biber

A backend bibliography processor for biblatex

Philip Kime, François Charette Philip@kime.org.uk, firmicus@ankabut.net Version biber 2.11 (biblatex 3.11) 30th October 2018

Contents

1.	Impo	ortant Changes	1		3.7. List and Name Separators	43
2.	Intro	oduction	4		3.8. Extended Name Format	43
	2.1. About		4		3.9. Editor Integration	45
					3.10. BibTeX macros and the	
	2.2.	Requirements	4		MONTH field	45
	2.3.	Compatibility Matrix	5		3.11. Biber datasource drivers .	45
	2.4.	License	5		3.12. Visualising the Output	46
	2.5.	历史	5		3.13. Tool Mode	46
	2.6.	Performance	9	Э.	5.15. 1001 Mode	40
	2.7.	Acknowledgements	9	4.	Binaries	55
					4.1. Binary Caches	56
3.	Use		10		4.2. Binary Architectures	56
	3.1.	Options and config file	11		4.3. Installing	57
	3.2.	Unicode	36		4.4. Building	58
	3.3.	Input/Output File Locations	36		4.4. Dunding	90
	3.4.	Logfile	37	A.	Appendix	62
	3.5.	Collation and Localisation	38		A.1. Babel/Polyglossia lan-	
	3.6.	文档的编码	40		guage to Locale mapping .	62

1. Important Changes

Please see the Changes file which accompanies Biber for the details on changes in each version. This section is just for important things like incompatible changes which users should be aware of.

2.6

When outputting BibTeX data in tool mode (--tool), Biber now follows a full internal processing chain involving the data model. In previous versions, BibTeX output would just output the raw BibTeX input data, only allowing for some re-formatting options and therefore no tool mode conversions from other formats into BibTeX format were possible. This change has some normalisation consequences:

- Dates are normalised into DATE fields. Legacy YEAR fields are never output in BibTeX format data output.
- Fields which are not defined in the data model described in the default biber-tool.conf are ignored and are neither read nor output. If custom fields are required, they should be defined in the data model by using a custom tool mode config file (see below). If you would like to have ignored fields reported on, use the --validate-datamodel option.

1.9

Biber no longer checks the environment for locales to use for sorting. This was always rather against the spirit of TeX since it means that the same document might look different when compiled by different people. However, Biblatex now passes Babel/Polyglossia language identifiers (or real locale identifiers if you prefer) in the .bcf and Biber can use these to set the sorting locale globally or on a per-sortscheme basis. This is better than using environment variables since Babel/Polyglossia are more LaTeX relevant language environments anyway.

1.8

Various option name changes. Old names are retained for backwards compatibility. See the output of the --help option.

1.0

The --validate-structure option is now called --validate-datamodel

0.9.9

The output format option --graph has been moved to a new option --output-format. The option --graph should now be specified as --output-format=dot and the --dot-include option should be used to specify the elements to include in the DOT output. For example:

biber --graph=section,field <file>

is now:

biber --output-format=dot --dot-include=section, field <file>

1.8

Several option names have changed. Several options have changed names to facilitate better semantic classification of options. The previous names are supported as legacy aliases. See the --help output of the Biber command.

0.9.8

The sourcemap option syntax has changed. The syntax was too confusing. It is now simplified and more powerful. It is uses a sequential processing model to apply mappings to an entry. See section 3.1.2.

0.9.7

The user config file has a completely new format. The reason for this is that the older Config::General format could not be extended to deal with more sophisticated features like per-datasource restrictions. An XML format is much better and in fact easier to understand. The old format of the map option (now called sourcemap) was rather confusing because of limitations in the old config file format. Please see section 3.1.2 and convert your config files to the new format.

0.9.6

Matching of citation keys and datasource entry keys is now case-sensitive. This is to enforce consistency across the entire BibLaTeX and Biber processing chain. All of the usual referencing mechanisms in LaTeX are case-sensitive and so is the matching in BibLaTeX of citations to entries in the .bbl file generated by Biber. It is inconsistent and messy to enforce case-insensitivity in only Biber's matching of citations keys to datasource entry keys. If Biber detects what looks like a case mismatch between citation keys, it will warn you.

Summary of warnings/errors is now a new format. When Biber finishes writing the .bbl, it gives a summary count of errors/warnings. It used to do this in the same format as BibTEX, for compatibility. Now it uses a more consistent and easier to parse format which matches all other Biber messages. Please note if you need to support Biber in an external tool. I have updated the notes on AUCTEX support below to reflect this.

