
Pangolin -
MiniChefV2Zapper

Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: February 4th, 2022 - February 9th, 2022

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 3

CONTACTS 3

1 EXECUTIVE OVERVIEW 4

1.1 INTRODUCTION 5

1.2 AUDIT SUMMARY 5

1.3 TEST APPROACH & METHODOLOGY 5

RISK METHODOLOGY 6

1.4 SCOPE 8

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 9

3 FINDINGS & TECH DETAILS 10

3.1 (HAL-01) WRONG PERMIT CALL IN ZAPINVIAPERMIT FUNCTION - MEDIUM

12

Description 12

Risk Level 13

Recommendation 13

Remediation Plan 13

3.2 (HAL-02) MISSING ZERO ADDRESS CHECKS - LOW 14

Description 14

Code location 14

Risk Level 14

Recommendation 14

Remediation Plan 15

3.3 (HAL-03) POSSIBLE MISUSE OF PUBLIC FUNCTIONS - INFORMATIONAL

16

Description 16

1



Risk Level 16

Recommendation 16

Remediation Plan 16

3.4 (HAL-04) USING ++I CONSUMES LESS GAS THAN I++ IN LOOPS - INFOR-

MATIONAL 17

Description 17

Code Location 17

Proof of Concept 17

Risk Level 18

Recommendation 18

Remediation Plan 18

4 AUTOMATED TESTING 19

4.1 STATIC ANALYSIS REPORT 20

Description 20

Slither results 20

4.2 AUTOMATED SECURITY SCAN 21

Description 21

MythX results 21

2



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 02/04/2022 Roberto Reigada

0.2 Document Updates 02/09/2022 Roberto Reigada

0.3 Draft Review 02/09/2022 Gabi Urrutia

1.0 Remediation Plan 02/10/2022 Roberto Reigada

1.1 Remediation Plan Review 02/10/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Roberto Reigada Halborn Roberto.Reigada@halborn.com

3

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Roberto.Reigada@halborn.com


4

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

Pangolin engaged Halborn to conduct a security audit on their

MiniChefV2Zapper smart contract beginning on February 4th, 2022

and ending on February 9th, 2022. The security assessment was

scoped to the smart contract provided in the GitHub repository

pangolindex/exchange-contracts.

1.2 AUDIT SUMMARY

The team at Halborn was provided a week for the engagement and assigned a

full-time security engineer to audit the security of the smart contract.

The security engineer is a blockchain and smart-contract security expert

with advanced penetration testing, smart-contract hacking, and deep

knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were addressed

by Pangolin team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to uncover

flaws in logic, process, and implementation; automated testing techniques

help enhance coverage of the bridge code and can quickly identify items

that do not follow security best practices. The following phases and

associated tools were used throughout the term of the audit:

5

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/pangolindex/exchange-contracts/blob/aaca68c25e5226bfbb0d011c5a5a13468e4a3f47/contracts/dex/MiniChefV2Zapper.sol


• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity

variables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hotspots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported

functions. (Slither)

• Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security

incident and the IMPACT should an incident occur. This framework

works for communicating the characteristics and impacts of technology

vulnerabilities. The quantitative model ensures repeatable and accurate

measurement while enabling users to see the underlying vulnerability

characteristics that were used to generate the Risk scores. For every

vulnerability, a risk level will be calculated on a scale of 5 to 1 with

5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

6

EX
EC

UT
IV

E
OV

ER
VI

EW



3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

7

EX
EC

UT
IV

E
OV

ER
VI

EW



1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the following smart contract:

• MiniChefV2Zapper.sol

Commit ID: aaca68c25e5226bfbb0d011c5a5a13468e4a3f47

Fixed Commit ID: f2caccfa254cf9cc3a16be797a6624ce86f48f4a

8

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/pangolindex/exchange-contracts/blob/aaca68c25e5226bfbb0d011c5a5a13468e4a3f47/contracts/dex/MiniChefV2Zapper.sol
https://github.com/pangolindex/exchange-contracts/blob/aaca68c25e5226bfbb0d011c5a5a13468e4a3f47/contracts/dex/MiniChefV2Zapper.sol
https://github.com/pangolindex/exchange-contracts/blob/f2caccfa254cf9cc3a16be797a6624ce86f48f4a/contracts/dex/MiniChefV2Zapper.sol


2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 1 1 2

IM
PA
CT

LIKELIHOOD

(HAL-02) (HAL-01)

(HAL-03)
(HAL-04)

9

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - WRONG PERMIT CALL IN
ZAPINVIAPERMIT FUNCTION

Medium SOLVED - 02/10/2022

HAL02 - MISSING ZERO ADDRESS CHECKS Low RISK ACCEPTED

HAL03 - POSSIBLE MISUSE OF PUBLIC
FUNCTIONS

Informational SOLVED - 02/10/2022

HAL04 - USING ++I CONSUMES LESS GAS
THAN I++ IN LOOPS

Informational SOLVED - 02/10/2022

10

EX
EC

UT
IV

E
OV

ER
VI

EW



11

FINDINGS & TECH
DETAILS



3.1 (HAL-01) WRONG PERMIT CALL IN
ZAPINVIAPERMIT FUNCTION - MEDIUM

Description:

The function zapInViaPermit() is used to call the zapIn function in

just one transaction, without having to have sent previously an initial

transaction approving the tokenIn transfer:

Listing 1: MiniChefV2Zapper.sol (Lines 85)

77 function zapInViaPermit(

78 address pairAddress ,

79 address tokenIn ,

80 uint256 tokenInAmount ,

81 uint256 tokenAmountOutMin ,

82 uint256 deadline ,

83 uint8 v, bytes32 r, bytes32 s

84 ) external {

85 IPangolinPair(pairAddress).permit(msg.sender , address(this

), tokenInAmount , deadline , v, r, s);

