiniChefV2.sol :411: if (block.timestamp >= rewardsExpiration) {

10 MiniChefV2.sol :414: rewardsExpiration = block.timestamp.add(

50

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



duration);

11 MiniChefV2.sol :417: uint256 remainingTime = rewardsExpiration.sub(

block.timestamp);

12 MiniChefV2.sol :420: uint256 newSushiPerSecond = remainingRewards.

add(funding) / (newRewardsExpiration.sub(block.timestamp));

13 MiniChefV2.sol :439: uint256 remainingTime = rewardsExpiration.sub(

block.timestamp);

14 MiniChefV2.sol :441: rewardsExpiration = block.timestamp.add(

duration);

15 MiniChefV2.sol :442: sushiPerSecond = remainingRewards / (

rewardsExpiration.sub(block.timestamp));

Risk Level:

Likelihood - 3

Impact - 1

Recommendation:

Use block.number instead of block.timestamp or now to reduce the risk of

Maximal Extractable Value (MEV) attacks. Check if the timescale of the

project occurs across years, days and months rather than seconds. If

possible, it is recommended to use Oracles.

Remediation Plan:

RISK ACCEPTED: Pangolin team accepts this risk.

51

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.12 (HAL-12) INCOMPATIBILITY WITH
INFLATIONARY TOKENS - LOW

Description:

In multiple functions OpenZeppelin’s safeTransferFrom and safeTransfer

is used to handle the token transfers. These functions call transferFrom

and transfer internally in the token contract to actually execute the

transfer. However, since the actual amount transferred ie. the delta

of previous (before transfer) and current (after transfer) balance is

not verified, a malicious user may list a custom ERC20 token with the

transferFrom or transfer function modified in such a way that it does not

transfer any tokens at all and the attacker is still going to have their

liquidity pool tokens minted anyway.

Example:

StakingRewards.sol

Listing 24: StakingRewards.sol (Lines 85,93,101,109)

77 function stakeWithPermit(uint256 amount , uint deadline , uint8 v,

bytes32 r, bytes32 s) external nonReentrant updateReward(msg.

sender) {

78 require(amount > 0, "Cannot stake 0");

79 _totalSupply = _totalSupply.add(amount);

80 _balances[msg.sender] = _balances[msg.sender ].add(amount);

81

82 // permit

83 IPangolinERC20(address(stakingToken)).permit(msg.sender ,

address(this), amount , deadline , v, r, s);

84

85 stakingToken.safeTransferFrom(msg.sender , address(this),

amount);

86 emit Staked(msg.sender , amount);

87 }

88

89 function stake(uint256 amount) external nonReentrant updateReward(

msg.sender) {

52

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



90 require(amount > 0, "Cannot stake 0");

91 _totalSupply = _totalSupply.add(amount);

92 _balances[msg.sender] = _balances[msg.sender ].add(amount);

93 stakingToken.safeTransferFrom(msg.sender , address(this),

amount);

94 emit Staked(msg.sender , amount);

95 }

96

97 function withdraw(uint256 amount) public nonReentrant updateReward

(msg.sender) {

98 require(amount > 0, "Cannot withdraw 0");

99 _totalSupply = _totalSupply.sub(amount);

100 _balances[msg.sender] = _balances[msg.sender ].sub(amount);

101 stakingToken.safeTransfer(msg.sender , amount);

102 emit Withdrawn(msg.sender , amount);

103 }

104

105 function getReward () public nonReentrant updateReward(msg.sender)

{

106 uint256 reward = rewards[msg.sender ];

107 if (reward > 0) {

108 rewards[msg.sender] = 0;

109 rewardsToken.safeTransfer(msg.sender , reward);

110 emit RewardPaid(msg.sender , reward);

111 }

112 }

Listing 25: StakingRewards.sol (Lines 146)

144 function recoverERC20(address tokenAddress , uint256 tokenAmount)

external onlyOwner nonReentrant {

145 require(tokenAddress != address(stakingToken), "Cannot

withdraw the staking token");

146 IERC20(tokenAddress).safeTransfer(owner (), tokenAmount);

147 emit Recovered(tokenAddress , tokenAmount);

148 }

Risk Level:

Likelihood - 2

Impact - 2

53

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

Whenever tokens are transferred, the delta of the previous (before

transfer) and current (after transfer) token balance should be verified

to match the user-declared token amount.

Remediation Plan:

RISK ACCEPTED: Pangolin team accepts this risk.

54

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.13 (HAL-13) DIVIDE BEFORE
MULTIPLY - LOW

Description:

Solidity integer division might truncate. As a result, performing

multiplication before division might reduce precision.

Code Location:

StakingRewards.sol

Listing 26: StakingRewards.sol (Lines 124,127)

122 function notifyRewardAmount(uint256 reward) external onlyOwner

updateReward(address (0)) {

123 if (block.timestamp >= periodFinish) {

124 rewardRate = reward.div(rewardsDuration);

125 } else {

126 uint256 remaining = periodFinish.sub(block.timestamp);

127 uint256 leftover = remaining.mul(rewardRate);

128 rewardRate = reward.add(leftover).div(rewardsDuration);

129 }

130

131 // Ensure the provided reward amount is not more than the

balance in the contract.

132 // This keeps the reward rate in the right range , preventing

overflows due to

133 // very high values of rewardRate in the earned and

rewardsPerToken functions;

134 // Reward + leftover must be less than 2^256 / 10^18 to avoid

overflow.

135 uint balance = rewardsToken.balanceOf(address(this));

136 require(rewardRate <= balance.div(rewardsDuration), "Provided

reward too high");

137

138 lastUpdateTime = block.timestamp;

139 periodFinish = block.timestamp.add(rewardsDuration);

140 emit RewardAdded(reward);

141 }

55

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



LiquidityPoolManagerV2.sol

Listing 27: LiquidityPoolManagerV2.sol (Lines 340,344)

338 uint transferred = 0;

339 if (splitPools) {

340 uint avaxAllocatedPng = unallocatedPng.mul(avaxSplit).div (100)

;

341 uint pngAllocatedPng = unallocatedPng.sub(avaxAllocatedPng);

342

343 for (uint i = 0; i < avaxPairs.length (); i++) {

344 uint pairTokens = distribution[i].mul(avaxAllocatedPng).

div(avaxLiquidity);

345 distribution[i] = pairTokens;

346 transferred = transferred.add(pairTokens);

347 }

MiniChefV2.sol

Listing 28: MiniChefV2.sol (Lines 228,229,231)

219 function pendingSushi(uint256 _pid , address _user) external view

returns (uint256 pending) {

220 PoolInfo memory pool = poolInfo[_pid];

221 UserInfo storage user = userInfo[_pid][ _user ];

222 uint256 accSushiPerShare = pool.accSushiPerShare;

223 uint256 lpSupply = lpToken[_pid]. balanceOf(address(this));

224 if (block.timestamp > pool.lastRewardTime && lpSupply != 0) {

225 uint256 time = block.timestamp <= rewardsExpiration

226 ? block.timestamp.sub(pool.lastRewardTime)

227 : rewardsExpiration.sub(pool.lastRewardTime);

228 uint256 sushiReward = time.mul(sushiPerSecond).mul(pool.

allocPoint) / totalAllocPoint;

229 accSushiPerShare = accSushiPerShare.add(sushiReward.mul(

ACC_SUSHI_PRECISION) / lpSupply);

