
Pangolin & AVA
Labs

Zap Smart Contract Security
Audit

Prepared by: Halborn

Date of Engagement: August 5th, 2021 - August 12th, 2021

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 5

CONTACTS 5

1 EXECUTIVE OVERVIEW 6

1.1 INTRODUCTION 7

1.2 AUDIT SUMMARY 7

1.3 TEST APPROACH & METHODOLOGY 8

RISK METHODOLOGY 8

1.4 SCOPE 10

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 11

3 FINDINGS & TECH DETAILS 12

3.1 (HAL-01) DOS - LP TOKENS NOT MINTED (Out Of Scope) - MEDIUM 14

Description 14

Code Location 14

Risk Level 16

Recommendations 16

3.2 (HAL-02) INTEGER OVERFLOW - MEDIUM 17

Description 17

Code Location 17

Risk Level 18

Recommendations 18

3.3 (HAL-03) MISSING ROLE-BASED ACCESS CONTROL - MEDIUM 19

Description 19

Code Location 19

Risk Level 20

1

Recommendations 20

3.4 (HAL-04) MISSING ONLY ROUTER MODIFIER (Out Of Scope) - LOW 21

Description 21

Risk Level 21

Recommendations 21

3.5 (HAL-05) CONFUSION ON THE ADMIN ROLE - LOW 23

Description 23

Code Location 23

Risk Level 24

Recommendations 24

3.6 (HAL-06) LACK OF ADDRESS VALIDATION - LOW 25

Description 25

Code Location 25

Risk Level 28

Recommendations 28

3.7 (HAL-07) DIVISION BY ZERO - LOW 29

Description 29

Code Location 29

Risk Level 30

Recommendations 30

3.8 (HAL-08) MISSING EVENTS EMITTING - INFORMATIONAL 31

Description 31

Code Location 31

Risk Level 31

Recommendations 32

3.9 (HAL-09) MISSING RE-ENTRANCY PROTECTION - INFORMATIONAL 33

2

Description 33

Code Location 33

Risk Level 34

Recommendations 34

3.10 (HAL-10) IMPROPER CHECK EFFECT INTERACTION PATTERN USAGE - IN-

FORMATIONAL 35

Description 35

Code Location 35

Risk Level 36

Recommendations 36

3.11 (HAL-11) USE OF APPROVE FUNCTION - INFORMATIONAL 37

Description 37

Code Location 37

Risk Level 37

Recommendations 37

3.12 (HAL-12) USE OF BLOCK.TIMESTAMP - INFORMATIONAL 38

Description 38

Code Location 38

Recommendations 38

3.13 (HAL-13) FLOATING PRAGMA - INFORMATIONAL 39

Description 39

Code Location 39

Risk Level 40

Recommendations 40

3.14 (HAL-14) IMPROPER IMPLEMENTATION OF CONTRACT ADMIN - INFORMA-

TIONAL 41

3

Description 41

Code Location 41

Risk Level 41

Recommendations 42

4 AUTOMATED TESTING 43

4.1 STATIC ANALYSIS REPORT 44

Description 44

Results 44

4.2 AUTOMATED SECURITY SCAN 45

Description 45

Results 46

4

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 08/12/2021 Ataberk Yavuzer

0.5 Document Edits 08/13/2021 Gokberk Gulgun

0.9 Document Edits 08/16/2021 Ferran Celades

1.0 Final Version 08/16/2021 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Ataberk Yavuzer Halborn Ataberk.Yavuzer@halborn.com

Gokberk Gulgun Halborn Gokberk.Gulgun@halborn.com

Ferran Celades Halborn Ferran.Celades@halborn.com

5

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Ataberk.Yavuzer@halborn.com
mailto:Gokberk.Gulgun@halborn.com
mailto:Ferran.Celades@halborn.com

6

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

AVA Labs engaged Halborn to conduct a security assessment on Pangolin’s

Zap Smart Contract beginning on August 5th, 2021 and ending August 12th,

2021.

The security assessment was scoped to the smart contracts

PangolinBridgeMigrationRouter.sol and BridgeToken.sol. An audit

of the security risk and implications regarding the changes introduced

by the development team at Pangolin prior to its production release

shortly following the assessments deadline.

1.2 AUDIT SUMMARY

The team at Halborn was provided a week timeframe for the engagement

and assigned a full time security engineer to audit the security of

the smart contract. The security engineer is blockchain and smart con-

tracts security expert, with experience in advanced penetration testing,

smart contract hacking, and have a deep knowledge in multiple blockchain

protocols.