2. Introduction

2.1. About

Biber is conceptually a BibTeX replacement for Biblatex. It is written in Perl with the aim of providing a customised and sophisticated data preparation backend for Biblatex. You do not need to install Perl to use Biber—binaries are provided for many operating systems via the main TeX distributions (TeXLive, MacTeX, MiKTeX) and also via download from SourceForge. Functionally, Biber offers a superset of BibletX's capabilities but is tightly coupled with Biblatex and cannot be used as a stand-alone tool with standard .bst styles. Biber's primary role is to support Biblatex by performing the following tasks:

- Parsing data from datasources
- Processing cross-references, entry sets, related entries
- Generating data for name, name list and name/year disambiguation
- Structural validation according to Biblatex data model
- Sorting reference lists
- Outputting data to a .bbl for Biblatex to consume

Biber also has the ability to output different formats than .bbl and can, for example, output a new BibTeX file which contains only cited entries from the datasources (using the --output-format=bibtex option). There is also a '<tool' mode which operates on datasources instead of individual documents, allowing you to transform, convert, reformat and generally change the contents of a datasource (see 3.13).

2.2. Requirements

Biber is distributed primarily as a stand-alone binary and is included in TEXLive, MacTEX and MiKTEX. If you are using any of these distributions, you do not need any additional software installed to use Biber. You do *not* need a Perl installation at all to use the binary distribution of Biber¹.

¹If you prefer, you can run Biber as a normal Perl program and doing this *does* require you to have a Perl interpreter installed. See section 4.

Biber's git repository and bug/feature tracker is on github². Biber's documentation, binary downloads and supporting files are on SourceForge³ Biber is included into TeXLive, the binaries coming from SourceForge.

2.3. Compatibility Matrix

Biber versions are closely coupled with Biblatex versions. You need to have the right combination of the two. Biber will warn you during processing if it encounters information which comes from a Biblatex version which is incompatible. Table 1 shows a compatibility matrix for the recent versions.

2.4. License

Biber is released under the free software Artistic License 2.0⁴

2.5. 历史

BIBTEX has been the default (only ...) integrated choice for bibliography processing in TEX for a long time. It has well known limitations which stem from its data format, data model and lack of Unicode support⁵. The .bst language for writing bibliography styles is painful to learn and use. It is not a general programming language and this makes it really very hard to do sophisticated automated processing of bibliographies.

Biblatex was a major advance for LaTeX users as it moved much of the bibliography processing into LaTeX macros. However, Biblatex still used BibTeX as a sorting engine for the bibliography and also to generate various labels for entries. BibTeX's capabilities even for this reduced set of tasks was still quite restricted due to the lack of Unicode support and the more and more complex programming issues involved in label preparation and file encoding.

biber 是专门为 biblatex 设计的一种强大的后端引擎,它可以处理与.bbl 文件准备相关的任意可能任务。它的主要功能有:

- 处理 UTF-8 全范围编码。
- 排序实现完全自定义,需要时还可使用 CLDR 排序调整。

²https://github.com/plk/biber

³http://sourceforge.net/projects/biblatex-biber/

⁴http://www.opensource.org/licenses/artistic-license-2.0.php

 $^{^5{\}rm In}$ fact, there is now a Unicode version

Biber version	Biblatex version
2.11	3.11
2.10	3.10
2.9	3.9
2.8	3.8
2.7	3.7
2.6	3.5, 3.6
2.5	3.4
2.4	3.3
2.3	3.2
2.2	3.1
2.1	3.0
2.0	3.0
1.9	2.9
1.8	2.8x
1.7	2.7
1.6	2.6
1.5	2.5
1.4	2.4
1.3	2.3
1.2	2.1, 2.2
1.1	2.1
1.0	2.0
0.9.9	1.7x
0.9.8	1.7x
0.9.7	1.7x
0.9.6	1.7x
0.9.5	1.6x
0.9.4	1.5x
0.9.3	1.5x
0.9.2	1.4x
0.9.1	1.4x
0.9	1.4x

Table 1: Biber/Biblatex compatibility matrix

- 允许以条目为单位设置参数。
- 能自动将.bbl 文件转换为任意支持的编码格式。
- 能在一次处理过程中处理完所有的参考文献节。
- 使用 GraphViz 代替.bbl 文件来帮助实现具有很多交叉引用的复杂参考文献的可 视化。(见 3.12 节)
- 能处理 UTF-8 编码的引用关键字和文件名(假设使用一个合适的完全兼容 UTF-8 的 tex 引擎)
- 能在一次处理过程中动态创建条目集并允许简单定义静态条目集。
- 通过新的 @XDATA 条目和域实现'句法'继承。这可以看成是 BIBTEX @STRING 功能(也支持)的一种基于域的一般化方法。
- 通过 BIBTEX 交叉引用机制一般化的 '语义'继承。可以由用户深度定制————可以选择将某些条目的某些域继承不同的域中等。也支持嵌套的交叉引用。
- 能处理姓名和姓名列表的自动缩减和扩展(一个详细解释的例子见 biblatex 手册的 4.11.4 节,这是一种令人印象深刻的功能)。
- 可扩展的模块化的数据源架构便于增加更多的数据源类型。
- 支持远程的数据源。
- 可对数据源中的条目类型和域做用户自定义的映射和禁用。比如,可以利用它来 完全忽略所有的 ABSTRACT 域,见 3.1.2 节。
- 支持关联条目以实现对类似'translated as', 'reprinted as', 'reprint of' 等的通用处理。
- 可定制的标签
- 在同一节内实现具有不同排序和过滤的多个文献表。
- 不在对特定条目和域的静态数据模型做限制。
- 数据的结构化验证和可定制验证模型的数据模型
- 对数据源直接操作的工具模式