230 }

231 pending = int256(user.amount.mul(accSushiPerShare) /

ACC_SUSHI_PRECISION).sub(user.rewardDebt).toUInt256 ();

232 }

56

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 29: MiniChefV2.sol (Lines 262,263)

254 function updatePool(uint256 pid) public returns (PoolInfo memory

pool) {

255 pool = poolInfo[pid];

256 if (block.timestamp > pool.lastRewardTime) {

257 uint256 lpSupply = lpToken[pid]. balanceOf(address(this));

258 if (lpSupply > 0) {

259 uint256 time = block.timestamp <= rewardsExpiration

260 ? block.timestamp.sub(pool.lastRewardTime)

261 : rewardsExpiration.sub(pool.lastRewardTime);

262 uint256 sushiReward = time.mul(sushiPerSecond).mul(pool.

allocPoint) / totalAllocPoint;

263 pool.accSushiPerShare = pool.accSushiPerShare.add((

sushiReward.mul(ACC_SUSHI_PRECISION) / lpSupply).to128

());

264 }

265 pool.lastRewardTime = block.timestamp.to64();

266 poolInfo[pid] = pool;

267 emit LogUpdatePool(pid , pool.lastRewardTime , lpSupply , pool.

accSushiPerShare);

268 }

269 }

RewarderComplex.sol

Listing 30: RewarderComplex.sol (Lines 144,145,147)

137 function pendingToken(uint256 _pid , address _user) public view

returns (uint256 pending) {

138 PoolInfo memory pool = poolInfo[_pid];

139 UserInfo storage user = userInfo[_pid][ _user ];

140 uint256 accSushiPerShare = pool.accSushiPerShare;

141 uint256 lpSupply = MiniChefV2(MASTERCHEF_V2).lpToken(_pid).

balanceOf(MASTERCHEF_V2);

142 if (block.number > pool.lastRewardBlock && lpSupply != 0) {

143 uint256 blocks = block.number.sub(pool.lastRewardBlock);

144 uint256 sushiReward = blocks.mul(tokenPerBlock).mul(pool.

allocPoint) / totalAllocPoint;

145 accSushiPerShare = accSushiPerShare.add(sushiReward.mul(

ACC_TOKEN_PRECISION) / lpSupply);

146 }

147 pending = (user.amount.mul(accSushiPerShare) /

ACC_TOKEN_PRECISION).sub(user.rewardDebt);

57

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



148 }

Listing 31: RewarderComplex.sol (Lines 170,171)

162 function updatePool(uint256 pid) public returns (PoolInfo memory

pool) {

163 pool = poolInfo[pid];

164 require(pool.lastRewardBlock != 0, "Pool does not exist");

165 if (block.number > pool.lastRewardBlock) {

166 uint256 lpSupply = MiniChefV2(MASTERCHEF_V2).lpToken(pid).

balanceOf(MASTERCHEF_V2);

167

168 if (lpSupply > 0) {

169 uint256 blocks = block.number.sub(pool.lastRewardBlock

);

170 uint256 sushiReward = blocks.mul(tokenPerBlock).mul(

pool.allocPoint) / totalAllocPoint;

171 pool.accSushiPerShare = pool.accSushiPerShare.add((

sushiReward.mul(ACC_TOKEN_PRECISION) / lpSupply).

to128 ());

172 }

173 pool.lastRewardBlock = block.number.to64();

174 poolInfo[pid] = pool;

175 emit LogUpdatePool(pid , pool.lastRewardBlock , lpSupply ,

pool.accSushiPerShare);

176 }

177 }

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

Consider ordering multiplication before division.

58

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Remediation Plan:

RISK ACCEPTED: Pangolin team accepts this risk.

59

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.14 (HAL-14) UNUSED
VARIABLE/EXPRESSION - INFORMATIONAL

Description:

In the contracts LiquidityPoolManager.sol and LiquidityPoolManagerV2.sol

an unused expression has been detected. The mathematical operation is

performed inside a loop but nothing is done with its final result.

On the other hand in the contract RewarderSimple.sol the function

pendingTokens() contains a parameter user which then is not used anywhere

in the function.

Code Location:

LiquidityPoolManager.sol

Listing 32: LiquidityPoolManager.sol (Lines 274,278)

245 function calculateReturns () public {

246 require (! readyToDistribute , 'LiquidityPoolManager ::

calculateReturns: Previous returns not distributed. Call

distributeTokens ()');

247 require(unallocatedPng > 0, 'LiquidityPoolManager ::

calculateReturns: No PNG to allocate. Call vestAllocation ()

.');

248 if (pngPairs.length () > 0) {

249 require (!( avaxPngPair == address (0)), '

LiquidityPoolManager :: calculateReturns: Avax/PNG Pair

not set');

250 }

251

252 // Calculate total liquidity

253 distribution = new uint []( numPools);

254 uint totalLiquidity = 0;

255

256 // Add liquidity from AVAX pairs

257 for (uint i = 0; i < avaxPairs.length (); i++) {

60

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



258 uint pairLiquidity = getAvaxLiquidity(avaxPairs.at(i));

259 distribution[i] = pairLiquidity;

260 totalLiquidity = SafeMath.add(totalLiquidity ,

pairLiquidity);

261 }

262

263 // Add liquidity from PNG pairs

264 if (pngPairs.length () > 0) {

265 uint conversionRatio = getAvaxPngRatio ();

266 for (uint i = 0; i < pngPairs.length (); i++) {

267 uint pairLiquidity = getPngLiquidity(pngPairs.at(i),

conversionRatio);

268 distribution[i + avaxPairs.length ()] = pairLiquidity;

269 totalLiquidity = SafeMath.add(totalLiquidity ,

pairLiquidity);

270 }

271 }

272

273 // Calculate tokens for each pool

274 uint transferred = 0;

275 for (uint i = 0; i < distribution.length; i++) {

276 uint pairTokens = distribution[i].mul(unallocatedPng).div(

totalLiquidity);

277 distribution[i] = pairTokens;

278 transferred = transferred + pairTokens;

279 }

280 readyToDistribute = true;

281 }

LiquidityPoolManagerV2.sol

Listing 33: LiquidityPoolManagerV2.sol (Lines 338,346,354,363)

304 function calculateReturns () public {

305 require (! readyToDistribute , 'LiquidityPoolManager ::

calculateReturns: Previous returns not distributed. Call

distributeTokens ()');

306 require(unallocatedPng > 0, 'LiquidityPoolManager ::

calculateReturns: No PNG to allocate. Call vestAllocation ()

.');

307 if (pngPairs.length () > 0) {

308 require (!( avaxPngPair == address (0)), '

LiquidityPoolManager :: calculateReturns: Avax/PNG Pair

61

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



not set');

309 }

310

311 // Calculate total liquidity

312 distribution = new uint []( numPools);

313 uint avaxLiquidity = 0;

314 uint pngLiquidity = 0;

315

316 // Add liquidity from AVAX pairs

317 for (uint i = 0; i < avaxPairs.length (); i++) {

318 address pair = avaxPairs.at(i);

319 uint pairLiquidity = getAvaxLiquidity(pair);

320 uint weightedLiquidity = pairLiquidity.mul(weights[pair]);

321 distribution[i] = weightedLiquidity;

322 avaxLiquidity = SafeMath.add(avaxLiquidity ,

weightedLiquidity);

323 }

324

325 // Add liquidity from PNG pairs

326 if (pngPairs.length () > 0) {

327 uint conversionRatio = getAvaxPngRatio ();