The purpose of this audit to achieve the following:

• Ensure that smart contract functions are intended.

• Identify potential security issues with the smart contracts.

Though this security audit’s outcome is satisfactory, only the most

essential aspects were tested and verified to achieve objectives and

deliverables set in the scope due to time and resource constraints. It

is essential to note the use of the best practices for secure smart-

contract development.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard to

the scope of the smart contract audit. While manual testing is recommended

to uncover flaws in logic, process,and implementation; automated testing

techniques help enhance coverage of smart contracts and can quickly

identify items that do not follow security best practices. The following

phases and associated tools were used throughout the term of the audit:

• Research into architecture and purpose.

• Smart Contract manual code read and walkthrough.

• Graphing out functionality and contract logic/connectivity/func-

tions(solgraph)

• Manual Assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Scanning of solidity files for vulnerabilities, security hotspots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported func-

tions.(Slither)

• Testnet deployment (hardhat, avash, geth and Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security in-

cident, and the IMPACT should an incident occur. This framework works for

communicating the characteristics and impacts of technology vulnerabili-

ties. It’s quantitative model ensures repeatable and accurate measurement

while enabling users to see the underlying vulnerability characteristics

that was used to generate the Risk scores. For every vulnerability, a

risk level will be calculated on a scale of 5 to 1 with 5 being the

highest likelihood or impact.

RISK SCALE - LIKELIHOOD

8

EX
EC

UT
IV

E
OV

ER
VI

EW

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

9

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

IN-SCOPE:

Both PangolinBridgeMigrationRouter.sol and BridgeToken.sol contracts in

the following repository are the test scope.

Repository URL: https://github.com/pangolindex/exchange-contracts

Commit ID: 78134a9df30014b27dc2eb12574ea3050749f7dd

OUT-OF-SCOPE:

Other smart contracts in the repository, external libraries and economics

attacks.

10

EX
EC

UT
IV

E
OV

ER
VI

EW

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 3 4 7

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-04)

(HAL-07)
(HAL-05)
(HAL-06)

(HAL-02)
(HAL-03)

(HAL-08)

(HAL-09)
(HAL-10)
(HAL-11)
(HAL-12)
(HAL-13)
(HAL-14)

11

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL01) - DOS - LP TOKENS NOT
MINTED (Out Of Scope)

Medium -

(HAL02) - INTEGER OVERFLOW Medium -

(HAL03) - MISSING ROLE-BASED ACCESS
CONTROL

Medium -

(HAL04) - MISSING ONLY ROUTER
MODIFIER (Out Of Scope)

Low -

(HAL05) - CONFUSION ON THE ADMIN
ROLE

Low -

(HAL06) - LACK OF ADDRESS VALIDATION Low -

(HAL07) - DIVISION BY ZERO Low -

(HAL08) - MISSING EVENTS EMITTING Informational -

(HAL09) - MISSING RE-ENTRANCY
PROTECTION

Informational -

(HAL10) - IMPROPER CHECK EFFECT
INTERACTION PATTERN USAGE

Informational -

(HAL11) - USE OF APPROVE FUNCTION Informational -

(HAL12) - USE OF BLOCK.TIMESTAMP Informational -

(HAL13) - FLOATING PRAGMA Informational -

(HAL14) - IMPROPER IMPLEMENTATION
OF CONTRACT ADMIN

Informational -

STATIC ANALYSIS - -

AUTOMATED SECURITY SCAN RESULTS - -

12

EX
EC

UT
IV

E
OV

ER
VI

EW

13

FINDINGS & TECH
DETAILS

3.1 (HAL-01) DOS - LP TOKENS NOT
MINTED (Out Of Scope) - MEDIUM

Description:

Calling sync on the PangolinPair contract before any mint of the pool,

by front-running the transaction, it will force liquidity inside the

function to be 0, causing a DOS and the INSUFFICIENT_LIQUIDITY_MINTED

reverts an error. This is due to reserve0 and reserve1 are equal to the

total token balance, causing amount0 and amount1 on mint to be 0. This

issue would prevent anyone to mint their LP tokens. Once the attacker

wants he can stop front-running the sync function before any mint and get

the reserve amount as his LP tokens.