图 1 展示了 biber 处理过程主要功能环节。biber 在执行过程中最困难的任务是处理 biblatex 的 uniquename 和 uniquelist 选项,列表的排序,数据的初步解析及重映射为内部数据模型。biber 已经接近有 20000 行的面向对象的 perl 代码,并依赖于一些非常出色的 perl 模块比如 Unicode::Collate,Text::BibTeX and XML::LibXML。

It may be useful to know something about the different routes a datasource entry can take as it passes through Biber.

1. All cited entries which are subsequently found in a datasource are instantiated in the internal Biber data model.

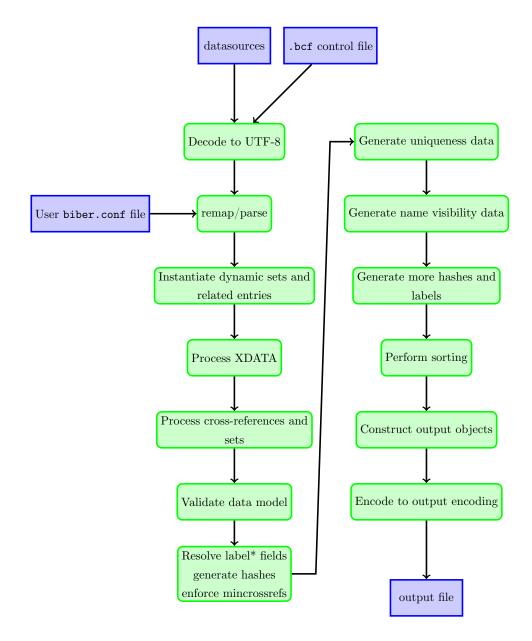


Figure 1: Overview of Biber's main functional units

- 2. Some uncited entries on which cited entries depend are instantiated in the internal Biber data model:
 - Entries with entrytype QXDATA which are referenced from cited entries.
 - Entries mentioned in the CROSSREF or XREF field of a cited entry (unless they are also cited themselves in which case they are already instantiated as per item 1 above).
 - Clones of entries mentioned as a 'related' entry of a cited entry.
 - Members of sets, either explicit @SET entrytype entries or dynamic sets.
- 3. Some uncited but instantiated entries are promoted to cited status so that they make it into the output:
 - Entries instantiated by being members of a set.
 - Entries instantiated by being mentioned as a CROSSREF are promoted to cited status if CROSSREF'ed or XREF'ed at least mincrosref times.
 - Clones of entries mentioned as a 'related' entry of a cited entry.
- 4. Some of these auto-cited entries have the 'dataonly' option set on them so that Biblatex will only use them for data and will not output them to the bibliography:
 - Clones of entries mentioned as a 'related' entry of a cited entry.

2.6. Performance

Biber can't really be compared with BIBTEX in any meaningful way performance-wise. Biber is written in Perl and does a *great* deal more than BIBTEX which is written in C. One of Biber's test cases is a 2150 entry, 15,000 line .bib file which references a 630 entry macros file with a resulting 160 or so page (A4) formatted bibliography. This takes Biber just under 30 seconds to process on a reasonable computer. This is perfectly acceptable, especially for a batch program.

2.7. Acknowledgements

François Charette originally wrote a first modest version of Biber. Philip Kime joined in the development in 2009 and is largely responsible for making it what it is today.

3. Use

Firstly, please note that Biber will *not* attempt to sanitise the content of BibTeX data-sources. That is, don't expect it to auto-escape any TeX special characters like '&' or '%' which it finds in, for example, your TITLE fields. It used to do this in earlier versions in some cases but as of version 0.9, it doesn't because it's fraught with problems and leads to inconsistent expectations and behaviour between different datasource types. In your BibTeX data sources, please make sure your entries are legal TeX code.

Running biber --help will display all options and description of each and is the primary source of usage information. Biber returns an exit code of 0 on success or 1 if there was an error.

Most Biber options can be specified in long or short format. When mentioning options below, they are referred to as 'long form|short form' when an option has both a long and short form. As usual with such options, when the option requires an argument, the long form is followed by an equals sign '=' and then the argument, the short form is followed by a space and then the argument. For example, the --configfile|-g option can be given in two ways:

```
biber --configfile=somefile.conf
biber -g somefile.conf
```

With the backend=biber option, Biblatex switches its backend interface and passes all options and information relevant to Biber's operation in a control file with extension .bcf⁶. This is conceptually equivalent to the .aux file which LaTeX uses to pass information to BibTeX. The .bcf file is XML and contains many options and settings which configure how Biber is to process the bibliography and generate the .bbl file.