328 for (uint i = 0; i < pngPairs.length (); i++) {

329 address pair = pngPairs.at(i);

330 uint pairLiquidity = getPngLiquidity(pair ,

conversionRatio);

331 uint weightedLiquidity = pairLiquidity.mul(weights[

pair]);

332 distribution[i + avaxPairs.length ()] =

weightedLiquidity;

333 pngLiquidity = SafeMath.add(pngLiquidity ,

weightedLiquidity);

334 }

335 }

336

337 // Calculate tokens for each pool

338 uint transferred = 0;

339 if (splitPools) {

340 uint avaxAllocatedPng = unallocatedPng.mul(avaxSplit).div

(100);

341 uint pngAllocatedPng = unallocatedPng.sub(avaxAllocatedPng

);

342

343 for (uint i = 0; i < avaxPairs.length (); i++) {

344 uint pairTokens = distribution[i].mul(avaxAllocatedPng

62

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



).div(avaxLiquidity);

345 distribution[i] = pairTokens;

346 transferred = transferred.add(pairTokens);

347 }

348

349 if (pngPairs.length () > 0) {

350 uint conversionRatio = getAvaxPngRatio ();

351 for (uint i = 0; i < pngPairs.length (); i++) {

352 uint pairTokens = distribution[i + avaxPairs.

length ()].mul(pngAllocatedPng).div(pngLiquidity

);

353 distribution[i + avaxPairs.length ()] = pairTokens;

354 transferred = transferred.add(pairTokens);

355 }

356 }

357 } else {

358 uint totalLiquidity = avaxLiquidity.add(pngLiquidity);

359

360 for (uint i = 0; i < distribution.length; i++) {

361 uint pairTokens = distribution[i].mul(unallocatedPng).

div(totalLiquidity);

362 distribution[i] = pairTokens;

363 transferred = transferred.add(pairTokens);

364 }

365 }

366 readyToDistribute = true;

367 }

RewarderSimple.sol

Listing 34: RewarderSimple.sol

34 function pendingTokens(uint256 pid , address user , uint256

sushiAmount) override external view returns (IERC20 [] memory

rewardTokens , uint256 [] memory rewardAmounts) {

35 IERC20 [] memory _rewardTokens = new IERC20 [](1);

36 _rewardTokens [0] = (rewardToken);

37 uint256 [] memory _rewardAmounts = new uint256 [](1);

38 _rewardAmounts [0] = sushiAmount.mul(rewardMultiplier) /

REWARD_TOKEN_DIVISOR;

39 return (_rewardTokens , _rewardAmounts);

40 }

63

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Consider removing the transferred variable and the transferred =

transferred + pairTokens; expression. Consider also removing the

parameter user from the pendingTokens() function in RewarderSimple.sol

contract.

Remediation Plan:

ACKNOWLEDGED: Pangolin team acknowledges this issue.

64

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.15 (HAL-15) POSSIBLE MISUSE OF
PUBLIC FUNCTIONS - INFORMATIONAL

Description:

In the contracts GovernorAlpha, PNG and MiniChefV2.sol there are functions

marked as public but they are never directly called within the same

contract or in any of its descendants:

GovernorAlpha.sol

- propose(address[],uint256[],string[],bytes[],string) (GovernorAlpha.sol#139-178)

- queue(uint256) (GovernorAlpha.sol#180-189)

- execute(uint256) (GovernorAlpha.sol#196-204)

- cancel(uint256) (GovernorAlpha.sol#206-219)

- getActions(uint256) (GovernorAlpha.sol#221-224)

- getReceipt(uint256,address) (GovernorAlpha.sol#226-228)

- castVote(uint256,bool) (GovernorAlpha.sol#252-254)

- castVoteBySig(uint256,bool,uint8,bytes32,bytes32) (GovernorAlpha.sol#256-263)

- __acceptAdmin() (GovernorAlpha.sol#289-292)

- __abdicate() (GovernorAlpha.sol#294-297)

- __queueSetTimelockPendingAdmin(address,uint256) (GovernorAlpha.sol#299-302)

- __executeSetTimelockPendingAdmin(address,uint256) (GovernorAlpha.sol#304-307)

PNG.sol

- delegate(address) (PNG.sol#184-186)

- delegateBySig() (PNG.sol#197-206)

- getPriorVotes(address,uint256) (PNG.sol#225-257)

MiniChefV2.sol

- poolLength() (MiniChefV2.sol#99-101)

- setMigrator(IMigratorChef) (MiniChefV2.sol#188-192)

- disableMigrator() (MiniChefV2.sol#196-199)

- migrate(uint256) (MiniChefV2.sol#203-213)

- deposit(uint256,uint256,address) (MiniChefV2.sol#275-292)

- withdraw(uint256,uint256,address) (MiniChefV2.sol#298-315)

- harvest(uint256,address) (MiniChefV2.sol#320-340)

- withdrawAndHarvest(uint256,uint256,address) (MiniChefV2.sol#346-368)

65

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



- emergencyWithdraw(uint256,address) (MiniChefV2.sol#373-382)

RewarderComplex.sol

- poolLength() (RewarderComplex.sol#102-104)

- add(uint256,uint256) (RewarderComplex.sol#110-122)

- set(uint256,uint256) (RewarderComplex.sol#127-131)

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

If the function is not intended to be called internally or by descendants,

it is better to mark all these functions as external to save gas.

Remediation Plan:

ACKNOWLEDGED: Pangolin team acknowledges this issue.

66

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.16 (HAL-16) USE OF INLINE
ASSEMBLY - INFORMATIONAL

Description:

Inline assembly is a way to access the Ethereum Virtual Machine at a low

level. This discards several important safety features in Solidity.

Code Location:

GovernorAlpha.sol

Listing 35: GovernorAlpha.sol (Lines 322)

320 function getChainId () internal pure returns (uint) {

321 uint chainId;

322 assembly { chainId := chainid () }

323 return chainId;

324 }

PNG.sol

Listing 36: PNG.sol (Lines 334)

332 function getChainId () internal pure returns (uint) {

333 uint256 chainId;

334 assembly { chainId := chainid () }

335 return chainId;

336 }

Risk Level:

Likelihood - 1

Impact - 2

67

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

When possible, do not use inline assembly because it allows access to the

EVM (Ethereum Virtual Machine) at a low level. An attacker could bypass

many important safety features of Solidity. On the other hand, for these

concrete cases, chainid is available in native Solidity 0.8.0.

Reference:

https://docs.soliditylang.org/en/v0.8.0/units-and-global-variables.html

Remediation Plan:

ACKNOWLEDGED: Pangolin team acknowledges this issue.

68

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://docs.soliditylang.org/en/v0.8.0/units-and-global-variables.html


3.17 (HAL-17) TAUTOLOGY
EXPRESSIONS - INFORMATIONAL

Description:

In the contract PNG.sol a tautology expression has been detected. Such

expressions are of no use since they always evaluate true/false regardless

of the context they are used in.

Code Location:

PNG.sol

Listing 37: PNG.sol (Lines 169)

164 function transferFrom(address src , address dst , uint rawAmount)

external returns (bool) {

165 address spender = msg.sender;

166 uint96 spenderAllowance = allowances[src][ spender ];

167 uint96 amount = safe96(rawAmount , "Png:: approve: amount

exceeds 96 bits");

168

169 if (spender != src && spenderAllowance != uint96 (-1)) {

170 uint96 newAllowance = sub96(spenderAllowance , amount , "Png

:: transferFrom: transfer amount exceeds spender

allowance");

171 allowances[src][ spender] = newAllowance;

172

173 emit Approval(src , spender , newAllowance);

174 }

175

176 _transferTokens(src , dst , amount);

177 return true;

178 }

69

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

spenderAllowance != uint96(-1)

spenderAllowance is an uint variable which means that its range will be

⟨0, 2256 − 1⟩, hence it will never be equal to -1, so spenderAllowance !=

uint96(-1) will always be true making this check unnecessary.