Code Location:

Listing 1: contracts/pangolin-core/PangolinPair.sol (Lines 198)

197 // force reserves to match balances

198 function sync() external lock {

199 _update(IERC20(token0).balanceOf(address(this)), IERC20(token1

).balanceOf(address(this)), reserve0 , reserve1);

200 }

Listing 2: contracts/pangolin-core/PangolinPair.sol (Lines 82,83)

92 // update reserves and , on the first call per block , price

accumulators

93 function _update(uint balance0 , uint balance1 , uint112 _reserve0 ,

uint112 _reserve1) private {

94 require(balance0 <= uint112 (-1) && balance1 <= uint112 (-1), '

Pangolin: OVERFLOW ');

95 uint32 blockTimestamp = uint32(block.timestamp % 2**32);

96 uint32 timeElapsed = blockTimestamp - blockTimestampLast; //

overflow is desired

97 if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {

98 // * never overflows , and + overflow is desired

99 price0CumulativeLast += uint(UQ112x112.encode(_reserve1).

uqdiv(_reserve0)) * timeElapsed;

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

100 price1CumulativeLast += uint(UQ112x112.encode(_reserve0).

uqdiv(_reserve1)) * timeElapsed;

101 }

102 reserve0 = uint112(balance0);

103 reserve1 = uint112(balance1);

104 blockTimestampLast = blockTimestamp;

105 emit Sync(reserve0 , reserve1);

106 }

Listing 3: contracts/pangolin-core/PangolinPair.sol (Lines 114,115)

110 function mint(address to) external lock returns (uint liquidity) {

111 (uint112 _reserve0 , uint112 _reserve1 ,) = getReserves (); //

gas savings

112 uint balance0 = IERC20(token0).balanceOf(address(this));

113 uint balance1 = IERC20(token1).balanceOf(address(this));

114 uint amount0 = balance0.sub(_reserve0);

115 uint amount1 = balance1.sub(_reserve1);

116

117 bool feeOn = _mintFee(_reserve0 , _reserve1);

118 uint _totalSupply = totalSupply; // gas savings , must be

defined here since totalSupply can update in _mintFee

119 if (_totalSupply == 0) {

120 liquidity = Math.sqrt(amount0.mul(amount1)).sub(

MINIMUM_LIQUIDITY);

121 _mint(address (0), MINIMUM_LIQUIDITY); // permanently lock

the first MINIMUM_LIQUIDITY tokens

122 } else {

123 liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0

, amount1.mul(_totalSupply) / _reserve1);

124 }

125 require(liquidity > 0, 'Pangolin:

INSUFFICIENT_LIQUIDITY_MINTED ');

126 _mint(to , liquidity);

127

128 _update(balance0 , balance1 , _reserve0 , _reserve1);

129 if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0

and reserve1 are up -to -date

130 emit Mint(msg.sender , amount0 , amount1);

131 }

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 5

Recommendations:

It is recommended to avoid direct calling of any PangolinPair function.

This can be prevented by using a modifier that detects the caller and

allow only calls from the PangolinRouter address. The issue is also

stated as “MISSING ONLY ROUTER MODIFIER”.

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) INTEGER OVERFLOW -
MEDIUM

Description:

An overflow happens when an arithmetic operation reaches the maximum size

of a type. For instance in the BridgeToken.sol contract on addSwapToken

method the supply is added which may end up overflowing the integer.

In computer programming, an integer overflow occurs when an arithmetic

operation attempts to create a numeric value that is outside of the range

that can be represented with a given number of bits -- either larger than

the maximum or lower than the minimum re-presentable value.

Code Location:

Listing 4

1 function addSwapToken(address contractAddress , uint256

supplyIncrement)

2 public

3 {

4 require(bridgeRoles.has(msg.sender), "Unauthorized .");

5 require(isContract(contractAddress), "Address is not contract

.");

6

7 // If the swap token is not already supported , add it with the

total supply of supplyIncrement.

8 // Otherwise , increment the current supply.

9 if (swapTokens[contractAddress]. tokenContract == address (0)) {

10 swapTokens[contractAddress] = SwapToken ({

11 tokenContract: contractAddress ,

12 supply: supplyIncrement

13 });

14 } else {

15 swapTokens[contractAddress]. supply =

16 swapTokens[contractAddress]. supply +

17 supplyIncrement;

18 }

19 emit AddSwapToken(contractAddress , supplyIncrement);

20 }

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 3

Impact - 3

Recommendations:

It is recommended to use vetted safe math libraries for arithmetic op-

erations consistently throughout the smart contract system or use pragma

version bigger than 0.8.0 that adds arithmetic checks automatically.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.3 (HAL-03) MISSING ROLE-BASED
ACCESS CONTROL - MEDIUM

Description:

In smart contracts, implementing a correct Access Control policy is an

essential step to maintain security and decentralization for permissions

on a token. All the features of the smart contract , such as mint/burn

tokens and pause contracts are given by Access Control. For instance,

Ownership is the most common form of Access Control. In other words, the

owner of a contract (the account that deployed it by default) can do some

administrative tasks on it. Nevertheless, other authorization levels are

required to follow the principle of least privilege, also known as least

authority. Briefly, any process, user or program only can access to the

necessary resources or information. Otherwise, the ownership role is

useful in a simple system, but more complex projects require the use of

more roles by using Role-based access control.

