
Pangolin -
Exchange
Contracts

Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: February 28th, 2022 - March 1st, 2022

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 4

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 AUDIT SUMMARY 6

1.3 TEST APPROACH & METHODOLOGY 6

RISK METHODOLOGY 7

1.4 SCOPE 9

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 10

3 FINDINGS & TECH DETAILS 11

3.1 (HAL-01) MINT FUNCTION IS MISSING MOVEDELEGATES CALL - MEDIUM

13

Description 13

Risk Level 14

Recommendation 14

Remediation Plan 14

3.2 (HAL-02) LACK OF TRANSFEROWNERSHIP PATTERN - MEDIUM 15

Description 15

Code location 15

Risk Level 16

Recommendation 16

Remediation Plan 16

3.3 (HAL-03) DOS WITH BLOCK GAS LIMIT - MEDIUM 18

Description 18

1



Risk Level 19

Recommendation 19

Remediation Plan 20

3.4 (HAL-04) MISSING ZERO ADDRESS CHECKS - LOW 21

Description 21

Code location 21

Risk Level 23

Recommendation 23

Remediation Plan 24

3.5 (HAL-05) USING ++I CONSUMES LESS GAS THAN I++ IN LOOPS - INFOR-

MATIONAL 25

Description 25

Code Location 25

Proof of Concept 25

Risk Level 26

Recommendation 26

Remediation Plan 26

3.6 (HAL-06) UNNEEDED INITIALIZATION OF UINT VARIABLES TO ZERO -

INFORMATIONAL 27

Description 27

Code Location 27

Risk Level 27

Recommendation 27

Remediation Plan 27

3.7 (HAL-07) POSSIBLE MISUSE OF PUBLIC FUNCTIONS - INFORMATIONAL

28

2



Description 28

Risk Level 28

Recommendation 28

Remediation Plan 28

4 AUTOMATED TESTING 29

4.1 STATIC ANALYSIS REPORT 30

Description 30

Slither results 30

4.2 AUTOMATED SECURITY SCAN 32

Description 32

MythX results 32

3



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 02/28/2022 Roberto Reigada

0.2 Document Updates 03/01/2022 Roberto Reigada

0.3 Draft Review 03/01/2022 Gabi Urrutia

1.0 Remediation Plan 03/09/2022 Roberto Reigada

1.1 Remediation Plan Review 03/09/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Roberto Reigada Halborn Roberto.Reigada@halborn.com

4

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Roberto.Reigada@halborn.com


5

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

Pangolin engaged Halborn to conduct a security audit on their Exchange

smart contracts beginning on February 28th, 2022 and ending on March 1st,

2022. The security assessment was scoped to some of the smart contracts

provided in the GitHub repository pangolindex/exchange-contracts.

1.2 AUDIT SUMMARY

The team at Halborn was provided a week for the engagement and assigned a

full-time security engineer to audit the security of the smart contracts.

The security engineer is a blockchain and smart-contract security expert

with advanced penetration testing, smart-contract hacking, and deep

knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were mostly

addressed by the Pangolin team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to uncover

flaws in logic, process, and implementation; automated testing techniques

help enhance coverage of the bridge code and can quickly identify items

that do not follow security best practices. The following phases and

associated tools were used throughout the term of the audit:

6

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/pangolindex/exchange-contracts


• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity

variables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hotspots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported

functions. (Slither)

• Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security

incident and the IMPACT should an incident occur. This framework

works for communicating the characteristics and impacts of technology

vulnerabilities. The quantitative model ensures repeatable and accurate

measurement while enabling users to see the underlying vulnerability

characteristics that were used to generate the Risk scores. For every

vulnerability, a risk level will be calculated on a scale of 5 to 1 with

5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

7

EX
EC

UT
IV

E
OV

ER
VI

EW



3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

8

EX
EC

UT
IV

E
OV

ER
VI

EW



1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the following smart contracts:

• RevenueDistributor.sol

• TreasuryVester.sol

• PNG.sol

• Airdrop.sol

Commit ID: 30b5798c64f6aa29b92a5c2cf68cfb7ed0f7d506

Fixed Commit ID: bbbf14abf0283fa7ea3ccf07288fecdc177ed8f9

9

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/pangolindex/exchange-contracts/tree/30b5798c64f6aa29b92a5c2cf68cfb7ed0f7d506
https://github.com/pangolindex/exchange-contracts/tree/30b5798c64f6aa29b92a5c2cf68cfb7ed0f7d506
https://github.com/pangolindex/exchange-contracts/tree/bbbf14abf0283fa7ea3ccf07288fecdc177ed8f9


2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 3 1 3

IM
PA
CT

LIKELIHOOD

(HAL-03)

(HAL-01)
(HAL-02)

(HAL-04)

(HAL-05)
(HAL-06)
(HAL-07)

10

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - MINT FUNCTION IS MISSING
MOVEDELEGATES CALL

Medium SOLVED - 03/09/2022

HAL02 - LACK OF TRANSFEROWNERSHIP
PATTERN

Medium RISK ACCEPTED

HAL03 - DOS WITH BLOCK GAS LIMIT Medium SOLVED - 03/09/2022

HAL04 - MISSING ZERO ADDRESS CHECKS Low SOLVED - 03/09/2022

HAL05 - USING ++I CONSUMES LESS GAS
THAN I++ IN LOOPS

Informational SOLVED - 03/09/2022

HAL06 - UNNEEDED INITIALIZATION OF
UINT VARIABLES TO ZERO

Informational SOLVED - 03/09/2022

HAL07 - POSSIBLE MISUSE OF PUBLIC
FUNCTIONS

Informational SOLVED - 03/09/2022

11

EX
EC

UT
IV

E
OV

ER
VI

EW



12

FINDINGS & TECH
DETAILS



3.1 (HAL-01) MINT FUNCTION IS
MISSING MOVEDELEGATES CALL - MEDIUM

Description:

In the Png contract, the function mint() does not call the _moveDelegates

ë () function:

Listing 1: PNG.sol

184 function mint(address dst , uint rawAmount) external returns (bool)

ë {

185 require(msg.sender == minter && minter != address (0), "Png::

ë mint: unauthorized");

186 uint96 amount = safe96(rawAmount , "Png::mint: amount exceeds

ë 96 bits");

187 _mintTokens(dst , amount);

188 return true;

189 }

Listing 2: PNG.sol

421 function _mintTokens(address dst , uint96 amount) internal {

422 require(dst != address (0), "Png:: _mintTokens: cannot mint to

ë the zero address");

423

424 totalSupply = SafeMath.add(totalSupply , uint(amount));

425 balances[dst] = add96(balances[dst], amount , "Png:: _mintTokens

ë : mint amount overflows");

426 emit Transfer(address (0), dst , amount);

427

428 require(totalSupply <= maxSupply , "Png:: _mintTokens: mint

ë result exceeds max supply");

429 }

This causes that every time Png tokens are minted the users will have to

manually call delegate() passing their own address as parameter so their

voting power is correctly accounted/updated in the smart contract:

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

It is recommended to add the _moveDelegates() function call into the

_mintTokens() function.

Remediation Plan:

SOLVED: Pangolin team solved the issue in the commit id

bbbf14abf0283fa7ea3ccf07288fecdc177ed8f9.

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/pangolindex/exchange-contracts/commit/bbbf14abf0283fa7ea3ccf07288fecdc177ed8f9


3.2 (HAL-02) LACK OF
TRANSFEROWNERSHIP PATTERN - MEDIUM

Description:

All functions that involve some kind of transfer of ownership require

a single step, which is to set up the new privileged address. If this

designated EOA account is not a valid account, it is very possible that

the transfer of ownership will be made to an uncontrolled account, losing

access to privileged functions.