Remediation Plan:

ACKNOWLEDGED: Pangolin team acknowledges this issue.

70

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



71

MANUAL TESTING



4.1 INTRODUCTION

Halborn performed different manual tests in all the contracts trying

to find logic flaws and vulnerabilities that were not detected by the

automatic tools.

During the manual testing multiple questions were considered while

evaluating each of the defined functions:

• Can it be re-called changing admin/roles and permissions?

• Can somehow an external controlled contract call again the function

during the execution of it? (Re-entrancy)

• Can a function be called twice in the same block causing issues?

• Do we control sensitive or vulnerable parameters?

• Does the function check for boundaries on the parameters and internal

values? Bigger than zero or equal? Argument count, array sizes,

integer truncation. . .

• Are the function parameters and variables controlled by external

contracts?

• Can extended contracts cause issues on the extender contract?

72

MA
NU

AL
TE

ST
IN

G



4.2 AIRDROP CONTRACT

The contract Airdrop contains the logic to administer the airdrop of PNG

tokens to UNI and SUSHI holder. Our testing in this contract focused

in double checking that the functions had implemented the correct access

control, as all the functions of the contract were public/external. The

following functions can only be called by the owner of the contract:

• setRemainderDestination(address remainderDestination_)

• setowner(address owner_)

• allowClaiming()

• endClaiming()

• whitelistAddress(address addr, uint96 pngOut)

• whitelistAddresses(address[] memory addrs, uint96[] memory pngOuts)

The only function that can be called by anyone is the claim() function

as expected. This function is secured as can only be called during

the claiming period, requires that the user has 1 UNI or SUSHI token

and follows the check-effects-interactions pattern resetting the

withdrawAmount[msg.sender] to 0 right before transfering the PNG tokens

to the user.

73

MA
NU

AL
TE

ST
IN

G



4.3 COMMUNITYTREASURY CONTRACT

The contract CommunityTreasury is very simple, containing just 2

functions:

• transfer() which can only be called by the owner of the contract.

• balance() which is a getter function to check the balance of the

contract.

74

MA
NU

AL
TE

ST
IN

G



4.4 GOVERNORALPHA CONTRACT

The contract GovernorAlpha allows PNG token holders to create, cancel,

queue, execute, approve and reject different proposals. Our testing in

this contract focused mainly in preventing flash loans and making sure

that the users were not able to vote multiple times.

When a user votes for a proposal the voting power considered by the smart

contract is the voting power that all the users had in the block where

the proposal was created:

Listing 38: GovernorAlpha.sol - function castVote()

1 uint96 votes = png.getPriorVotes(voter , proposal.startBlock);

Moreover, the function getPriorVotes() contains the following require

statement:

Listing 39: PNG.sol (Lines 226)

225 function getPriorVotes(address account , uint blockNumber) public

view returns (uint96) {

226 require(blockNumber < block.number , "Png:: getPriorVotes:

not yet determined");

This means that after calling Png.delegate() we would have to wait 1 block

before Png.getPriorVotes() can be called in order to check the voting

power. Also, the voting power is updated in the following cases:

1. User calls the function Png.delegate().

2. Function Png.transfer() is called.

3. Function Png.transferFrom() is called.

At the end of a flash loan transaction the attacker would always have

to return the tokens and this can only be achieved by calling the Png.

transfer() or Png.transferFrom() function which would reupdate the voting

power back to the state previous to the flash loan. For example:

1. Initially the attacker has 1,000,001 PNG tokens => He is a proposer.

75

MA
NU

AL
TE

ST
IN

G



2. Attacker performs a flash loan of 100,000,000 PNG tokens, increasing

his PNG’s balance to 101,000,001 tokens. At this point, he has 2

options:

a) In the same transaction/block.number the attacker calls Png.

delegate(), which updates his voting power, creates a proposal

and returns the flash loan calling Png.transfer(). When creating

the proposal the voting power considered by the smart contract

is the one that he had in the previous block.number, before

the flash loan, which means that his voting power would not be

increased:

Listing 40: GovernorAlpha.sol (Lines 140)

139 function propose(address [] memory targets , uint[] memory

values , string [] memory signatures , bytes [] memory

calldatas , string memory description) public returns (

uint) {

140 require(png.getPriorVotes(msg.sender , sub256(block.number ,

1)) > proposalThreshold (),"GovernorAlpha :: propose:

proposer votes below proposal threshold");

141

b) In the same transaction/block.number the attacker calls Png.

delegate(), which updates his voting power, and then returns

the flash loan with Png.transfer() or Png.transferFrom(). When

the attacker returns the flash loan by calling Png.transfer() or

Png.transferFrom() his voting power would be reupdated again.

Once again, taking this approach, the attacker would not be

able to increase his voting power.

On the other hand, the contract is also covered against the following

case:

1. User1 votes to approve the proposal.

2. User1 calls Png.delegate(user2).

3. User2 votes to approve the proposal.

4. User2 approval votes counted by the contract for the proposal are the

ones he had at the time of the proposal creation. They were not increased

by the delegate call.

76

MA
NU

AL
TE

ST
IN

G



Finally, it is worth mentioning, that any proposal is eligible to be

cancelled at any time prior to its execution, including while queued in

the Timelock, using the GovernorAlpha.cancel() function.

The cancel function can be called by the proposal creator, or any Ethereum

address, if the proposal creator fails to maintain more delegated votes

than the proposal threshold (e.g. 1,000,000).

77

MA
NU

AL
TE

ST
IN

G



4.5 LIQUIDITYPOOLMANAGER CONTRACT

LiquidityPoolManager distributes PNG tokens to whitelisted trading pairs.

The contract contains the following getter functions:

• isWhitelisted(address pair)

• isAvaxPair(address pair)

• isPngPair(address pair)

• getAvaxLiquidity(address pair)

• getPngLiquidity(address pair, uint conversionFactor)

• getAvaxPngRatio()

And the following external/public functions:

• setAvaxPngPair(address avaxPngPair_) (onlyOwner)

• addWhitelistedPool(address pair) (onlyOwner)

• removeWhitelistedPool(address pair) (onlyOwner)

• calculateReturns()

• distributeTokens()

• distributeTokensSinglePool(uint pairIndex)

• calculateAndDistribute()

• vestAllocation()

78

MA
NU

AL
TE

ST
IN

G



In the test case below we can see that the functions addWhitelistedPool,

removeWhitelistedPool, isWhitelisted, isAvaxPair and isPngPair work as

expected.

Same applies to the functions getAvaxLiquidity:

79

MA
NU

AL
TE

ST
IN

G



getPngLiquidity and getAvaxPngRatio:

Finally, we can see how calling distributeTokens:

80

MA
NU

AL
TE

ST
IN

G



And calling distributeTokensSinglePool produces the same output:

It is worth mentioning that after calling distributeTokensSinglePool,

distributeTokens should be called once before recalling vestAllocation

so the readyToDistribute variable is set to false and unallocatedPng

variable is set to 0.