Code Location:

Listing 5: PangolinBridgeMigrationRouter.sol

259 function _migrateLiquidity(

260 address liquidityPairFrom ,

261 address liquidityPairTo ,

262 address to ,

263 uint amount

264) internal {

265 _arePairsCompatible(liquidityPairFrom , liquidityPairTo);

266 address tokenToMigrate = IPangolinPair(liquidityPairFrom).

token0 ();

267

268 ...

269

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 3

Impact - 3

Recommendations:

It is recommended to use role-based access controls on important functions

such as _migrateLiquidity. In the other way, any user beside contract/-

contract admin itself will be able to use these high privileged functions.

Also, the onlyAdmin modifier could be appended to the _migrateLiquidity

function to solve the issue.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) MISSING ONLY ROUTER
MODIFIER (Out Of Scope) - LOW

Description:

The PangolinPair contract does not implement any modifier to detect if the

functions declared on it were called from the PangolinRouter contract.

This allows external functions such as mint and burn to be called without

going thought the expected addLiquidity and removeLiquidity. This could

cause price miscalculation and minted LP tokens to be owned by a different

user than the transferring one. Furthermore, the code states the following

comment “this low-level function should be called from a contract which

performs important safety checks”. Imagine the following scenario:

• A user manually transfers t1 amount of token1 and t2 amount of token2

to the PangolinPair. This amount is added to the pool balance but

no LP tokens are accredited since they are still pending on the pool

balance.

• The same user then calls the mint function to receive the cor-

responding LP tokens of the transferred t1 and t2 amounts on the

PangolinPair pool.

• Before the transaction is mined on the chain a malicious user calls

the mint function with a controlled address.

• The generated LP token are minted to the attacker instead of the

user.

Risk Level:

Likelihood - 1

Impact - 4

Recommendations:

A modifier should be added on the PangolinPair critical functions (the

ones using the lock modifier) to make sure those functions are only called

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

from the exposed router methods. This would prevent unexpected execution

flows and logical errors to happen by preventing the execution of the

pool methods independently.

Listing 6

1 modifier onlyIsRouter () {

2 require(

3 msg.sender == swappRouter ,

4 "ONLY ROUTER ALLOWED"

5);

6 _;

7 }

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.5 (HAL-05) CONFUSION ON THE ADMIN
ROLE - LOW

Description:

There is a confusion on the access control policy between the

PangolinBridgeMigrationRouter.sol and BridgeToken.sol contracts.

While PangolinBridgeMigrationRouter.sol contract has multiple admin

role, BridgeToken.sol has single admin role. On the other hand,

PangolinBridgeMigrationRouter.sol contract can not denote msg.sender

and can not add zero address into admin role. However, in the

BridgeToken.sol contract, bridge role can be transfer to zero address.

After the lockout (migrating admin to zero address), addSwapToken,

removeSwapToken, addSupportedChainId, mint functions are not accessible.

Code Location:

PangolinBridgeMigrationRouter

Listing 7: PangolinBridgeMigrationRouter.sol

37 function addAdmin(address account) external onlyAdmin {

38 require(account != address (0), "

PangolinBridgeMigrationRouter: Address 0 not allowed");

39 adminRole.add(account);

40 }

Listing 8: PangolinBridgeMigrationRouter.sol

47 function removeAdmin(address account) external onlyAdmin {

48 require(msg.sender != account , "

PangolinBridgeMigrationRouter: You can't demote

yourself");

49 adminRole.remove(account);

50 }

BridgeToken.sol

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 9: BridgeToken.sol

111 function migrateBridgeRole(address newBridgeRoleAddress) public {

112 require(bridgeRoles.has(msg.sender), "Unauthorized.");

113 bridgeRoles.remove(msg.sender);

114 bridgeRoles.add(newBridgeRoleAddress);

115 emit MigrateBridgeRole(newBridgeRoleAddress);