The usual way to call Biber is simply with the .bcf file as the only argument. Biblatex always writes the control file with a .bcf extension. Specifying the '.bcf' extension to Biber is optional. Assuming a control file called test.bcf, the following two commands are equivalent:

```
biber test.bcf
biber test
```

Figure 2 is a graphical overview of the data flow for data model information. See Figure 1 for a more complete overview of Biber's processing steps.

⁶Biblatex Control File

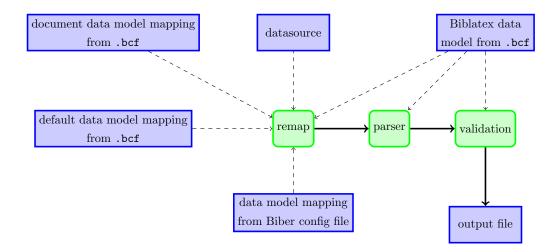


Figure 2: Model data flow in Biber

3.1. Options and config file

Biblatex options which Biber needs to know about are passed via the .bcf file. See Table 2 for the Biblatex options which Biber uses and also for the scopes which are supported for each option. Biber also has its own options which are set using the following resource chain, given in decreasing precedence order:

```
command line options \rightarrow biber.conf file \rightarrow .bcf file\rightarrow Biber hard-coded defaults
```

Users do not need to care directly about the contents or format of the .bcf file as this is generated from the options which they specify via Biblatex. The config file is a place to set commonly used command-line options and also to set options which cannot be set on the command line.

The configuration file is by default called biber.conf but this can be changed using the --configfile|-g option. Unless --configfile|-g is used, the config file is looked for in the following places, in decreasing order of preference:

Biblatex option	Global	Per-type	Per-entry
alphaothers	\checkmark	\checkmark	
dataonly		\checkmark	\checkmark
inheritance	\checkmark		
labelalpha	\checkmark	\checkmark	
label alpha template	\checkmark	\checkmark	
labeldate	\checkmark	\checkmark	
labeldatespec	\checkmark	\checkmark	
labelnamespec	\checkmark	\checkmark	
labelnumber	\checkmark	\checkmark	
labeltitle	\checkmark	\checkmark	
labeltitleyear	\checkmark	\checkmark	
maxalphanames	\checkmark	\checkmark	\checkmark
maxbibnames	\checkmark	\checkmark	\checkmark
maxcitenames	\checkmark	\checkmark	\checkmark
maxitems	\checkmark	\checkmark	\checkmark
minalphanames	\checkmark	\checkmark	\checkmark
minbibnames	\checkmark	\checkmark	\checkmark
mincitenames	\checkmark	\checkmark	\checkmark
minitems	\checkmark	\checkmark	\checkmark
presort	\checkmark	\checkmark	\checkmark
singletitle	\checkmark	\checkmark	
skipbib		\checkmark	\checkmark
skiplab		\checkmark	\checkmark
skiplos		\checkmark	\checkmark
sortalphaothers	\checkmark	\checkmark	
sortexclusion		\checkmark	
sortfirstinits	\checkmark		
sorting	\checkmark		
uniquelist	\checkmark	\checkmark	\checkmark
uniquename	\checkmark	\checkmark	\checkmark
useauthor	\checkmark	\checkmark	\checkmark
useeditor	\checkmark	\checkmark	\checkmark
useprefix	\checkmark	\checkmark	\checkmark
usetranslator	\checkmark	\checkmark	\checkmark

Table 2: Biblatex options which Biber uses

```
biber.conf in the current directory →
$HOME/.biber.conf →
$XDG_CONFIG_HOME/biber/biber.conf →
$HOME/Library/biber/biber.conf (Mac OSX only)
$APPDATA/biber.conf (Windows only) →
the output of 'kpsewhich biber.conf' (if available on the system)
```