Moreover, we tested the following example scenario:

1. There are 2 whitelisted AVAX pools: Pool 0 and Pool 1.

2. Attacker calls vestAllocation.

3. Attacker calls calculateReturns.

4. Attacker calls distributeTokensSinglePool(0) which triggers:

distribution[pairIndex] = 0;.

5. If he tries now to call calculateReturns again and then once again

distributeTokensSinglePool(0) to takeover the tokens of Pool 1, he

will not be able to as readyToDistribute variable is set to True

and will not be reset to False until distributeTokens is called.

Calling distributeTokens would distribute 0 tokens to Pool 0 as

distribution[0] was set previously to 0 and the Pool 1 would receive

its corresponding tokens correctly.

81

MA
NU

AL
TE

ST
IN

G



4.6 LIQUIDITYPOOLMANAGERV2 CONTRACT

LiquidityPoolManagerV2 distributes PNG tokens to whitelisted trading

pairs. The contract contains the following getter functions:

• isWhitelisted(address pair)

• isAvaxPair(address pair)

• isPngPair(address pair)

• getAvaxLiquidity(address pair)

• getPngLiquidity(address pair, uint conversionFactor)

• getAvaxPngRatio()

And the following external/public functions:

• setAvaxPngPair(address avaxPngPair_) (onlyOwner)

• addWhitelistedPool(address pair, uint weight) (onlyOwner)

• removeWhitelistedPool(address pair) (onlyOwner)

• changeWeight(address pair, uint weight) (onlyOwner)

• activateFeeSplit(uint avaxSplit_, uint pngSplit_) (onlyOwner)

• deactivateFeeSplit() (onlyOwner)

• calculateReturns()

• distributeTokens()

• distributeTokensSinglePool(uint pairIndex)

• calculateAndDistribute()

• vestAllocation()

The version 2 adds weights to the pools and fees.

The tests performed for this contract were similar than the ones executed

in LiquidityPoolManager contract. On top of that, we added some extra test

cases to the provided test/LiquidityPoolManager.js script and executed

them successfully.

82

MA
NU

AL
TE

ST
IN

G



4.7 PNG CONTRACT

The contract Png is a custom token contract which contains the following

functions:

• allowance()

• approve()

• permit()

• balanceOf() - view

• transfer()

• transferFrom()

• delegate()

• delegateBySig()

• getCurrentVotes() - view

• getPriorVotes() - view

• _delegate()

• _transferTokens()

• _moveDelegates()

• _writeCheckpoint()

The functions transfer, transferFrom and delegate call internally

_writeCheckpoint. This means that every time these functions are called

the voting power is updated.

It is worth mentioning that this functionality is critical and should

always be kept in future updates, as it is acting as a protection mechanism

against flash loans, as explained in GovernorAlpha’s contract analysis.

83

MA
NU

AL
TE

ST
IN

G



We can see below how the voting power was updated right after the

transferFrom and delegate functions were called:

Further tests were performed proving that it is not possible to delegate

into multiple users and that every time a transferFrom is called the

voting power is updated in the delegatee:

84

MA
NU

AL
TE

ST
IN

G



85

MA
NU

AL
TE

ST
IN

G



4.8 PANGOLINVOTECALCULATOR CONTRACT

The contract PangolinVoteCalculator contains 3 view functions and a setter

function that can only be called by the owner of the contract to change

the address of the Liquidity Pool Manager:

• getVotesFromFarming()

• getVotesFromStaking()

• getVotesFromWallets()

• changeLiquidityPoolManager() - onlyOwner

We can see below how the view functions are working correctly:

86

MA
NU

AL
TE

ST
IN

G



4.9 MINICHEFV2 CONTRACT

The contract MiniChefV2 is based on SushiSwap’s MiniChefV2 contract and

contains the following functions:

• poolLength() - view

• isFunder() - view

• addPool() (onlyOwner)

• addPools() (onlyOwner)

• add() - internal

• setPool() (onlyOwner)

• setPools() (onlyOwner)

• set() - internal

• setMigrator() (onlyOwner)

• disableMigrator() (onlyOwner)

• migrate()

• pendingSushi() - view

• massUpdatePools()

• massUpdateAllPools()

• updatePool()

• deposit()

• withdraw()

• harvest()

• withdrawAndHarvest()

• emergencyWithdraw()

• addFunder() (onlyOwner)

• removeFunder() (onlyOwner)

• fundRewards() (onlyOwner)

• resetRewardsDuration() (onlyOwner)

• extendRewardsViaFunding()

• extendRewardsViaDuration()

During the manual testing phase in the MiniChefV2 contract the following

issues were found:

• REWARD PERIOD CAN BE EXTENDED INDEFINITELY

87

MA
NU

AL
TE

ST
IN

G

https://github.com/sushiswap/sushiswap/blob/canary/contracts/MiniChefV2.sol


• INCORRECT LOGIC IN MINICHEFV2 LEADS TO DOS

• FUNCTION MIGRATE MISSING ONLYOWNER MODIFIER

• IMPRECISION IN REWARD DISTRIBUTION

88

MA
NU

AL
TE

ST
IN

G



Test 1: addPool(), addPools(), setPool()and setPools()

The function addPool is used to add a single reward pool.

Every time this function is called all the pools are upgraded which

means that the gas costs for calling this function will increase the

more pools there are in the contract, although after doing some tests

we can see that the gas costs increases very slowly, just by 15913 GWEI

every time a new pool is added.

We can also see how calling the addPools function is working as expected:

89

MA
NU

AL
TE

ST
IN

G



Calling setPool with the parameter overwrite as False will not update

the rewarder address as seen below:

setPools implements exactly the same functionality correctly:

90

MA
NU

AL
TE

ST
IN

G



Test 2: setMigrator(), disableMigrator()and migrate()

These functions allow migrating LP tokens to another LP contract through

the migrator contract, for example, SushiRoll contract.

The migrate function essentially:

- Remove liquidity from one contract.

- Add liquidity in other contract.

After doing some testing, we noticed that anyone is able to call the

migrate function once setMigrator has been called previously by an admin.

See vulnerability FUNCTION MIGRATE MISSING ONLYOWNER MODIFIER.

91

MA
NU

AL
TE

ST
IN

G

https://github.com/sushiswap/sushiswap/blob/master/contracts/SushiRoll.sol


Test 3: deposit(), withdraw(), harvest()and withdrawAndHarvest()

Below we can see how sushiPerSecond variable is assigned once fundRewards

function is called. On the other hand, we can see how calling harvest

assigns the correct rewardDebt to the userInfo:

92

MA
NU

AL
TE

ST
IN

G



Test 4: harvest(), 1 pool, 100% of the allocPoints, 1 user

In this test case, there is just one pool in the contract. In the pool

only the user1 has deposited 1000 tokens.

As we can see the user1 receives the 100% of the reward amount, although

there is a little imprecision:

93

MA
NU

AL
TE

ST
IN

G



Test 5: harvest(), 2 pools, 50/50 of the allocPoints, 1 user that just

deposited in one pool

In this test case, there are two pools in the contract, both with the

same allocPoints. In the pool0 the user1 has deposited 1000 tokens. In

the pool1 no tokens has been deposited.

User1 receives the 50% of the reward tokens as expected.

94

MA
NU

AL
TE

ST
IN

G



Test 6: harvest(), 2 pools, 50/50 of the allocPoints, 2 users

In this test case, there are two pools in the contract, both with the

same allocPoints. In the pool0 the user1 has deposited 1000 tokens. In

the pool1 the user2 has also deposited 1000 tokens.