116 }

117

Risk Level:

Likelihood - 2

Impact - 3

Recommendations:

It is recommended to review admin roles between the contracts. The admin

counts need to be evaluated according to the contact structure. Also, the

address validation should be added into BridgeToken.sol contract. This

issue is handled on the (HAL03)- LACK OF ADDRESS VALIDATION.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.6 (HAL-06) LACK OF ADDRESS
VALIDATION - LOW

Description:

The BridgeToken.sol and PangolinBridgeMigrationRouter.sol contracts have

multiple input fields on their both public and private functions. Some

of these inputs are required as address variable. During the test, it

seen all of these inputs are protected against using the address(0) as

target address. However, providing the contract address itself to these

inputs is unintended situation.

The addSwapToken and migrateBridgeRole functions in the BridgeToken.sol

contract does not control current contract address. Also, addAdmin

, addMigrator, _arePairsCompatible, _migrateToken, calculateChargeBack

functions in the PangolinBridgeMigrationRouter.solcontract do not control

the current contract address too.

Code Location:

Listing 10: PangolinBridgeMigrationRouter.sol

37 function addAdmin(address account) external onlyAdmin {

38 require(account != address (0), "

PangolinBridgeMigrationRouter: Address 0 not allowed");

39 adminRole.add(account);

40 }

Listing 11: PangolinBridgeMigrationRouter.sol

66 function addMigrator(address tokenAddress , address migratorAddress

) external onlyAdmin {

67 require(tokenAddress != address (0), "

PangolinBridgeMigrationRouter: tokenAddress 0 not

supported");

68 require(migratorAddress != address (0), "

PangolinBridgeMigrationRouter: migratorAddress 0 not

supported");

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

69 uint256 amount = IBridgeToken(migratorAddress).swapSupply(

tokenAddress);

70

71 ...

Listing 12: PangolinBridgeMigrationRouter.sol

145 function _arePairsCompatible(address pairA , address pairB)

internal view {

146 require(pairA != address (0), "

PangolinBridgeMigrationRouter: liquidityPairFrom

address 0");

147 require(pairA != address (0), "

PangolinBridgeMigrationRouter: liquidityPairTo address

0");

148 require(pairA != pairB , "PangolinBridgeMigrationRouter:

Cant convert to the same liquidity pairs");

149 require(

150

151 ...

Listing 13: PangolinBridgeMigrationRouter.sol

164 function _migrateToken(

165 address tokenAddress ,

166 uint amount

167) internal {

168 require(tokenAddress != address (0), "

PangolinBridgeMigrationRouter: tokenAddress 0 not

supported");

169 IBridgeToken(bridgeMigrator[tokenAddress]).swap(

tokenAddress , amount);

170

171 ...

Listing 14: PangolinBridgeMigrationRouter.sol

335 function calculateChargeBack(

336 address liquidityPairFrom ,

337 address liquidityPairTo ,

338 uint amount

339) external view returns (uint amount0 , uint amount1) {

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

340 require(liquidityPairFrom != address (0), "

PangolinBridgeMigrationRouter: liquidityPairFrom

address 0 not supported");

341 require(liquidityPairTo != address (0), "

PangolinBridgeMigrationRouter: liquidityPairTo address

0 not supported");

342 (uint amountIn0 , uint amountIn1) =

_calculateRescueLiquidity(liquidityPairFrom , amount);

343

344 ...

345

Listing 15: BridgeToken.sol

111 function migrateBridgeRole(address newBridgeRoleAddress) public {

112 require(bridgeRoles.has(msg.sender), "Unauthorized.");

113 bridgeRoles.remove(msg.sender);

114 bridgeRoles.add(newBridgeRoleAddress);

115 emit MigrateBridgeRole(newBridgeRoleAddress);

116 }

117

Listing 16: BridgeToken.sol

123 function addSwapToken(address contractAddress , uint256

supplyIncrement)

124 public

125 {

126 require(bridgeRoles.has(msg.sender), "Unauthorized.");

127 require(isContract(contractAddress), "Address is not

contract.");

128

129 // If the swap token is not already supported , add it with

the total supply of supplyIncrement.

130 // Otherwise , increment the current supply.

131 if (swapTokens[contractAddress]. tokenContract == address

(0)) {

132 swapTokens[contractAddress] = SwapToken ({

133 tokenContract: contractAddress ,

134 supply: supplyIncrement

135 });

136

137 ...

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 2

Impact - 3

Recommendations:

It is recommended to implement additional address check to detect is

current contract getting used as a target address.