The config file is XML. Here Below is an example config file which displays the Biber defaults:

```
<?xml version="1.0" encoding="UTF-8"?>
<config>
 <clrmacros>0</clrmacros>
 <collate_options>
   <option name="level" value="4"/>
   <option name="variable" value="non-ignorable"/>
   <option name="normalization" value="prenormalized"/>
  </collate_options>
  <debug>0</debug>
  <decodecharsset>base</decodecharsset>
  <dieondatamodel>0</dieondatamodel>
  <graph>0</graph>
  <input_encoding>UTF-8</input_encoding>
  <listsep>and</listsep>
  <mincrossrefs>0</mincrossrefs>
  <namesep>and</namesep>
  <nodieonerror>0</nodieonerror>
  <noinit>
   <!-- strip lowercase prefices like 'al-' when generating initials -->
   <option value="\b\p{L1}{2}\p{Pd}"/>
   <!-- strip diacritics when generating initials -->
   <option value="[\x{2bf}\x{2018}]"/>
  </noinit>
  <nolabel>
   <!-- strip punctuation, symbols, separator and control characters -->
   <option value="[\p{P}\p{S}\p{C}]+"/>
  </nolabel>
  <nolog>0</nolog>
  <nostdmacros>0</nostdmacros>
```

```
<nosort>
   <!-- strip prefices like 'El-' when sorting name fields -->
   <option name="setnames" value="\A\p{L}{2}\p{Pd}"/>
   <!-- strip some diacritics when sorting name fields -->
   <option name="setnames" value="[\x{2bf}\x{2018}]"/>
  </nosort>
  <onlylog>0</onlylog>
  <others_string>others</others_string>
  <ouput_align>0</output_align>
  <output_encoding>UTF-8</output_encoding>
  <output_fieldcase>upper</output_fieldcase>
  <output_format>bbl</output_format>
  <output_indent>2</output_indent>
  <output_resolve_xdata>0</output_resolve_xdata>
  <output_resolve_crossrefs>0</output_resolve_crossrefs>
  <output_resolve_sets>0</output_resolve_sets>
  <output_safechars>0</output_safechars>
  <output_safecharsset>base</output_safecharsset>
  <quiet>0</quiet>
  <sortcase>true</sortcase>
  <sortupper>true</sortupper>
  <tool>false</tool>
  <trace>false</trace>
  <validate_bltxml>0</validate_bltxml>
  <validate_config>0</validate_config>
  <validate_control>0</validate_control>
  <validate_datamodel>0</validate_datamodel>
  <wraplines>0</wraplines>
  <xsvsep>\s*,\s*</xsvsep>
</config>
```

In practice, the most commonly used options will be set via Biblatex macros in your document and automatically passed to Biber via the .bcf file. Certain options apply only to Biber and can only be set in the config file, particularly the more complex options. Most options are simple tags. Exceptions are the nosort, noinit and collate-options options which are slightly more complex and can have sub-options as shown. A much more complex option is the sourcemap option which is not set by default and which is described in section 3.1.2.

3.1.1. The output-format option

Biber is able to output formats other than .bbl files for Biblatex to consume. It is also able to output other formats such as DOT for visualisation of entry dependencies (see section 3.12), the experimental biblatexml XML format, BibTeX .bib files and an XML version of the .bbl format with extension .bblxml .bib output is possible in tool mode, when you are converting an entire datasource file independently of any particular document (see section 3.13). It is also useful when you want, instead of a .bbl, a new .bib file containing only the cited entries from a document so that you can, for example, send a minimally complete package for typesetting to someone. To do this, you would, after the first LaTeX run, call Biber like this:

biber --output-format=bibtex test.bcf

This would result in a new .bib file called test_biber.bib containing all cited entries in test.tex, in citation order, formatted according to the various ouput-* options. You could of course also perform more processing like source mapping (see section 3.1.2), reencoding (see section 3.6) etc. using more command line options or a config file.

The .bblxml format for output is an XML version of the .bbl. It cannot be read by Biblatex but contains the same information as in the .bbl and may be useful if you want to transform a document bibliography into some other format since XML is a well-supported transformation format (using, for example, XSLT). By default, when choosing .bblxml output with the option --output-format=bblxml, a RelaxNG XML schema is also generated (unless the --no-bblxml-schema is used). This schema is derived from the active datamodel in the document (passed in the .bcf from Biblatex) and is placed in the same directory as the .bblxml output file. The extension of the schema is .rng. The option --validate-bblxml may be used to validate the .bblxml against the schema.

3.1.2. The sourcemap option

The datasource drivers implement a mapping from datasource entrytypes and fields into the Biblatex data model. If you want to override or augment the driver mappings you can use the sourcemap option which makes it possible to, for example, have a datasource with non-standard entrytypes or fields and to have these automatically mapped into other entrytypes/fields without modifying your datasource. Essentially, this alters the source data stream which Biber uses to build the internal Biblatex data model and is an automatic way of editing the datasource as it is read by Biber.

Source mappings can be defined at different 'levels' which are applied in a defined order. See the Biblatex manual regarding these macros:

```
user-level maps defined with \DeclareSourcemap→
user-level maps defined in the Biber config file (described below)→
style-level maps defined with \DeclareStyleSourcemap→
driver-level maps defined with \DeclareDriverSourcemap
```

The sourcemap option can only be set in the config file and not on the command line as it has a complex structure. This option allows you to perform various datasource mapping tasks which can be useful for pre-processing data which you do not generate yourself:

- Map datasource entrytypes to different entrytypes.
- Map datasource fields to different fields.
- Add new fields to an entry
- Remove fields from an entry
- Modify the contents of a field using standard Perl regular expression match and replace.
- Restrict any of the above operations to entries coming from particular datasources which you defined in \addresource{} macros.
- Restrict any of the above operations to entries only of a certain entrytype.

