
Pangolin - Fee
Collector

Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: December 9th, 2021 - December 11th, 2021

Visit: Halborn.com

DRAFT

https://halborn.com


DOCUMENT REVISION HISTORY 3

CONTACTS 3

1 EXECUTIVE OVERVIEW 4

1.1 INTRODUCTION 5

1.2 AUDIT SUMMARY 5

1.3 TEST APPROACH & METHODOLOGY 5

RISK METHODOLOGY 6

1.4 SCOPE 8

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 9

3 FINDINGS & TECH DETAILS 10

3.1 (HAL-01) DOS WITH BLOCK GAS LIMIT - LOW 12

Description 12

Code Location 12

Risk Level 13

Recommendation 13

Remediation Plan 14

3.2 (HAL-02) USING ++I CONSUMES LESS GAS THAN I++ IN LOOPS - INFOR-

MATIONAL 15

Description 15

Code Location 15

Proof of Concept 15

Risk Level 16

Recommendation 16

Remediation Plan 16

3.3 (HAL-03) NO NEED TO INITIALIZE UINT256 I VARIABLE TO 0 - INFOR-

MATIONAL 17

1

DRAFT



Description 17

Code Location 17

Risk Level 17

Recommendation 17

Remediation Plan 17

3.4 (HAL-04) POSSIBLE MISUSE OF PUBLIC FUNCTIONS - INFORMATIONAL

18

Description 18

Risk Level 18

Recommendation 18

Remediation Plan 18

4 AUTOMATED TESTING 19

4.1 STATIC ANALYSIS REPORT 20

Description 20

Slither results 20

4.2 AUTOMATED SECURITY SCAN 22

Description 22

MythX results 22

2

DRAFT



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 12/09/2021 Roberto Reigada

0.2 Document Updates 12/10/2021 Roberto Reigada

0.3 Draft Review 12/10/2021 Gabi Urrutia

1.0 Remediation Plan 01/10/2022 Roberto Reigada

1.1 Remediation Plan Review 01/10/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Roberto Reigada Halborn Roberto.Reigada@halborn.com

3

DRAFT

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Roberto.Reigada@halborn.com


4

EXECUTIVE OVERVIEW

DRAFT



1.1 INTRODUCTION

Pangolin engaged Halborn to conduct a security audit on their fee collector

smart contract beginning on December 9th, 2021 and ending on December

11th, 2021. The security assessment was scoped to the smart contract

provided in the Github repository pangolindex/fee-collector.

1.2 AUDIT SUMMARY

The team at Halborn was provided a week for the engagement and assigned a

full time security engineer to audit the security of the smart contract.

The security engineer is a blockchain and smart-contract security expert

with advanced penetration testing, smart-contract hacking, and deep

knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were addressed

by Pangolin team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to uncover

flaws in logic, process,and implementation; automated testing techniques

help enhance coverage of the bridge code and can quickly identify items

that do not follow security best practices. The following phases and

associated tools were used throughout the term of the audit:

5

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

https://github.com/pangolindex/fee-collector


• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity

variables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hotspots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported

functions. (Slither)

• Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security

incident and the IMPACT should an incident occur. This framework

works for communicating the characteristics and impacts of technology

vulnerabilities. The quantitative model ensures repeatable and accurate

measurement while enabling users to see the underlying vulnerability

characteristics that were used to generate the Risk scores. For every

vulnerability, a risk level will be calculated on a scale of 5 to 1 with

5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

6

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT



3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

7

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT



1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the following smart contracts:

• FeeCollector.sol

Commit ID: 903abab3be7af7c4266c26117d83a17a9b2922e7

Fixed Commit ID: 4593ee78524bc4da49ebb425eae167a42ae9fb4f

8

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT

https://github.com/pangolindex/fee-collector


2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 1 3

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-02)
(HAL-03)
(HAL-04)

9

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - DOS WITH BLOCK GAS LIMIT Low SOLVED - 01/10/2022

HAL02 - USING ++I CONSUMES LESS GAS
THAN I++ IN LOOPS

Informational SOLVED - 01/10/2022

HAL03 - NO NEED TO INITIALIZE
UINT256 I VARIABLE TO 0

Informational SOLVED - 01/10/2022

HAL04 - POSSIBLE MISUSE OF PUBLIC
FUNCTIONS

Informational SOLVED - 01/10/2022

10

EX
EC

UT
IV

E
OV

ER
VI

EW DRAFT



11

FINDINGS & TECH
DETAILS

DRAFT



3.1 (HAL-01) DOS WITH BLOCK GAS
LIMIT - LOW

Description:

When smart contracts are deployed or functions inside them are called, the

execution of these actions always require a certain amount of gas, based

on how much computation is needed to complete them. The Ethereum network

specifies a block gas limit and the sum of all transactions included in a

block cannot exceed the threshold. Programming patterns that are harmless

in centralized applications can lead to Denial of Service conditions in

smart contracts when the cost of executing a function exceeds the block

gas limit. In the contract FeeCollector.sol, the function _collectFees()

iterates over an array of liquidityPairs of unknown size. If this array

is big enough, the transaction could reach the block gas limit and would

not be completed.