86 zapIn(pairAddress , tokenIn , tokenInAmount ,

tokenAmountOutMin);

87 }

The permit, though, is done on the pairAddress token instead of the tokenIn

token, which is the token address which should be actually approved, as

can be seen in the code below:

Listing 2: MiniChefV2Zapper.sol (Lines 72)

68 function zapIn(address pairAddress , address tokenIn , uint256

tokenInAmount , uint256 tokenAmountOutMin) public {

69 require(tokenInAmount >= minimumAmount , 'Insignificant

input amount ');

70 require(pairAddress != address (0), 'Invalid pair address ')

;

71

72 TransferHelper.safeTransferFrom(tokenIn , msg.sender ,

address(this), tokenInAmount);

12

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



73

74 _swapAndFarm(pairAddress , tokenIn , tokenAmountOutMin , 0,

false);

75 }

With the current implementation, zapInViaPermit() will not work as the

permit is wrongly executed.

Risk Level:

Likelihood - 5

Impact - 2

Recommendation:

It is recommended to use tokenIn instead of pairAddress in the permit()

call:

Listing 3: MiniChefV2Zapper.sol (Lines 85)

77 function zapInViaPermit(

78 address pairAddress ,

79 address tokenIn ,

80 uint256 tokenInAmount ,

81 uint256 tokenAmountOutMin ,

82 uint256 deadline ,

83 uint8 v, bytes32 r, bytes32 s

84 ) external {

85 IPangolinPair(tokenIn).permit(msg.sender , address(this),

tokenInAmount , deadline , v, r, s);

86 zapIn(pairAddress , tokenIn , tokenInAmount ,

tokenAmountOutMin);

87 }

Remediation Plan:

SOLVED: The Pangolin team replaced pairAddress with tokenIn in the permit

call.

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.2 (HAL-02) MISSING ZERO ADDRESS
CHECKS - LOW

Description:

The constructor of the MiniChefV2Zapper contract is missing address

validation. Every address should be validated and checked that is

different from zero. This is also considered a best practice.

Code location:

Listing 4: MiniChefV2Zapper.sol (Lines 40-42)

35 constructor(address _router , address _miniChefV2 , address _WAVAX)

{

36 // Safety checks to ensure WAVAX token address

37 IWAVAX(_WAVAX).deposit{value: 0}();

38 IWAVAX(_WAVAX).withdraw (0);

39

40 router = IPangolinRouter(_router);

41 miniChefV2 = IMiniChefV2(_miniChefV2);

42 WAVAX = _WAVAX;

43 }

Risk Level:

Likelihood - 3

Impact - 2

Recommendation:

It is recommended to validate that every address input is different from

zero.

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Remediation Plan:

RISK ACCEPTED: The Pangolin team accepted this risk.

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.3 (HAL-03) POSSIBLE MISUSE OF
PUBLIC FUNCTIONS - INFORMATIONAL

Description:

In the MiniChefV2Zapper contract there is a function marked as public but

it is never directly called within the same contract or in any of their

descendants:

MiniChefV2Zapper.sol

- estimateSwap() (MiniChefV2Zapper.sol#296-312)

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

If the function is not intended to be called internally or by their

descendants, it is better to mark it as external to reduce gas costs.

Remediation Plan:

SOLVED: The Pangolin team declared the estimateSwap() function as external

.

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.4 (HAL-04) USING ++I CONSUMES
LESS GAS THAN I++ IN LOOPS -
INFORMATIONAL

Description:

In all the loops, the variable i is incremented using i++. It is known

that, in loops, using ++i costs less gas per iteration than i++.

Code Location:

MiniChefV2Zapper.sol

- Line 277: for (uint256 i; i < tokens.length; i++){

Proof of Concept:

For example, based in the following test contract:

Listing 5: Test.sol

1 //SPDX -License -Identifier: MIT

2 pragma solidity 0.8.9;

3

4 contract test {

5 function postiincrement(uint256 iterations) public {

6 for (uint256 i = 0; i < iterations; i++) {

7 }

8 }

9 function preiincrement(uint256 iterations) public {

10 for (uint256 i = 0; i < iterations; ++i) {

11 }

12 }

13 }

We can see the difference in the gas costs:

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to use ++i instead of i++ to increment the value of an

uint variable inside a loop. This is not applicable outside of loops.

Remediation Plan:

SOLVED: The Pangolin team uses now ++i to increment the i variable inside

loops, saving some gas.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



19

AUTOMATED TESTING



4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the scoped contracts. Among the tools used was Slither,

a Solidity static analysis framework. After Halborn verified all the

contracts in the repository and was able to compile them correctly

into their ABI and binary formats, Slither was run on the all-scoped

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Slither results:

MiniChefV2Zapper.sol

• No major issues found by Slither. The reentrancy flagged by Slither

is a false positive.

20

AU
TO

MA
TE

D
TE

ST
IN

G



4.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on all the contracts and sent the compiled results to the analyzers to

locate any vulnerabilities.

MythX results:

MiniChefV2Zapper.sol

21

AU
TO

MA
TE

D
TE

ST
IN

G



• Integer Overflows and Underflows flagged by MythX are false

positives, as the contract is using Solidity 0.8.11 version.

After the Solidity version 0.8.0 Arithmetic operations revert to

underflow and overflow by default.

• Assert violations are false positives.

22

AU
TO

MA
TE

D
TE

ST
IN

G



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan


	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

	AUTOMATED SECURITY SCAN
	Description
	MythX results