Listing 17: Recommendation

1 require(tokenAddress != address(this), "

PangolinBridgeMigrationRouter: current contract address is not

supported");

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.7 (HAL-07) DIVISION BY ZERO - LOW

Description:

Calling the burn function with totalSupply as 0 will cause the function

to throw a division by zero error.

Code Location:

Listing 18: contracts/pangolin-core/PangolinPain.sol (Lines

143,144,145)

133 // this low -level function should be called from a contract which

performs important safety checks

134 function burn(address to) external lock returns (uint amount0 ,

uint amount1) {

135 (uint112 _reserve0 , uint112 _reserve1 ,) = getReserves (); //

gas savings

136 address _token0 = token0; //

gas savings

137 address _token1 = token1; //

gas savings

138 uint balance0 = IERC20(_token0).balanceOf(address(this));

139 uint balance1 = IERC20(_token1).balanceOf(address(this));

140 uint liquidity = balanceOf[address(this)];

141

142 bool feeOn = _mintFee(_reserve0 , _reserve1);

143 uint _totalSupply = totalSupply; // gas savings , must be

defined here since totalSupply can update in _mintFee

144 amount0 = liquidity.mul(balance0) / _totalSupply; // using

balances ensures pro -rata distribution

145 amount1 = liquidity.mul(balance1) / _totalSupply; // using

balances ensures pro -rata distribution

146 require(amount0 > 0 && amount1 > 0, 'Pangolin:

INSUFFICIENT_LIQUIDITY_BURNED ');

147 _burn(address(this), liquidity);

148 _safeTransfer(_token0 , to , amount0);

149 _safeTransfer(_token1 , to , amount1);

150 balance0 = IERC20(_token0).balanceOf(address(this));

151 balance1 = IERC20(_token1).balanceOf(address(this));

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

152

153 _update(balance0 , balance1 , _reserve0 , _reserve1);

154 if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0

and reserve1 are up -to -date

155 emit Burn(msg.sender , amount0 , amount1 , to);

156 }

Risk Level:

Likelihood - 1

Impact - 3

Recommendations:

Make sure to validate all operands used during a math operation and

inform the user of unappropriated state by reverting the transaction with

a custom message.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.8 (HAL-08) MISSING EVENTS
EMITTING - INFORMATIONAL

Description:

It has been observed that critical functionality is missing emitting event

for some functions on the PangolinBridgeMigrationRouter.sol contract.

These functions should emit events after completing the transactions.

Code Location:

Listing 19: Missing Events

1 addAdmin(address account)

2 removeAdmin(address account)

3 addMigrator(address tokenAddress , address migratorAddress)

4 _addLiquidity(address pairToken , address token0 , address token1 ,

uint amountIn0 , uint amountIn1 , address to)

5 _rescueLiquidity(address liquidityPair , uint amount)

6 _migrateToken(address tokenAddress , uint amount)

7 migrateToken(address token , address to, uint amount , uint deadline

)

8 migrateLiquidityWithPermit(address liquidityPairFrom , address

liquidityPairTo , address to , uint amount , uint deadline , uint8

v, bytes32 r, bytes32 s)

9 migrateLiquidity(address liquidityPairFrom , address

liquidityPairTo , address to , uint amount , uint deadline)

10 _migrateLiquidity(address liquidityPairFrom , address

liquidityPairTo , address to , uint amount)

Risk Level:

Likelihood - 1

Impact - 2

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendations:

Consider emitting an event when calling related functions on the list

above.

Listing 20: Events

1 event addAdmin(address account)

2 event removeAdmin(address account)

3 event addMigrator(address tokenAddress , address migratorAddress)

Listing 21: Example Emit (Lines 4)

1 function addAdmin(address account) external onlyAdmin {

2 require(account != address (0), "

PangolinBridgeMigrationRouter: Address 0 not allowed");

3 adminRole.add(account);

4 emit addAdmin(address account)

5 }

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.9 (HAL-09) MISSING RE-ENTRANCY
PROTECTION - INFORMATIONAL

Description:

To protect against cross-function reentrancy attacks, it may be necessary

to use a mutex. By using this lock, an attacker can no longer exploit

the withdraw function with a recursive call. OpenZeppelin has it’s own

mutex implementation called ReentrancyGuard which provides a modifier to

any function called nonReentrant that guards the function with a mutex

against Reentrancy attacks.