User1 receives the 50% of the reward tokens and same for the user2 as

expected.

95

MA
NU

AL
TE

ST
IN

G



Test 7: harvest(), 2 pools, 66/33 of the allocPoints, 2 users

In this test case, there are two pools in the contract, pool0 with 66

allocPoints and pool1 with 33 allocPoints. In the pool0 the user1 has

deposited 1000 tokens. In the pool1 the user2 has also deposited 1000

tokens.

User1 receives the 66% of the reward tokens and the user2 the 33% as

expected.

96

MA
NU

AL
TE

ST
IN

G



Test 8: harvest(), 2 pools, 50/50 of the allocPoints, 2 users,

different deposits

In this test case, there are two pools in the contract, both with the

same allocPoints. In the pool0 the user1 has deposited 1000 tokens. In

the pool0 the user2 has also deposited 500 tokens. In the pool1 no tokens

were deposited.

User1 receives the 66% of the 50% of the reward tokens, User2 receives

the 33% of the 50% of the reward tokens.

97

MA
NU

AL
TE

ST
IN

G



Test 9: harvest(), 1 pool, 100% of the allocPoints, 1 user, half of the

reward period

In this test case, there is just one pool in the contract. In the pool

only the user1 has deposited 1000 tokens. The duration of the rewards is

set to 86400 seconds. In this test, the user1 calls withdrawAndHarvest

in the second 43200~. As we can see below he received half of the total

rewards tokens as expected:

98

MA
NU

AL
TE

ST
IN

G



Test 10: harvest(), 1 pool, 100% of the allocPoints, 2 users, half of

the reward period 1 user, the other half another

In this test case, there is just one pool in the contract. In the pool

only the user1 has deposited 1000 tokens. The duration of the rewards is

set to 86400 seconds. In this test, the user1 calls withdrawAndHarvest in

the second 43200~. Then, he performs a deposit of those 1000 tokens as the

user2 minichef.deposit(0, 1000, user2.address, {'from': user1.address})

Then after the whole 86400 period is over, user2 calls harvest. User1

and User2, both receive half of the total reward tokens:

99

MA
NU

AL
TE

ST
IN

G



Test 11: Calling fundRewards()twice

These were the steps followed in this test case:

1. minichef.fundRewards(1000000000000000000, 86400, {'from': owner.

address}) was called.

2. User1 deposited 1000 tokens into the only pool.

3. 43200 seconds later: minichef.fundRewards(1000000000000000000,

86400, {'from': owner.address}) was called a second time.

4. User1 called minichef.harvest(0, user1.address, {'from': user1.

address}) receiving 500023148148144948 reward tokens.

5. 43200 seconds later: User1 called a second time minichef.harvest

(0, user1.address, {'from': user1.address}) increasing his total reward

tokens balance to 1000034722222215822.

6. 43200 seconds later: User1 called a third time minichef.harvest(0,

user1.address, {'from': user1.address}) increasing his total reward

tokens balance to 1500034722222212622.

7. 43200 seconds later: User1 called a fourth time minichef.harvest

(0, user1.address, {'from': user1.address}) increasing his total reward

tokens balance to 1999999999999987200.

8. Further calls to minichef.harvest were reverted as there were no more

reward tokens to distribute.

100

MA
NU

AL
TE

ST
IN

G



After this execution we can see that:

minichef.fundRewards(1000000000000000000, 86400, {‘from’: owner.address})

plus

minichef.fundRewards(1000000000000000000, 86400, {‘from’: owner.address})

equals

minichef.fundRewards(2000000000000000000, 172800, {‘from’:

owner.address})

101

MA
NU

AL
TE

ST
IN

G



Test 12: resetRewardsDuration()

These were the steps followed in this test case:

1. minichef.fundRewards(1000000000000000000, 86400, {'from': owner.

address}) was called.

2. User1 deposited 1000 tokens: minichef.deposit(0, 1000, user1.address

, {'from': user1.address})

3. 43200 seconds later: User1 called minichef.harvest(0, user1.address

, {'from': user1.address}) receiving 499999999999996800 reward tokens.

3. minichef.resetRewardsDuration(86400) was called.

4. 43200 seconds later: User1 called minichef.harvest(0, user1.address,

{'from': user1.address}) increasing his total reward tokens balance to

749999999999966874.

4. 43200 seconds later: User1 called minichef.harvest(0, user1.address,

{'from': user1.address}) increasing his total reward tokens balance to

999988425925862874.

After 43200 seconds the user1 had got 499999999999996800 reward tokens

but after that, as the rewards duration was reset, the amount of rewards

token received in the same period of time decreased by a half as expected.

102

MA
NU

AL
TE

ST
IN

G



Test 13: extendRewardsViaFunding()

These were the steps followed in this test case:

1. minichef.fundRewards(1000000000000000000, 86400, {'from': owner.

address}) was called.

2. User1 deposited 1000 tokens: minichef.deposit(0, 1000, user1.address

, {'from': user1.address})

3. 43200 seconds later: User1 called minichef.harvest(0, user1.address

, {'from': user1.address}) receiving 500011574074070874 reward tokens.

4. ExtendRewardsViaFunding was called by adding the same amount

that was used in fundRewards: minichef.extendRewardsViaFunding

(1000000000000000000, 1, {'from': owner.address})

5. Every 43200 seconds harvest was called. We can see how the reward

rate was not changed and the user kept receiving the same amount of

tokens after the same period of time and also, since the amount was the

same initial amount used in fundRewards we can see how the duration of

the rewards was doubled as expected.

103

MA
NU

AL
TE

ST
IN

G



Test 14: extendRewardsViaDuration()

These were the steps followed in this test case:

1. minichef.fundRewards(1000000000000000000, 86400, {'from': owner.

address}) was called.

2. User1 deposited 1000 tokens: minichef.deposit(0, 1000, user1.address

, {'from': user1.address})

3. 43200 seconds later: User1 called minichef.harvest(0, user1.address

, {'from': user1.address}) receiving 500011574074070874 reward tokens.

4. ExtendRewardsViaDuration was called by increasing the same amount

of time used in fundRewards: minichef.extendRewardsViaDuration(86400,

999999999999999999999999999999999999999999, {'from': owner.address})

5. Every 43200 seconds harvest was called. We can see how the reward

rate was not changed and the user kept receiving the same amount of

tokens after the same period of time and also, since the amount of time

was of 86400 seconds as was initially used in fundRewards we can see how

the duration of the rewards was doubled as expected and the same for the

amount of tokens received after the 1 + 1 days:

104

MA
NU

AL
TE

ST
IN

G



4.10 REWARDERCOMPLEX &
REWARDERSIMPLE CONTRACT

The contract RewarderComplex contains the following functions:

• onSushiReward()

• pendingTokens() - view

• poolLength() - view

• add()

• set()

• pendingToken() - view

• massUpdatePools()

• updatePool()

On the other hand, The contract RewarderSimple contains these 2 functions:

• onSushiReward()

• pendingTokens() - (Only callable by MASTERCHEF_V2)

The function onSushiReward is used by MiniChefV2 contract:

_rewarder.onSushiReward(pid, to, to, 0, user.amount); (MiniChefV2.sol:286)

_rewarder.onSushiReward(pid, msg.sender, to, 0, user.amount);

(MiniChefV2.sol:309)

_rewarder.onSushiReward( pid, msg.sender, to, _pendingSushi, user.