Code Location:

Listing 1: FeeCollector.sol (Lines 123)

120 function _collectFees(address [] memory liquidityPairs ,

121 address outputToken) internal {

122 require(outputToken != address (0), "Output token unspecified")

;

123 for (uint256 i = 0; i < liquidityPairs.length; i++) {

124 address currentPairAddress = liquidityPairs[i];

125 IPangolinPair currentPair = IPangolinPair(

currentPairAddress);

126 uint256 pglBalance = currentPair.balanceOf(address(this));

127 if (pglBalance > 0) {

128 _pullLiquidity(currentPair , pglBalance);

129 address token0 = currentPair.token0 ();

130 address token1 = currentPair.token1 ();

131 if (token0 != outputToken) {

132 _swap(token0 , outputToken ,

133 IERC20(token0).balanceOf(address(this)));

134 }

135 if (token1 != outputToken) {

12

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



136 _swap(token1 , outputToken ,

137 IERC20(token1).balanceOf(address(this)));

138 }

139 }

140 }

141 }

Risk Level:

Likelihood - 2

Impact - 3

Recommendation:

It is recommended to limit the size of the liquidityPairs parameter in

the harvest() function. For example:

Listing 2: FeeCollector.sol (Lines 150)

148 function harvest(address [] memory liquidityPairs , bool

claimMiniChef)

149 public {

150 require (liquidityPairs.length <= 30, "liquidityPairs should

be <= 30")

151 address _outputToken = IStakingRewards(stakingRewards).

rewardsToken ();

152

153 if (claimMiniChef) {

154 IMiniChef(MINICHEF).harvest(miniChefPoolId , address(this))

;

155 }

156

157 if (liquidityPairs.length > 0) {

158 _collectFees(liquidityPairs , _outputToken);

159 }

160

161 uint256 _finalBalance = IERC20(_outputToken).balanceOf(address

(this));

162

163 uint256 _callIncentive = _finalBalance * harvestIncentive

164 / FEE_DENOMINATOR;

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



165 uint256 _totalRewards = _finalBalance - _callIncentive;

166

167 if (_callIncentive > 0 && _totalRewards > 0) {

168 IERC20(_outputToken).safeTransfer(stakingRewards ,

_totalRewards);

169 // No need for event as notifyRewardAmount will create one

170 IStakingRewards(stakingRewards).notifyRewardAmount(

_totalRewards);

171 IERC20(_outputToken).safeTransfer(msg.sender ,

_callIncentive);

172 }

173

174 }

Remediation Plan:

SOLVED: Pangolin team limited the size of the liquidityPairs parameter

in the harvest() function to 50.

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



3.2 (HAL-02) USING ++I CONSUMES
LESS GAS THAN I++ IN LOOPS -
INFORMATIONAL

Description:

In the loop, the variable i is incremented using i++. It is known that,

in loops, using ++i costs less gas per iteration than i++.

Code Location:

FeeCollector.sol

Line 123: for (uint256 i = 0; i < liquidityPairs.length; i++)

Proof of Concept:

For example, based in the following test contract:

Listing 3: Test.sol

1 //SPDX -License -Identifier: MIT

2 pragma solidity 0.8.9;

3

4 contract test {

5 function postiincrement(uint256 iterations) public {

6 for (uint256 i = 0; i < iterations; i++) {

7 }

8 }

9 function preiincrement(uint256 iterations) public {

10 for (uint256 i = 0; i < iterations; ++i) {

11 }

12 }

13 }

We can see the difference in the gas costs:

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to use ++i instead of i++ to increment the value of an

uint variable inside a loop. This is not applicable outside of loops.

Remediation Plan:

SOLVED: Pangolin team uses now ++i to increment the i variable inside

loops, saving some gas.

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



3.3 (HAL-03) NO NEED TO INITIALIZE
UINT256 I VARIABLE TO 0 -
INFORMATIONAL

Description:

As miniChefPoolId is an uint256, it is already initialized to 0. uint256

public miniChefPoolId = 0; reassigns the 0 to miniChefPoolId which wastes

gas. The same applies to the uint256 i variable declared in the loop.

Code Location:

FeeCollector.sol

Line 27: uint256 public miniChefPoolId = 0;

Line 123: for (uint256 i = 0; i < liquidityPairs.length; i++)

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to not initialize the two variables mentioned to 0 to

save some gas. For example:

Line 27: uint256 public miniChefPoolId;

Line 123: for (uint256 i; i < liquidityPairs.length; i++)

Remediation Plan:

SOLVED: Pangolin team removed the initialization to zero for the two

variables mentioned.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



3.4 (HAL-04) POSSIBLE MISUSE OF
PUBLIC FUNCTIONS - INFORMATIONAL

Description:

In the PangolinFeeCollector contract there is a function marked as public

but it is never directly called within the same contract or in any of

their descendants:

FeeCollector.sol

- harvest() (FeeCollector.sol#148-174)

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

If the function is not intended to be called internally or by their

descendants, it is better to mark it as external to reduce gas costs.

Remediation Plan:

SOLVED: Pangolin team declared the harvest() function as external.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

DRAFT



19

AUTOMATED TESTING

DRAFT



4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the scoped contracts. Among the tools used was Slither,

a Solidity static analysis framework. After Halborn verified all the

contracts in the repository and was able to compile them correctly

into their abi and binary formats, Slither was run on the all-scoped

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Slither results:

FeeCollector.sol

20

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT



• No major issues found by Slither.

21

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT



4.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on all the contracts and sent the compiled results to the analyzers to

locate any vulnerabilities.

MythX results:

MythX only found some issues in the following smart contracts:

FeeCollector.sol

• Integer Overflows and Underflows flagged by MythX are false

positives, as the contract is using Solidity 0.8.9 version.

After the Solidity version 0.8.0 Arithmetic operations revert to

underflow and overflow by default.

• Assert violations are false positives.

22

AU
TO

MA
TE

D
TE

ST
IN

G DRAFT



THANK YOU FOR CHOOSING

DRAFT


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan


	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

	AUTOMATED SECURITY SCAN
	Description
	MythX results