Code location:

PNG.sol

Listing 3: PNG.sol (Line 267)

264 function setMinter(address newMinter) external returns (bool) {

265 require(msg.sender == admin , "Png:: setMinter: unauthorized");

266 emit MinterChanged(minter , newMinter);

267 minter = newMinter;

268 return true;

269 }

Listing 4: PNG.sol (Line 280)

276 function setAdmin(address newAdmin) external returns (bool) {

277 require(msg.sender == admin , "Png:: setAdmin: unauthorized");

278 require(newAdmin != address (0), "Png:: setAdmin: cannot make

ë zero address the admin");

279 emit AdminChanged(admin , newAdmin);

280 admin = newAdmin;

281 return true;

282 }

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Airdrop.sol

Listing 5: Airdrop.sol (Line 73)

70 function setOwner(address owner_) external {

71 require(owner_ != address (0), 'Airdrop :: setOwner: invalid new

ë owner ');

72 require(msg.sender == owner , 'Airdrop :: setOwner: unauthorized '

ë );

73 owner = owner_;

74 }

Listing 6: Airdrop.sol (Line 81)

79 function setWhitelister(address addr) external {

80 require(msg.sender == owner , 'Airdrop :: setWhitelister:

ë unauthorized ');

81 whitelister = addr;

82 }

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

It is recommended to implement a two-step process where the owner nominates

an account and the nominated account must call an acceptOwnership()

function for the transfer of ownership to succeed. This ensures the

nominated EOA account is a valid and active account.

Remediation Plan:

RISK ACCEPTED: Pangolin team accepts this risk:

- Airdrop events will last for a short time, and it is expected that

ownership will only be transferred once from the deployer to the multisig.

- PNG Ownership will only be transferred from the deployer to the Timelock

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



contract (contracts/governance/Timelock.sol). This Timelock contract has

the suggested two-step ownership transfer pattern, and any additional

change of ownership would likely go through Timelock rather than PNG.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.3 (HAL-03) DOS WITH BLOCK GAS
LIMIT - MEDIUM

Description:

In the contract TreasuryVester the distribute() function is used to

distribute the tokens to recipients based on their allocation:

TreasuryVester.sol

Listing 7: TreasuryVester.sol (Line 149)

70 function distribute () public {

71 require(vestingEnabled , "TreasuryVester :: distribute: vesting

ë is not enabled");

72 require(

73 block.timestamp >= lastUpdate + VESTING_CLIFF ,

74 "TreasuryVester :: distribute: it is too early to distribute

ë "

75 );

76 lastUpdate = block.timestamp;

77

78 // defines a vesting schedule that lasts for 30 months

79 if (step % STEPS_TO_SLASH == 0) {

80 uint slash = step / STEPS_TO_SLASH;

81 if (slash < 5) {

82 _vestingPercentage = _initialVestingPercentages[slash

ë ];

83 } else if (slash < 12) {

84 _vestingPercentage -= 20;

85 } else if (slash < 20) {

86 _vestingPercentage -= 15;

87 } else if (slash < 30) {

88 _vestingPercentage -= 10;

89 } else {

90 revert("TreasuryVester :: distribute: vesting is over");

91 }

92 _vestingAmount = getVestingAmount ();

93 }

94 step ++;

95

96 // distributes _vestingAmount of tokens to recipients based on

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



ë their allocation

97 for (uint i; i < _recipientsLength; i++) {

98 Recipient memory recipient = _recipients[i];

99 uint amount = recipient.allocation * _vestingAmount /

ë DENOMINATOR;

100 if (! recipient.isMiniChef) {

101 // simply mints or transfer tokens to regular

ë recipients

102 vestedToken.mint(recipient.account , amount);

103 } else {

104 // calls fund rewards of minichef after minting tokens

ë to self

105 vestedToken.mint(address(this), amount);

106 vestedToken.approve(recipient.account , amount);

107 IMiniChefV2(recipient.account).fundRewards(amount ,

ë VESTING_CLIFF);

108 }

109 }

110 emit TokensVested(_vestingAmount);

111 }

As the length of recipients is not limited, in case that there are too

many recipients, the block gas limit could be reached, causing miners to

not respond to all distribute() calls, thus blocking the main purpose of

the smart contract.