Code Location:

Listing 22: PangolinBridgeMigrationRouter.sol (Lines 108)

101 function _addLiquidity(

102 address pairToken ,

103 address token0 ,

104 address token1 ,

105 uint amountIn0 ,

106 uint amountIn1 ,

107 address to

108) private returns (uint amount0 , uint amount1 , uint

liquidityAmount) {

109

110 ...

Listing 23: PangolinBridgeMigrationRouter.sol (Lines 134)

131 function _rescueLiquidity(

132 address liquidityPair ,

133 uint amount

134) internal returns (uint amountTokenA , uint amountTokenB) {

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 24: PangolinBridgeMigrationRouter.sol (Lines 189)

184 function migrateToken(

185 address token ,

186 address to ,

187 uint amount ,

188 uint deadline

189) external ensure(deadline) {

190

191 ...

Listing 25: PangolinBridgeMigrationRouter.sol (Lines 264)

259 function _migrateLiquidity(

260 address liquidityPairFrom ,

261 address liquidityPairTo ,

262 address to ,

263 uint amount

264) internal {

Risk Level:

Likelihood - 1

Impact - 1

Recommendations:

In PangolinBridgeMigrationRouter.sol contract, functions like

migrateToken(), migrateLiquidity() and _rescueLiquidity() are missing

nonReentrant guard. Use the nonReentrant modifier to avoid introducing

future vulnerabilities.

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.10 (HAL-10) IMPROPER CHECK EFFECT
INTERACTION PATTERN USAGE -
INFORMATIONAL

Description:

In the Smart Contracts, The check effect interaction pattern is used to

reduce the attack surface for malicious contracts trying to hijack control

flow after an external call. In the PangolinBridgeMigrationRouter.sol,

amount0 and amount1 is updated after an external call.

Code Location:

Listing 26: PangolinBridgeMigrationRouter.sol (Lines 118,119)

101 function _addLiquidity(

102 address pairToken ,

103 address token0 ,

104 address token1 ,

105 uint amountIn0 ,

106 uint amountIn1 ,

107 address to

108) private returns (uint amount0 , uint amount1 , uint

liquidityAmount) {

109 (uint112 reserve0 , uint112 reserve1 ,) = IPangolinPair(

pairToken).getReserves ();

110 uint quote0 = amountIn0;

111 uint quote1 = PangolinLibrary.quote(amountIn0 , reserve0 ,

reserve1);

112 if (quote1 > amountIn1) {

113 quote1 = amountIn1;

114 quote0 = PangolinLibrary.quote(amountIn1 , reserve1 ,

reserve0);

115 }

116 TransferHelper.safeTransfer(token0 , pairToken , quote0);

117 TransferHelper.safeTransfer(token1 , pairToken , quote1);

118 amount0 = amountIn0 - quote0;

119 amount1 = amountIn1 - quote1;

120 liquidityAmount = IPangolinPair(pairToken).mint(to);

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

121 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendations:

In the _addLiquidity function, amount0 and amount1 should be updated

before an external call.

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.11 (HAL-11) USE OF APPROVE
FUNCTION - INFORMATIONAL

Description:

Due to the implementation of the approve() function in

PangolinBridgeMigrationRouter.sol, it’s possible for a user to

over spend their allowance in the certain conditions. Further-

more,burnFrom on Burnable ERC20 tokens is using the same internal

allowance data type which allows both, burning and minting.

Code Location:

Listing 27: PangolinBridgeMigrationRouter.sol

37 function _allowToken(address tokenAddress , address

spenderAddress) internal {

38 IPangolinERC20(tokenAddress).approve(spenderAddress , type(

uint).max);

39 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendations:

Consider to use that instead of having a direct setter for allowances,

decreaseAllowance and increaseAllowance functions should be exposed which

decreases and increases allowances for a recipient respectively.

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.12 (HAL-12) USE OF
BLOCK.TIMESTAMP - INFORMATIONAL

Description:

The PangolinBridgeMigrationRouter contract is using block.timestamp. The

global variable block.timestamp does not necessarily hold the current

time, and may not be accurate. Miners can influence the value of block

.timestamp to perform Maximal Extractable Value (MEV) attacks. There is

no guarantee that the value is correct, only that it is higher than the

previous block’s timestamp.

Code Location:

Listing 28: PangolinBridgeMigrationRouter.sol (Lines 22)

21 modifier ensure(uint deadline) {

22 require(deadline >= block.timestamp , '

PangolinBridgeMigrationRouter: EXPIRED ');

23 _;

24 }

Recommendations:

Use block.number instead of block.timestamp or now to reduce the risk of

MEV attacks. Check if the timescale of the project occurs across years,

days and months rather than seconds.