amount); (MiniChefV2.sol:336)

_rewarder.onSushiReward(pid, msg.sender, to, _pendingSushi, user.amount

); (MiniChefV2.sol:361)

Most of the testing of these 2 contracts were done in the MiniChefV2

contract section, although we ran the following tests in the

RewarderComplex contract:

105

MA
NU

AL
TE

ST
IN

G



Listing 41: Brownie testing script (Lines 1,2,3,4)

1 WEIGHT1 = 100

2 WEIGHT2 = 100

3 AMOUNT1 = 1000

4 AMOUNT2 = 1000

5

6 sushi = owner.deploy(SUSHI)

7 # constructor(IERC20 _sushi , address _firstOwner) public

8 minichef = owner.deploy(MiniChefV22 , sushi.address , owner.address)

9 # constructor (IERC20 _rewardToken , uint256 _tokenPerBlock ,

address _MASTERCHEF_V2) public {

10 rewardercomplex = owner.deploy(RewarderComplex , sushi.address ,

100, minichef.address)

11

12 rewardercomplex.add(WEIGHT1 , 0, {'from': owner.address })

13 rewardercomplex.add(WEIGHT2 , 1, {'from': owner.address })

14

15 lptoken1 = owner.deploy(lpToken)

16 lptoken2 = owner.deploy(lpToken)

17 lptoken1.mint(user1.address , AMOUNT1)

18 lptoken2.mint(user2.address , AMOUNT2)

19 minichef.addPool(AMOUNT1 , lptoken1.address , rewardercomplex.

address)

20 minichef.addPool(AMOUNT2 , lptoken2.address , rewardercomplex.

address)

21

22 # function onSushiReward (uint256 pid , address _user , address to ,

uint256 , uint256 lpToken)

23 rewardercomplex.onSushiReward (0, user1.address , user1.address , 0,

AMOUNT1 , {'from': minichef.address })

24 lptoken1.approve(minichef.address , AMOUNT1 , {'from': user1.address

})

25 lptoken1.transfer(minichef.address , AMOUNT1 , {'from': user1.

address })

26

27 rewardercomplex.onSushiReward (1, user2.address , user2.address , 0,

AMOUNT2 , {'from': minichef.address })

28 lptoken2.approve(minichef.address , AMOUNT2 , {'from': user2.address

})

29 lptoken2.transfer(minichef.address , AMOUNT2 , {'from': user2.

address })

30

31 rewardercomplex.massUpdatePools ([0 ,1])

32

106

MA
NU

AL
TE

ST
IN

G



33 output.redd("rewardercomplex.pendingToken (0, user1.address) -> " +

str(rewardercomplex.pendingToken (0, user1.address)))

34 output.redd("rewardercomplex.pendingToken (1, user2.address) -> " +

str(rewardercomplex.pendingToken (1, user2.address)))

35

36 output.yelloww("Mining 100 blocks ...")

37 chain.mine (100)

38 output.success("100 blocks mined")

39

40 output.redd("rewardercomplex.pendingToken (0, user1.address) -> " +

str(rewardercomplex.pendingToken (0, user1.address)))

41 output.redd("rewardercomplex.pendingToken (1, user2.address) -> " +

str(rewardercomplex.pendingToken (1, user2.address)))

1st test

- WEIGHT1 = 100

- WEIGHT2 = 100

- AMOUNT1 = 1000

- AMOUNT2 = 1000

2nd test

- WEIGHT1 = 100

- WEIGHT2 = 50

- AMOUNT1 = 1000

- AMOUNT2 = 1000

107

MA
NU

AL
TE

ST
IN

G



3rd test

- WEIGHT1 = 100

- WEIGHT2 = 100

- AMOUNT1 = 1000

- AMOUNT2 = 10

Rewards are allocated based on both pool weights and the % of staked

tokens in each reward pool. As both users here got the 100% of the tokens

in their respective pools, and the pools have the same weights, they

receive the same amounts as intended.

108

MA
NU

AL
TE

ST
IN

G



4.11 STAKINGREWARDS CONTRACT

The contract StakingRewards is based on this Synthetixio contract with

some differences:

1. StakingRewards is Ownable.

2. rewardsDuration is set to 1 day instead of 7.

3. Implements a new function called stakeWithPermit(uint256 amount,

uint deadline, uint8 v, bytes32 r, bytes32 s)

StakingRewards implements the following getter functions:

• totalSupply()

• balanceOf(address account)

• lastTimeRewardApplicable()

• rewardPerToken()

• earned(address account)

• getRewardForDuration()

And the following external/public functions:

• stakeWithPermit(uint256 amount, uint deadline, uint8 v, bytes32 r,

bytes32 s)

• stake(uint256 amount)

• withdraw(uint256 amount)

• getReward()

• exit()

• notifyRewardAmount(uint256 reward) (onlyOwner)

• recoverERC20(address tokenAddress, uint256 tokenAmount) (onlyOwner)

• setRewardsDuration(uint256 _rewardsDuration) (onlyOwner)

All the external functions that perform a transfer are protected with the

nonReentrant modifier following the check-effects-interactions pattern.

109

MA
NU

AL
TE

ST
IN

G

https://raw.githubusercontent.com/Synthetixio/synthetix/v2.50.3-ovm-alpha/contracts/StakingRewards.sol


All the view functions are working as expected.

_totalSupply and _balance are updated every time someone calls stake or

withdraw function:

It is not possible to withdraw an amount higher than the balance as,

thanks to SafeMath, the operation would revert in the line #100:

_balances[msg.sender] = _balances[msg.sender].sub(amount);

The function lastTimeRewardApplicable will return the minimum value

between the current block.timestamp and the periodFinish variable:

The functions rewardPerToken and earned were also tested, see TEST 1.

Finally, in the calculation of the rewards we have detected some

imprecision. In this case the staker will receive 6400 reward tokens

less than what he actually deserved:

This has been flagged in the vulnerability - IMPRECISION IN REWARD

DISTRIBUTION as a low impact as the imprecision is very low compared

to the total reward amount.

110

MA
NU

AL
TE

ST
IN

G



TEST 1: CALLING GETREWARD FUNCTION MULTIPLE TIMES

In this test, we tried to call getReward multiple times and see if the

total amount of PNG reward tokens received were the same than if we just

had waited for the reward period (86400 seconds/1 day) to be completed

and called the getReward function once:

111

MA
NU

AL
TE

ST
IN

G



TEST 2: REWARDS WITH MULTIPLE ACCOUNTS

We performed this test to check if the rewards were being assigned

correctly to multiple stakers. In this case staker1 had staked

100000000000000000000 tokens and staker2 200000000000000000000, which

means that staker2 should be receiving x2 the amount of PNG reward

tokens than staker1:

We can see the tokens are assigned correctly, although we can see how

6400 tokens remained in the contract because of the imprecision mentioned

previously.

112

MA
NU

AL
TE

ST
IN

G



TEST 3: REWARDS WITH MULTIPLE ACCOUNTS 2

In this case we replicated the previous test but, the staker1 calling

113

MA
NU

AL
TE

ST
IN

G



getReward function multiple times and staker2 calling it once the reward

period was completed. As we can see in the image above the output was

the same.

TEST 4: SETREWARDSDURATION

In this test, we tried a common scenario that may happen which is

calling setRewardsDuration once periodFinish is over and before a user

has called the getReward function:

The initial reward of the users remain stored and then, once the owner

of the contract calls notifyRewardAmount, the new rewards are added on

top of the unclaimed ones, as expected.