Risk Level:

Likelihood - 1

Impact - 5

Recommendation:

It is recommended to add a require statement in the setRecipients()

ë function of the TreasuryVester contract that limits the number of

recipients.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Remediation Plan:

SOLVED: Pangolin team solved the issue in the commit id

1e2f374c6728b998a22045a673be0ba14156b9c1.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/pangolindex/exchange-contracts/commit/1e2f374c6728b998a22045a673be0ba14156b9c1


3.4 (HAL-04) MISSING ZERO ADDRESS
CHECKS - LOW

Description:

In the TreasuryVester and Airdrop contracts, the constructors are missing

address validation. On the other hand, in some functions it is also

critical to perform this validation. For example, in the TreasuryVester

ë .setRecipients() function, if a 0 address recipient was set the

distribute() call would always fail, since most tokens cannot be minted

at the 0 address.

Each address should be validated and checked to be non-zero.

Code location:

TreasuryVester.sol

Listing 8: TreasuryVester.sol (Line 87)

78 constructor(

79 address newVestedToken ,

80 uint newStartingBalance ,

81 Recipient [] memory newRecipients ,

82 address newGuardian

83 ) {

84 require(newStartingBalance > 0, "TreasuryVester :: Constructor:

ë invalid starting balance");

85 require(newGuardian != address (0), "TreasuryVester ::

ë Constructor: invalid guardian address");

86 guardian = newGuardian;

87 vestedToken = IPng(newVestedToken);

88 startingBalance = newStartingBalance;

89 setRecipients(newRecipients);

90 }

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 9: TreasuryVester.sol (Line 187)

170 function setRecipients(Recipient [] memory newRecipients) public

ë onlyOwner {

171 _recipientsLength = newRecipients.length;

172 require(

173 _recipientsLength != 0,

174 "TreasuryVester :: setRecipients: invalid recipient number"

175 );

176 uint allocations;

177 for (uint i; i < _recipientsLength; ++i) {

178 Recipient memory recipient = newRecipients[i];

179 require(

180 recipient.account != address (0),

181 "TreasuryVester :: setRecipients: invalid recipient

ë address"

182 );

183 require(

184 recipient.allocation != 0,

185 "TreasuryVester :: setRecipients: invalid recipient

ë allocation"

186 );

187 _recipients[i] = recipient;

188 allocations += recipient.allocation;

189 }

190 require(

191 allocations == DENOMINATOR ,

192 "TreasuryVester :: setRecipients: invalid total allocation"

193 );

194 emit RecipientsChanged(newRecipients);

195 }

Airdrop.sol

Listing 10: Airdrop.sol (Lines 45-47)

38 constructor(

39 uint supply_ ,

40 address png_ ,

41 address owner_ ,

42 address remainderDestination_

43 ) {

44 airdropSupply = supply_;

45 png = png_;

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



46 owner = owner_;

47 remainderDestination = remainderDestination_;

48 }

Listing 11: Airdrop.sol (Line 62)

57 function setRemainderDestination(address remainderDestination_)

ë external {

58 require(

59 msg.sender == owner ,

60 'Airdrop :: setRemainderDestination: unauthorized '

61 );

62 remainderDestination = remainderDestination_;

63 }

PNG.sol

Listing 12: PNG.sol (Line 267)

264 function setMinter(address newMinter) external returns (bool) {

265 require(msg.sender == admin , "Png:: setMinter: unauthorized");

266 emit MinterChanged(minter , newMinter);

267 minter = newMinter;

268 return true;

269 }

Risk Level:

Likelihood - 3

Impact - 2

Recommendation:

It is recommended to validate that each address input is non-zero.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Remediation Plan:

SOLVED: Pangolin team solved the issue in the commit id

8810acc38f27bf9de25a492ffe41d3c54c657c5f.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/pangolindex/exchange-contracts/commit/8810acc38f27bf9de25a492ffe41d3c54c657c5f


3.5 (HAL-05) USING ++I CONSUMES
LESS GAS THAN I++ IN LOOPS -
INFORMATIONAL

Description:

In some for loops, the variable i is incremented using i++. It is known

that, in loops, using ++i costs less gas per iteration than i++.