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.13 (HAL-13) FLOATING PRAGMA -
INFORMATIONAL

Description:

The PangolinBridgeMigrationRouter.sol contract uses the floating pragma

^0.7.6 and the BridgeToken.sol contract uses ^0.7.0 floating pragma as

version. These contracts should be deployed with the same compiler version

and flags that they have been tested with thoroughly. Locking the pragma

helps to ensure that contracts do not accidentally get deployed using

another pragma, for example, either an outdated pragma version that might

introduce bugs that affect the contract system negatively or a recently

released pragma version which has not been extensively tested.

Reference: ConsenSys Diligence - Lock pragmas

Code Location:

Listing 29: PangolinBridgeMigrationRouter.sol (Lines 1)

1 pragma solidity ^0.7.6;

2

3 import "../ pangolin -core/interfaces/IPangolinERC20.sol";

4 import "../ pangolin -lib/libraries/TransferHelper.sol";

5

6 ...

Listing 30: BridgeToken.sol (Lines 2)

1 // SPDX -License -Identifier: MIT

2 pragma solidity ^0.7.0;

3

4 import "./ library/openzeppelin/ERC20Burnable.sol";

5 import "../ libraries/Roles.sol";

6

7 ...

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://consensys.github.io/smart-contract-best-practices/recommendations/#lock-pragmas-to-specific-compiler-version

Risk Level:

Likelihood - 1

Impact - 1

Recommendations:

Lock the pragma version whenever possible and avoid using a floating

pragma in the final deployment. The pragma can be locked in the code by

removing the caret (ˆ) and by specifying the exact version in the Truffle

configuration file truffle-config.js or hardhat.config.js if using the

HardHat framework.

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.14 (HAL-14) IMPROPER
IMPLEMENTATION OF CONTRACT ADMIN -
INFORMATIONAL

Description:

Roles are used on the developed contracts to provide ease of use or to

separate the tasks on the contract from each other. It is very important

that these roles should be sharply separated from each other during the

deployment phase of the contract and assigned to the right accounts.

In some cases, unexpected conditions may occur as a result of incorrect

programming of these roles. During the tests, it was seen that the admin

role on the PangolinBridgeMigrationRouter.sol contract was given to the

person who directly deployed it on the constructor. This situation does

not provide flexibility in defining who the admin user is.

Code Location:

Listing 31: PangolinBridgeMigrationRouter.sol (Lines 17)

16 constructor () public {

17 adminRole.add(msg.sender);

18 }

19

Risk Level:

Likelihood - 1

Impact - 1

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendations:

According to OpenZeppelin’s AccessControl.sol contract, the part seen in

the code example below is more reliable for implementing an administrator

role:

Listing 32: AccessControl.sol

1 constructor (address root) public {

2 _setupRole(DEFAULT_ADMIN_ROLE , root);

3 }

42

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

43

AUTOMATED TESTING

4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance coverage of certain

areas of the scoped contract. Among the tools used was Slither, a Solidity

static analysis framework. After Halborn verified all the contracts in the

repository and was able to compile them correctly into their abi and binary

formats. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Results:

44

AU
TO

MA
TE

D
TE

ST
IN

G

4.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruit on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on the testers machine and sent the compiled results to the analyzers

45

AU
TO

MA
TE

D
TE

ST
IN

G

to locate any vulnerabilities. Only security-related findings are shown

below.

Results:

PangolinBridgeMigrationRouter.sol

BridgeToken.sol

All relevant findings were founded in the manual code review.

46

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendations

	
	Description
	Code Location
	Risk Level
	Recommendations

	
	Description
	Code Location
	Risk Level
	Recommendations

	
	Description
	Risk Level
	Recommendations

	
	Description
	Code Location
	Risk Level
	Recommendations

	
	Description
	Code Location
	Risk Level
	Recommendations

	
	Description
	Code Location
	Risk Level
	Recommendations

	
	Description
	Code Location
	Risk Level
	Recommendations

	
	Description
	Code Location
	Risk Level
	Recommendations

	
	Description
	Code Location
	Risk Level
	Recommendations

	
	Description
	Code Location
	Risk Level
	Recommendations

	
	Description
	Code Location
	Recommendations

	
	Description
	Code Location
	Risk Level
	Recommendations

	
	Description
	Code Location
	Risk Level
	Recommendations

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Results

	AUTOMATED SECURITY SCAN
	Description
	Results