There is in fact, more flexibility than the above suggests, examples will show this below. The format of the sourcemap option section in the config file is described below, followed by examples which will make things clearer. Items in red are not literal, they are descriptive meta-values which are explained in the accompanying text. Items in blue are optional within their parent section or element. The general structure is:

Here, $\operatorname{driver}_{n}$ are the names of valid Biber data source drivers (see section 3.11). One thing to note here is the map_overwrite attribute. This boolean attribute determines whether, for this driver mapping section, you may overwrite existing fields when adding new fields or mapping them. This attribute can be overridden on a permap basis, see below. A warning will be issued either way saying whether an existing field will or will not be overwritten. If omitted, it defaults to '0'.

The map elements are processed in sequence and contain a number of map_steps which are also processed in sequence. Each map_step allows you to do a particular thing or combination of things:

- Change the entrytype of an entry
- Change the name of a field
- Add extra fields the entry
- Change the contents of a field

These facilities are explained in more detail below, with examples. A map element looks like this:

```
map_replace="replace-regexp"
map_field_set="set-field"
map_field_value="set-value"
map_entry_new="newentrykey"
map_entry_newtype="newentrykeytype"
map_entry_entrytarget="newentrykey"
map_append="1"
map_null="1"
map_entry_null="1"
map_entry_clone="clonekey"
map_origfield="1"
map_origfieldval="1"
map_origentrytype="1"
map_final="1"/></map>
```

- If there are any datasources named in per_datasource elements, this mapping only applies to entries coming from the named datasources. There can be multiple per_datasource elements each specifying one of the datasource names given in a Biblatex \addbibresource macro.
- If there are any entrytypess named in per_type elements, this mapping only applies to entries of the named entrytypess.
- If there are any entrytypess named in per_nottype elements, this mapping only applies to entries not of the named entrytypess.
- The map_overwrite attribute can be used to override the value for this attribute set on the parent maps element. If omitted, it defaults to the parent maps attribute value.
- The map_foreach attribute loops over all \steps in this \map, setting the special variable \$MAPLOOP to each of the comma-separated values contained in loopval.

 loopval can either be the name of a datafield set defined with Biblatex's \DeclareDatafieldSet, a datasource field which contains a comma-separated values list or an explicit comma-separated values list itself (and loopval is determined in that order).

 This allows the user to repeat a group of map_steps for each value of loopval.

 The special variable \$MAPUNIQ may also be used in the map_steps to generate a random unique string. This can be useful when creating keys for new entries. The special variable \$MAPUNIQVAL may be used the map_steps to refer to the value of the last random unique string generated with \$MAPUNIQ.

Each map_step is looked at in turn and compared with the datasource entry being processed. A map_step works like this:

- If map_entry_new is set, a new entry is created with the entry key newentrykey and the entry type newentrykeytype given in the option map_entry_newtype. This entry is only in-scope during the processing of the current entry and can be referenced by newentrykey given as the value to map_entrytarget. In newentrykey, you may use standard Perl regular expression backreferences to captures from a previous map_match step.
- When a map_field_set step has map_entrytarget set to the entrykey of an entry
 created by map_entry_new, the target for the field set will be the map_entrytarget
 entry rather than the entry being currently processed. This allows users to create
 new entries and set fields in them.
- If map_entry_null is set, processing of the map immediately terminates and the current entry is not created. It is as if it did not exist in the datasource. Obviously, you should select the entries which you want to apply this to using prior mapping steps.
- If map_entry_clone is set, a clone of the entry is created with an entry key clonekey. Obviously this may cause labelling problems in author/year styles etc. and should be used with care. The cloned entry is in-scope during the processing of the current entry and can be modified by passing its key as the value to map_entrytarget. In clonekey, you may use standard Perl regular expression backreferences to captures from a previous map_match step.
- Change the source-entrytype to target-entrytype, if defined. If map_final is set then if the entrytype of the entry is not source-entrytype, processing of this map immediately terminates.
- Change the source-field to target-field, if defined. If map_final is set, then if there is no source-field field in the entry, processing of this map immediately terminates
- If map_notfield is used then only apply the step if the source-field does not exist.
- If map_match is defined but map_replace is not, only apply the step if the source-field matches map_match. You can use parentheses as usual to capture parts of the match and can then use these later when setting a map_field_value.
- map_notmatch is the same as map_match but with the logic reversed.