GAS RECOMMENDATION

As updateReward(address account) modifier is present in 5 different

functions we suggest to make it an internal function. The reason is

that using the modifier that code will be inserted for each function it

is included in. If it is used 5 times, as in this case, the same code

114

MA
NU

AL
TE

ST
IN

G



will be written 5 times into the deploy code. On the other hand, as an

internal function the code will only be added once into the deploy code.

In the picture below we can appreciate the gas reduction in 1556941 -

1487370 = 69571 GWEI:

115

MA
NU

AL
TE

ST
IN

G



4.12 TIMELOCK CONTRACT

The Timelock contract is the standard Compound Finance Timelock contract.

116

MA
NU

AL
TE

ST
IN

G

https://github.com/compound-finance/compound-protocol/blob/master/contracts/Timelock.sol


4.13 TREASURYVESTER CONTRACT

The TreasuryVester contract is used to manage the release of PNG tokens.

The contract contains the following functions:

• function startVesting()external onlyOwner: Used to enable the

distribution of PNG tokens.

• function setRecipient(address recipient_)external onlyOwner: Used

to set the recipient of those tokens.

• function claim()external nonReentrant returns (uint): Used to

claim the PNG tokens.

Our manual testing focused here in checking that the PNG token amounts

being distributed in the different halving periods were correct. This is

the Brownie script code we used:

Listing 42

1 png.transfer(treasuryVester.address , 512000000000000000000000000)

2

3 treasuryVester.setRecipient(user1.address)

4 treasuryVester.startVesting ()

5

6 i = 0

7 while (i < 1460):

8 i = i + 1

9 chain.sleep (86400)

10 chain.mine (1)

11 treasuryVester.claim({'from ': user1 })

And as we can see below this is the balance of user1 after the first

halving period:

The balance is 256M PNG tokens as expected. Then, after entering a new

117

MA
NU

AL
TE

ST
IN

G



halving period, we can see how the tokens received after 1 day were

decreased from ~175K to ~87K:

It is worth mentioning that in order for the halving period to be

finished, claim function should be called 1460 times as the variable

nextSlash is only decreased when calling this function. This means

that, in the case that a user calls claim after 4 years, he will only

receive ~175K tokens, instead of the 256M PNG tokens corresponding to

the 4 years. And he will have to call every 24h that claim function for

the next 1459 days to get to receive the 256M PNG tokens and step into

the next halving period. The gas costs of calling this function 1460

times in the Ethereum main net is $48k:

References:

Pangolin - Platform and PNG token litepaper

118

MA
NU

AL
TE

ST
IN

G

https://pangolin.exchange/litepaper


4.14 TREASURYVESTERPROXY CONTRACT

The TreasuryVesterProxy contract contains the following 2 functions:

• function init()external onlyOwner:

• function claimAndDistribute()external:

We can see below how calling the init function correctly initializes

pngVested and pngVestingTreasuryCutoff variables:

On the other hand, we can see that calling claimAndDistribute function

twice in less than a day will always revert as expected:

119

MA
NU

AL
TE

ST
IN

G



Also, it is worth mentioning that in the code is indicated that diversion

is increased every 30 days and the diversion rate every 300 days:

That is not exactly true. The diversion is increased every 30

claimAndDistribute function calls and diversion rate every 300

claimAndDistribute function calls, as we can see below:

120

MA
NU

AL
TE

ST
IN

G



After 302 calls:

121

MA
NU

AL
TE

ST
IN

G



After 1460 calls. We can also see how the call 1461 is reverting:

The revert is caused in the line 80:

This is an expected behaviour as the tokens will be distributed in 4

years, not 28.

122

MA
NU

AL
TE

ST
IN

G

https://gov.pangolin.exchange/t/pangolin-tokenomics-improvement-proposal/1807
https://gov.pangolin.exchange/t/pangolin-tokenomics-improvement-proposal/1807


123

AUTOMATED TESTING



5.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the scoped contracts. Among the tools used was Slither,

a Solidity static analysis framework. After Halborn verified all the

contracts in the repository and was able to compile them correctly

into their abi and binary formats, Slither was run on the all-scoped

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Slither results:

Airdrop.sol

CommunityTreasury.sol

124

AU
TO

MA
TE

D
TE

ST
IN

G



GovernorAlpha.sol

125

AU
TO

MA
TE

D
TE

ST
IN

G



LiquidityPoolManager.sol

126

AU
TO

MA
TE

D
TE

ST
IN

G



LiquidityPoolManagerV2.sol

127

AU
TO

MA
TE

D
TE

ST
IN

G



128

AU
TO

MA
TE

D
TE

ST
IN

G



MiniChefV2.sol

129

AU
TO

MA
TE

D
TE

ST
IN

G



PNG.sol

PangolinVoteCalculator.sol

130

AU
TO

MA
TE

D
TE

ST
IN

G



RewarderComplex.sol

RewarderSimple.sol

131

AU
TO

MA
TE

D
TE

ST
IN

G



StakingRewards.sol

132

AU
TO

MA
TE

D
TE

ST
IN

G



Timelock.sol

TreasuryVester.sol

133

AU
TO

MA
TE

D
TE

ST
IN

G



TreasuryVesterProxy.sol

134

AU
TO

MA
TE

D
TE

ST
IN

G



5.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on all the contracts and sent the compiled results to the analyzers to

locate any vulnerabilities.

MythX results:

Airdrop.sol

CommunityTreasury.sol

GovernorAlpha.sol

135

AU
TO

MA
TE

D
TE

ST
IN

G



LiquidityPoolManager.sol

LiquidityPoolManagerV2.sol

136

AU
TO

MA
TE

D
TE

ST
IN

G



MiniChefV2.sol

PNG.sol

137

AU
TO

MA
TE

D
TE

ST
IN

G



PangolinVoteCalculator.sol

RewarderComplex.sol

RewarderSimple.sol

Empty output. No issues found by MythX.

StakingRewards.sol

Timelock.sol

TreasuryVester.sol

138

AU
TO

MA
TE

D
TE

ST
IN

G



TreasuryVesterProxy.sol

• MythX correctly detected overflows/underflows in the contracts

LiquidityPoolManager.sol, LiquidityPoolManagerV2.sol and MiniChefV2

.sol. Although, most of the Integer Overflows and Underflows

flagged by MythX are false positives as those contracts are

using Solidity ˆ0.8.0 version. After the Solidity version 0.8.0

Arithmetic operations revert on underflow and overflow by default.

• block.number is used but not as a source of randomness.

• The assert violations are false positives.

139

AU
TO

MA
TE

D
TE

ST
IN

G



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Reference
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Reference
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Example
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Reference
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan


	MANUAL TESTING
	INTRODUCTION
	AIRDROP CONTRACT
	COMMUNITYTREASURY CONTRACT
	GOVERNORALPHA CONTRACT
	LIQUIDITYPOOLMANAGER CONTRACT
	LIQUIDITYPOOLMANAGERV2 CONTRACT
	PNG CONTRACT
	PANGOLINVOTECALCULATOR CONTRACT
	MINICHEFV2 CONTRACT
	REWARDERCOMPLEX & REWARDERSIMPLE CONTRACT
	STAKINGREWARDS CONTRACT
	TIMELOCK CONTRACT
	TREASURYVESTER CONTRACT
	References

	TREASURYVESTERPROXY CONTRACT

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

	AUTOMATED SECURITY SCAN
	Description
	MythX results



