
Pangolin -
RewarderViaMultiplier
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: January 10th, 2022 - January 11th, 2022

Visit: Halborn.com

DRAFT

https://halborn.com

DOCUMENT REVISION HISTORY 3

CONTACTS 3

1 EXECUTIVE OVERVIEW 4

1.1 INTRODUCTION 5

1.2 AUDIT SUMMARY 5

1.3 TEST APPROACH & METHODOLOGY 5

RISK METHODOLOGY 6

1.4 SCOPE 8

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 9

3 FINDINGS & TECH DETAILS 10

3.1 (HAL-01) OUT OF BOUNDS ARRAY ACCESS - HIGH 12

Description 12

Code Location 12

Risk Level 13

Recommendation 14

Remediation Plan 17

3.2 (HAL-02) DOS WITH BLOCK GAS LIMIT - LOW 18

Description 18

Risk Level 18

Recommendation 18

Remediation Plan 18

3.3 (HAL-03) LACK OF OVERFLOW PROTECTION - LOW 19

Description 19

Code Location 19

1

DRAFT

Risk Level 19

Recommendation 19

Remediation Plan 20

3.4 (HAL-04) USING ++I CONSUMES LESS GAS THAN I++ IN LOOPS - INFOR-

MATIONAL 21

Description 21

Code Location 21

Proof of Concept 21

Risk Level 22

Recommendation 22

Remediation Plan 22

4 AUTOMATED TESTING 23

4.1 STATIC ANALYSIS REPORT 24

Description 24

Slither results 24

4.2 AUTOMATED SECURITY SCAN 25

Description 25

MythX results 26

2

DRAFT

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 01/10/2022 Roberto Reigada

0.2 Document Updates 01/11/2022 Roberto Reigada

0.3 Draft Review 01/11/2022 Gabi Urrutia

1.0 Remediation Plan 01/14/2022 Roberto Reigada

1.1 Remediation Plan Review 01/16/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Roberto Reigada Halborn Roberto.Reigada@halborn.com

3

DRAFT

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Roberto.Reigada@halborn.com

4

EXECUTIVE OVERVIEW

DRAFT

1.1 INTRODUCTION

Pangolin engaged Halborn to conduct a security audit on their fee collector

smart contract beginning on January 10th, 2022 and ending on January 11th,

2022. The security assessment was scoped to the smart contract provided

in the Github repository pangolindex/governance.

1.2 AUDIT SUMMARY

The team at Halborn was provided a week for the engagement and assigned a

full time security engineer to audit the security of the smart contract.

The security engineer is a blockchain and smart-contract security expert

with advanced penetration testing, smart-contract hacking, and deep

knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were addressed

by Pangolin team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to uncover

flaws in logic, process,and implementation; automated testing techniques

help enhance coverage of the bridge code and can quickly identify items

that do not follow security best practices. The following phases and

associated tools were used throughout the term of the audit:

5

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

https://github.com/pangolindex/governance/blob/4e2d59227b3198580c07ded7afa0c0367ed272aa/contracts/RewarderViaMultiplier.sol

• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity

variables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hotspots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported

functions. (Slither)

• Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security

incident and the IMPACT should an incident occur. This framework

works for communicating the characteristics and impacts of technology

vulnerabilities. The quantitative model ensures repeatable and accurate

measurement while enabling users to see the underlying vulnerability

characteristics that were used to generate the Risk scores. For every

vulnerability, a risk level will be calculated on a scale of 5 to 1 with

5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

6

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

7

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the following smart contract:

• RewarderViaMultiplier.sol

Commit ID: 4e2d59227b3198580c07ded7afa0c0367ed272aa

Fixed Commit ID: dfaa62d8a719a24a1688b909a4c7d397d619132b

8

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

https://github.com/pangolindex/governance/blob/4e2d59227b3198580c07ded7afa0c0367ed272aa/contracts/RewarderViaMultiplier.sol
https://github.com/pangolindex/governance/blob/4e2d59227b3198580c07ded7afa0c0367ed272aa/contracts/RewarderViaMultiplier.sol
https://github.com/pangolindex/governance/blob/dfaa62d8a719a24a1688b909a4c7d397d619132b/contracts/RewarderViaMultiplier.sol

