import { Command as $Command } from "@smithy/smithy-client"; import { MetadataBearer as __MetadataBearer } from "@smithy/types"; import { CreateInferenceComponentInput, CreateInferenceComponentOutput } from "../models/models_1"; import { SageMakerClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes } from "../SageMakerClient"; /** * @public */ export type { __MetadataBearer }; export { $Command }; /** * @public * * The input for {@link CreateInferenceComponentCommand}. */ export interface CreateInferenceComponentCommandInput extends CreateInferenceComponentInput { } /** * @public * * The output of {@link CreateInferenceComponentCommand}. */ export interface CreateInferenceComponentCommandOutput extends CreateInferenceComponentOutput, __MetadataBearer { } declare const CreateInferenceComponentCommand_base: { new (input: CreateInferenceComponentCommandInput): import("@smithy/smithy-client").CommandImpl; new (input: CreateInferenceComponentCommandInput): import("@smithy/smithy-client").CommandImpl; getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions; }; /** *

Creates an inference component, which is a SageMaker AI hosting object that you can use to deploy a model to an endpoint. In the inference component settings, you specify the model, the endpoint, and how the model utilizes the resources that the endpoint hosts. You can optimize resource utilization by tailoring how the required CPU cores, accelerators, and memory are allocated. You can deploy multiple inference components to an endpoint, where each inference component contains one model and the resource utilization needs for that individual model. After you deploy an inference component, you can directly invoke the associated model when you use the InvokeEndpoint API action.

* @example * Use a bare-bones client and the command you need to make an API call. * ```javascript * import { SageMakerClient, CreateInferenceComponentCommand } from "@aws-sdk/client-sagemaker"; // ES Modules import * // const { SageMakerClient, CreateInferenceComponentCommand } = require("@aws-sdk/client-sagemaker"); // CommonJS import * const client = new SageMakerClient(config); * const input = { // CreateInferenceComponentInput * InferenceComponentName: "STRING_VALUE", // required * EndpointName: "STRING_VALUE", // required * VariantName: "STRING_VALUE", * Specification: { // InferenceComponentSpecification * ModelName: "STRING_VALUE", * Container: { // InferenceComponentContainerSpecification * Image: "STRING_VALUE", * ArtifactUrl: "STRING_VALUE", * Environment: { // EnvironmentMap * "": "STRING_VALUE", * }, * }, * StartupParameters: { // InferenceComponentStartupParameters * ModelDataDownloadTimeoutInSeconds: Number("int"), * ContainerStartupHealthCheckTimeoutInSeconds: Number("int"), * }, * ComputeResourceRequirements: { // InferenceComponentComputeResourceRequirements * NumberOfCpuCoresRequired: Number("float"), * NumberOfAcceleratorDevicesRequired: Number("float"), * MinMemoryRequiredInMb: Number("int"), // required * MaxMemoryRequiredInMb: Number("int"), * }, * BaseInferenceComponentName: "STRING_VALUE", * }, * RuntimeConfig: { // InferenceComponentRuntimeConfig * CopyCount: Number("int"), // required * }, * Tags: [ // TagList * { // Tag * Key: "STRING_VALUE", // required * Value: "STRING_VALUE", // required * }, * ], * }; * const command = new CreateInferenceComponentCommand(input); * const response = await client.send(command); * // { // CreateInferenceComponentOutput * // InferenceComponentArn: "STRING_VALUE", // required * // }; * * ``` * * @param CreateInferenceComponentCommandInput - {@link CreateInferenceComponentCommandInput} * @returns {@link CreateInferenceComponentCommandOutput} * @see {@link CreateInferenceComponentCommandInput} for command's `input` shape. * @see {@link CreateInferenceComponentCommandOutput} for command's `response` shape. * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape. * * @throws {@link ResourceLimitExceeded} (client fault) *

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

* * @throws {@link SageMakerServiceException} *

Base exception class for all service exceptions from SageMaker service.

* * * @public */ export declare class CreateInferenceComponentCommand extends CreateInferenceComponentCommand_base { /** @internal type navigation helper, not in runtime. */ protected static __types: { api: { input: CreateInferenceComponentInput; output: CreateInferenceComponentOutput; }; sdk: { input: CreateInferenceComponentCommandInput; output: CreateInferenceComponentCommandOutput; }; }; }