Code Location:

TreasuryVester.sol

- Line 149: for (uint i; i < _recipientsLength; i++){

Airdrop.sol

- Line 178: for (uint i = 0; i < addrs.length; i++){

Proof of Concept:

For example, based in the following test contract:

Listing 13: Test.sol

1 //SPDX -License -Identifier: MIT

2 pragma solidity 0.8.9;

3

4 contract test {

5 function postiincrement(uint256 iterations) public {

6 for (uint256 i = 0; i < iterations; i++) {

7 }

8 }

9 function preiincrement(uint256 iterations) public {

10 for (uint256 i = 0; i < iterations; ++i) {

11 }

12 }

13 }

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



We can see the difference in the gas costs:

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to use ++i instead of i++ to increment the value of an

uint variable inside a loop. This is not applicable outside of loops.

Remediation Plan:

SOLVED: Pangolin team solved the issue in the commit id

4aa439b03eac34bebf40c6b72e9afeb2d0fa2333.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/pangolindex/exchange-contracts/commit/4aa439b03eac34bebf40c6b72e9afeb2d0fa2333


3.6 (HAL-06) UNNEEDED
INITIALIZATION OF UINT VARIABLES TO
ZERO - INFORMATIONAL

Description:

Since i is an uint, it is already initialized to 0. uint i = 0 reassigns

the 0 to i which wastes gas. The same applies to the lower state variable

shown below.

Code Location:

Airdrop.sol

- Line 178: for (uint i = 0; i < addrs.length; i++){

PNG.sol

- Line 373: uint32 lower = 0;

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended not to initialize uint variables to 0 to save gas. For

example:

for (uint i; i < addrs.length; ++i){

Remediation Plan:

SOLVED: Pangolin team solved the issue in the commit id

87781621d7294afeafd7a33916b4016dc1f3ed34.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/pangolindex/exchange-contracts/commit/87781621d7294afeafd7a33916b4016dc1f3ed34


3.7 (HAL-07) POSSIBLE MISUSE OF
PUBLIC FUNCTIONS - INFORMATIONAL

Description:

In the TreasuryVester and PNG contracts, there are some functions marked

as public that are never called directly within the contract itself or

in any of their descendants:

TreasuryVester.sol

- distribute() (TreasuryVester.sol#122-163)

PNG.sol

- delegate() (PNG.sol#314-316)

- delegateBySig() (PNG.sol#327-336)

- getPriorVotes() (PNG.sol#355-387)

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

If the functions are not intended to be called internally or by their

descendants, it is better to mark them as external to reduce gas costs.

Remediation Plan:

SOLVED: Pangolin team solved the issue in the commit id

f1fff4b75db0fe70450c55234418bd445834029d.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/pangolindex/exchange-contracts/commit/f1fff4b75db0fe70450c55234418bd445834029d


29

AUTOMATED TESTING



4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the scoped contracts. Among the tools used was Slither,

a Solidity static analysis framework. After Halborn verified all the

contracts in the repository and was able to compile them correctly

into their abi and binary formats, Slither was run on the all-scoped

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Slither results:

RevenueDistributor.sol

TreasuryVester.sol

30

AU
TO

MA
TE

D
TE

ST
IN

G



Airdrop.sol

PNG.sol

• No major issues found by Slither.

31

AU
TO

MA
TE

D
TE

ST
IN

G



4.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on all the contracts and sent the compiled results to the analyzers to

locate any vulnerabilities.

MythX results:

RevenueDistributor.sol

TreasuryVester.sol

32

AU
TO

MA
TE

D
TE

ST
IN

G



Airdrop.sol

PNG.sol

• block.number is not used as a source of randomness.

• The pragmas are set in the hardhat.config.js file.

• Integer Overflows and Underflows flagged by MythX are false

positives, as the contracts are using Solidity ^0.8.0 version.

After the Solidity version 0.8.0 Arithmetic operations revert to

underflow and overflow by default.

• Assert violations are false positives.

33

AU
TO

MA
TE

D
TE

ST
IN

G



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan


	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

	AUTOMATED SECURITY SCAN
	Description
	MythX results