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 1 0 2 1

IM
PA
CT

LIKELIHOOD

(HAL-02)
(HAL-03)

(HAL-01)

(HAL-04)

9

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - OUT OF BOUNDS ARRAY ACCESS High SOLVED - 01/14/2022

HAL02 - DOS WITH BLOCK GAS LIMIT Low SOLVED - 01/14/2022

HAL03 - LACK OF OVERFLOW PROTECTION Low SOLVED - 01/14/2022

HAL04 - USING ++I CONSUMES LESS GAS
THAN I++ IN LOOPS

Informational SOLVED - 01/14/2022

10

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

11

FINDINGS & TECH
DETAILS

DRAFT

3.1 (HAL-01) OUT OF BOUNDS ARRAY
ACCESS - HIGH

Description:

The contract RewarderSimple will always revert during the deployment as

the constructor tries to write into a position of an array that does not

exist.

Code Location:

Listing 1: RewarderViaMultiplier.sol (Lines 15,48)

14 IERC20 [] private rewardTokens;

15 uint256 [] private rewardMultipliers;

16 address private immutable CHEF_V2;

17

18 /// @dev Should match the precision of the base reward token (PNG)

19 uint256 private constant BASE_REWARD_TOKEN_DIVISOR = 1e18;

20

21 /// @dev Additional reward quantities that might be owed to users

trying to claim after funds have been exhausted

22 mapping(address => uint256 []) private rewardDebts;

23

24 /// @param _rewardTokens The address of each additional reward

token

25 /// @param _rewardMultipliers The amount of each additional reward

token to be claimable for every 1 base reward (PNG) being

claimed

26 /// @param _chefV2 The address of the chef contract where the base

reward (PNG) is being emitted

27 /// @notice Each reward multiplier should have a precision

matching that individual token

28 constructor (

29 address [] memory _rewardTokens ,

30 uint256 [] memory _rewardMultipliers ,

31 address _chefV2

32) public {

33 require(

34 _rewardTokens.length > 0

35 && _rewardTokens.length == _rewardMultipliers.length ,

12

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

36 "RewarderSimple :: Invalid input lengths"

37);

38

39 require(

40 _chefV2 != address (0),

41 "RewarderSimple :: Invalid chef address"

42);

43

44 for (uint256 i; i < _rewardTokens.length; i++) {

45 require(_rewardTokens[i] != address (0), "RewarderSimple ::

Cannot reward zero address");

46 require(_rewardMultipliers[i] > 0, "RewarderSimple ::

Invalid multiplier");

47

48 rewardTokens[i] = IERC20(_rewardTokens[i]);

49 }

50

51 rewardMultipliers = _rewardMultipliers;

52 CHEF_V2 = _chefV2;

53 }

push should be used to write into a new position of an array:

- Line 48; rewardTokens.push(IERC20(_rewardTokens[i]));

A similar issue occurs in:

- Line 57: rewardDebts[user][i].

- Line 72: rewardDebts[user][i].

- Line 75: amounts[i] = rewardBal;

- Line 77: amounts[i] = pendingReward;

- Line 87: rewardDebts[user][i]

- Line 88: amounts[i] = pendingReward;

Risk Level:

Likelihood - 5

Impact - 3

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Recommendation:

It is recommended to modify the smart contract code as shown below:

Listing 2: RewarderViaMultiplier.sol (Lines 22,48,71,87)

1 // SPDX -License -Identifier: MIT

2

3 pragma solidity 0.6.12;

4

5 import "@boringcrypto/boring -solidity/contracts/libraries/

BoringERC20.sol";

6 import "@boringcrypto/boring -solidity/contracts/libraries/

BoringMath.sol";

7

8 import "./ interfaces/IRewarder.sol";

9

10 contract RewarderSimple is IRewarder {

11 using BoringMath for uint256;

12 using BoringERC20 for IERC20;

13

14 IERC20 [] private rewardTokens;

15 uint256 [] private rewardMultipliers;

16 address private immutable CHEF_V2;

17

18 /// @dev Should match the precision of the base reward token (

PNG)

19 uint256 private constant BASE_REWARD_TOKEN_DIVISOR = 1e18;

20

21 /// @dev Additional reward quantities that might be owed to

users trying to claim after funds have been exhausted

22 mapping(address => mapping(uint256 => uint256)) private

rewardDebts;