- Perform a Perl regular expression match and replace on the value of source-field if map_match and map_replace are defined. You may use (and almost certainly will want to use) parentheses for back-references in map_replace. Do not quote the regular expressions in any special (i.e. non-Perly) way—it's not necessary.
- If map_field_set is defined, then its value is set-field which will be set to a value specified by further attributes. If map_overwrite is false for this step and the field to set already exists then the map step is ignored. If map_final is also set on this step, then processing of the parent map stops at this point. If map_append is set, then the value to set is appended to the current value of set-field. The value to set is specified by a mandatory one and only one of the following attributes:

```
• map_field_value — The set-field is set to set-value
```

- map_null The field is ignored, as if it did not exist in the datasource
- map_origentrytype The set-field is set to the most recently mentioned source-entrytype name.
- map_origfield The set-field is set to the most recently mentioned source-field name
- map_origfieldval The set-field is set to the most recently mentioned source-field value

With BibTeX datasources, you can specify the pseudo-field 'entrykey' for source-field which is the citation key of the entry. Naturally, this 'field' cannot be changed (used as set-field, target-field or changed using map_replace).

Note that for XML datasources like BibLaTeXML, the names of fields and entrytypes are matched in a case sensitive manner. For all other datasource types, entry type and field name matching is case insensitive.

Here are some examples:

```
<map>
    <per_datasource>example1.bib</per_datasource>
    <per_datasource>example2.bib</per_datasource>
    <map_step map_field_set="KEYWORDS" map_field_value="keyw1, keyw2"/>
    <map_step map_field_source="ENTRYKEY"/>
    <map_step map_field_set="NOTE" map_origfieldval="1"/>
    </map>
```

This would add a KEYWORDS field with value 'keyw1, keyw2' and set the NOTE field to citation key for the entry to all entries which are found in either the examples1.bib or examples2.bib files. This assumes that the Biblatex source contains \addresource{example1.bib} and \addresource{example2.bib}.

```
<map map_overwrite="0">
  <map_step map_field_source="TITLE"/>
  <map_step map_field_set="NOTE" map_origfieldval="1"/>
  </map>
```

Copy the TITLE field to the NOTE field unless the NOTE field already exists.

```
<map map_overwrite="0">
  <map_step map_field_source="AUTHOR" />
  <map_step map_field_set="SORTNAME" map_origfieldval="1" map_final="1"/>
  <map_step map_field_source="SORTNAME" map_match="\A(.+?)\s+and.*" map_replace="$1"/>
  </map>
```

For any entry with an AUTHOR field, try to set SORTNAME to the same as AUTHOR. If this fails because SORTNAME already exists, stop, otherwise truncate SORTNAME to just the first name in the name list.

```
<map map_overwrite="0">
  <map_step map_type_source="CHAT" map_type_target="CUSTOMA" map_final="1"/>
  <map_step map_field_set="TYPE" map_origentrytype="1"/>
  </map>
```

Any @CHAT entrytypes would become @CUSTOMA entrytypes and would automatically have a TYPE field set to 'CHAT' unless the TYPE field already exists in the entry (because map_overwrite is false). This mapping applies only to entries of type @CHAT since the first step has map_final set and so if the map_type_source does not match the entry, processing of this map immediately terminates.

```
<map>
  <per_datasource>examples.bib</per_datasource>
  <per_type>ARTICLE</per_type>
  <per_type>BOOK</per_type>
  <map_step map_field_set="ABSTRACT" map_null="1"/>
  <map_step map_field_set="NOTE" map_field_value="Auto-created this field"/>
</map>
```

Any entries of entrytype ARTICLE or BOOK from the 'examples.bib' datasource would have their ABSTRACT fields removed and a NOTE field added with value 'Auto-created this field'.

This removes ABSTRACT fields from any entry, changes CONDUCTOR fields to NAMEA fields and changes GPS fields to USERA fields

Applies only to entries with PUBMED fields and maps PUBMEDID fields to EPRINT fields, sets the EPRINTTYPE field to 'PUBMEDID' and also sets the USERD field to the string 'Some string of things'.

Here, the contents of the SERIES field have leading numbers stripped and the remainder of the contents lowercased.

Here, if for an entry, the TITLE field matches a particular regular expression, we set a special keyword so we can, for example, make a references section just for certain items.

```
<map>
    <map_step map_field_source="LISTA" map_match="regexp" map_final="1"/>
    <map_step map_field_set="LISTA" map_null="1"/>
    </map>
```

If an entry has a LISTA field which matches regular expression 'regexp', then it is removed.

Here, we use multiple match/replace for the same field to regularise some inconstant name variants. Bear in mind that match/replace processing within a map element is sequential and the changes from a previous match/replace are already committed.

Only applies to entries with an AUTHOR field matching 'Doe,'. First the AUTHOR field is copied to both the SHORTAUTHOR and SORTNAME fields, overwriting them if they already exist. Then, these two new fields are modified to canonicalise a particular name, which presumably has some variants in the datasource.