23

24 /// @param _rewardTokens The address of each additional reward

token

25 /// @param _rewardMultipliers The amount of each additional

reward token to be claimable for every 1 base reward (PNG)

being claimed

26 /// @param _chefV2 The address of the chef contract where the

base reward (PNG) is being emitted

27 /// @notice Each reward multiplier should have a precision

matching that individual token

28 constructor (

29 address [] memory _rewardTokens ,

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

30 uint256 [] memory _rewardMultipliers ,

31 address _chefV2

32) public {

33 require(

34 _rewardTokens.length > 0

35 && _rewardTokens.length == _rewardMultipliers.length ,

36 "RewarderSimple :: Invalid input lengths"

37);

38

39 require(

40 _chefV2 != address (0),

41 "RewarderSimple :: Invalid chef address"

42);

43

44 for (uint256 i; i < _rewardTokens.length; i++) {

45 require(_rewardTokens[i] != address (0), "

RewarderSimple :: Cannot reward zero address");

46 require(_rewardMultipliers[i] > 0, "RewarderSimple ::

Invalid multiplier");

47

48 rewardTokens.push(IERC20(_rewardTokens[i]));

49 }

50

51 rewardMultipliers = _rewardMultipliers;

52 CHEF_V2 = _chefV2;

53 }

54

55 function onReward(uint256 , address user , address to, uint256

rewardAmount , uint256) onlyMCV2 override external {

56 for (uint256 i; i < rewardTokens.length; i++) {

57 uint256 pendingReward = rewardDebts[user][i] +

rewardAmount.mul(rewardMultipliers[i]) /

BASE_REWARD_TOKEN_DIVISOR;

58 uint256 rewardBal = rewardTokens[i]. balanceOf(address(

this));

59 if (pendingReward > rewardBal) {

60 rewardDebts[user][i] = pendingReward - rewardBal;

61 rewardTokens[i]. safeTransfer(to , rewardBal);

62 } else {

63 rewardDebts[user][i] = 0;

64 rewardTokens[i]. safeTransfer(to , pendingReward);

65 }

66 }

67 }

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

68

69 /// @notice Shows pending tokens that can be currently claimed

70 function pendingTokens(uint256 , address user , uint256

rewardAmount) override external view returns (IERC20 []

memory tokens , uint256 [] memory amounts) {

71 amounts = new uint256 [](rewardTokens.length);

72 for (uint256 i; i < rewardTokens.length; i++) {

73 uint256 pendingReward = rewardDebts[user][i] +

rewardAmount.mul(rewardMultipliers[i]) /

BASE_REWARD_TOKEN_DIVISOR;

74 uint256 rewardBal = rewardTokens[i]. balanceOf(address(

this));

75 if (pendingReward > rewardBal) {

76 amounts[i] = rewardBal;

77 } else {

78 amounts[i] = pendingReward;

79 }

80 }

81 return (rewardTokens , amounts);

82 }

83

84 /// @notice Shows pending tokens including rewards accrued

after the funding has been exhausted

85 /// @notice these extra rewards could be claimed if more

funding is added to the contract

86 function pendingTokensDebt(uint256 , address user , uint256

rewardAmount) external view returns (IERC20 [] memory tokens

, uint256 [] memory amounts) {

87 amounts = new uint256 [](rewardTokens.length);

88 for (uint256 i; i < rewardTokens.length; i++) {

89 uint256 pendingReward = rewardDebts[user][i] +

rewardAmount.mul(rewardMultipliers[i]) /

BASE_REWARD_TOKEN_DIVISOR;

90 amounts[i] = pendingReward;

91 }

92 return (rewardTokens , amounts);

93 }

94

95 modifier onlyMCV2 {

96 require(

97 msg.sender == CHEF_V2 ,

98 "Only MCV2 can call this function."

99);

100 _;

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

101 }

102

103 }

Remediation Plan:

SOLVED: The Pangolin team addressed all the out of bound accesses in the

smart contract, following our suggested code.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.2 (HAL-02) DOS WITH BLOCK GAS
LIMIT - LOW

Description:

In the constructor of the contract RewarderSimple, different rewardTokens

are stored in an array. This array has no limitation and can contain

infinite rewardTokens. This array is iterated later on by the onReward()

function. If the array is big enough, the block gas limit will be reached

and the transaction will never get processed. For that reason, it is

recommended to add a require statement in the constructor that does not

allow adding, for example, more than 100 different rewardTokens.

Risk Level:

Likelihood - 1

Impact - 4

Recommendation:

It is recommended to add a require statement in the constructor that does

not allow adding, for example, more than 100 different rewardTokens.

Remediation Plan:

SOLVED: The Pangolin team added the suggested require statement in the

constructor. It is not possible anymore to deploy the contract with more

than 100 rewardTokens.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.3 (HAL-03) LACK OF OVERFLOW
PROTECTION - LOW

Description:

In the contract RewarderViaMultiplier.sol, in the calculation of the

variable pendingReward the addition operation is vulnerable to overflow.

The likelihood of overflowing this operation is very low, as that could

happen only in the case that the pendingReward is higher than UINT256_-

MAX_VALUE = 2^256 - 1.

Code Location:

RewarderViaMultiplier.sol

- Line 57: uint256 pendingReward = rewardDebts[user][i] + rewardAmount.

mul(rewardMultipliers[i])/ BASE_REWARD_TOKEN_DIVISOR;

- Line 72: uint256 pendingReward = rewardDebts[user][i] + rewardAmount.

mul(rewardMultipliers[i])/ BASE_REWARD_TOKEN_DIVISOR;

- Line 87: uint256 pendingReward = rewardDebts[user][i] + rewardAmount.

mul(rewardMultipliers[i])/ BASE_REWARD_TOKEN_DIVISOR;

Risk Level:

Likelihood - 1

Impact - 4

Recommendation:

It is recommended to use SafeMath.add() function in the addition

operation as shown below:

uint256 pendingReward = rewardDebts[user][i].add(rewardAmount.mul(

rewardMultipliers[i])/ BASE_REWARD_TOKEN_DIVISOR);

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

Remediation Plan:

SOLVED: The Pangolin team uses now SafeMath.add() to perform the mentioned

operations.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

3.4 (HAL-04) USING ++I CONSUMES
LESS GAS THAN I++ IN LOOPS -
INFORMATIONAL

Description:

In the loop, the variable i is incremented using i++. It is known that,

in loops, using ++i costs less gas per iteration than i++.

Code Location:

RewarderViaMultiplier.sol

- Line 44: for (uint256 i; i < _rewardTokens.length; i++){

- Line 56: for (uint256 i; i < rewardTokens.length; i++){

- Line 71: for (uint256 i; i < rewardTokens.length; i++){

- Line 86: for (uint256 i; i < rewardTokens.length; i++){

Proof of Concept:

For example, based in the following test contract:

Listing 3: Test.sol

1 //SPDX -License -Identifier: MIT

2 pragma solidity 0.8.9;

3

4 contract test {

5 function postiincrement(uint256 iterations) public {

6 for (uint256 i = 0; i < iterations; i++) {

7 }

8 }

9 function preiincrement(uint256 iterations) public {

10 for (uint256 i = 0; i < iterations; ++i) {

11 }

12 }

13 }

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

We can see the difference in the gas costs:

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to use ++i instead of i++ to increment the value of an

uint variable inside a loop. This is not applicable outside of loops.

Remediation Plan:

SOLVED: The Pangolin team uses now ++i to increment the i variable inside

loops, saving some gas.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT

23

AUTOMATED TESTING

DRAFT

4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the scoped contracts. Among the tools used was Slither,

a Solidity static analysis framework. After Halborn verified all the

contracts in the repository and was able to compile them correctly

into their abi and binary formats, Slither was run on the all-scoped

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Slither results:

RewarderViaMultiplier.sol

• No major issues were found by Slither.

24

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

4.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on all the contracts and sent the compiled results to the analyzers to

locate any vulnerabilities.

25

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

MythX results:

RewarderViaMultiplier.sol

• Integer Overflows and Underflows are correctly flagged by MythX,

although they are very unlikely to occur.

• Some assert violations are correctly flagged by MythX as is described

in one of the findings.

26

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT

THANK YOU FOR CHOOSING

DRAFT

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

	AUTOMATED SECURITY SCAN
	Description
	MythX results