<map>

```
<map_step map_field_source="TITLE" map_match="A Title" map_final="1"/>
<map_step map_entry_null="1"/>
</map>
```

Any entry with a TITLE field matching 'A Title' will be completely ignored.

Other datasource types

For datasources other than BIBTEX, (e.g. biblatexml), the source entrytypes and fields are usually very differently modelled and named.

Here we use a loop to apply a regular expression replacement to several fields:

```
<maps datatype="bibtex" level="user">
    <map map_overwrite="1" map_foreach="author,editor,translator">
        <map_step map_field_source="$MAPLOOP" map_match="Smith" map_replace="Jones"/>
        </map>
</map>
```

3.1.3. The inheritance option

The inheritance option defines the inheritance rules for data inheritance between entries using, for example, BibTeX's CROSSREF field. The default setup for this is defined by Biblatex and is passed in the .bcf file. Defining inheritance rules in the Biber configuration file is rarely something you would want to do with one notably exceptional case being when using Biber in tool mode where you might want to 'materialise' special inheritance rules (see section 3.13). Here we define the format of the config file inheritance section, should you need to understand or modify it. Items in red are not literal, they are descriptive meta-values which are explained in the accompanying text. Items in blue are optional within their parent section or element.

- The defaults section specifies the default inheritance rules which are not otherwise covered by a specific inherit rule. inherit_all specifies that by default a target inherits all fields from a source. override_target specifies that by default an existing target field will be overwritten by a source field it already exists in the target. A type_pair element specifies the defaults for a particular source and target entrytype combination. source or target can take the value '*' which is a wildcard representing all possible entrytypes.
- An inherit element specifies how one or more source fields are inherited by one more source/target pairs which are specified in one or more type_pair elements within the same inherit element. override_target can be specified on a per-field basis as can the skip attribute which indicates that a particular field is not to be inherited by the target.

Here is an example:

```
</inherit>
<inherit>
    <trype_pair source="*" target="inbook"/>
        <trype_pair source="*" target="incollection"/>
        <field source="*" skip="true"/>
        </inherit>
</inheritance>
```

Here we can see that the default is to inherit all fields from the source and not to override existing target fields if they already exist. Then we see that for some combinations of sources and targets, the AUTHOR field is inherited from the source and also the AUTHOR field in the source is inherited as the BOOKAUTHOR field in the target.

The second inherit element says that INBOOK and INCOLLECTION entries never inherit the INTRODUCTION field from any source.

In general, it is probably best to copy the default Biblatex inheritance rules and modify them to your needs. See section 3.13.

3.1.4. The noinit option

The value of the noinit option can only be set in the config file and not on the command line. This is because the values are Perl regular expressions and would need special quoting to set on the command line. This can get a bit tricky on some OSes (like Windows) so it's safer to set them in the config file. noinit allows you to ignore parts of a name when generating initials. This is done using Perl regular expressions which specify what to ignore. You can specific multiple regular expressions and they will be removed from the name before it is passed to the initials generating system.

For example, this option can be used to ignore diacritic marks and prefices in names which should not be considered when sorting. Given (the default):

```
<noinit>
  <!-- strip lowercase prefices like 'al-' when generating initials -->
  <option value="\b\p{L1}{2}\p{Pd}"/>
  <!-- strip diacritics when generating initials -->
  <option value="[\x{2bf}\x{2018}]"/>
  </noinit>
```

and the BibTeX data source entry:

```
AUTHOR = \{\{al-Hasan\}, \{Al\bar{1}\},\}
```

the initials for the last name will be 'H' and not 'a-H'. The initial for the first name will be 'A' as the diacritic is also ignored. This is tricky in general as you cannot often determine the difference between a name with a prefix and a hyphenated name with only, say, two chars in the first part such as 'Ho-Pun'. You can adjust this option for your individual cases. By default, only lowercased prefices are looked for so as to avoid breaking things like 'Ho-Pun' where you want the initials to be 'H.-P.', for example. See the Perl regular expression manual page for details of the regular expression syntax⁷.

3.1.5. The nolabel option

The value of the nolabel option can only be set in the config file and not on the command line. This is because the values are Perl regular expressions and would need special quoting to set on the command line. This can get a bit tricky on some OSes (like Windows) so it's safer to set them in the config file. nolabel allows you to ignore elements of a field when generating labels. This is done using Perl regular expressions which specify what to ignore. You can specific multiple regular expressions and they will be removed from a field before it is passed to the label generating system.

For example, this option can be used to ignore control, punctuation, symbol and separator characters when generation labels. Given (the default):

and the BibTeX datasource entry with default label generation definition (see Biblatex documentation for \DeclareLabelalphaTemplate):

```
AUTHOR = {O'Toole, Alexander},
```

Then the label for the name will be «OTo07» as the apostrophe is ignored by the label generation routine. See the Perl regular expression manual page for details of the regular expression syntax⁸.

⁷http://perldoc.perl.org/perlre.html

⁸http://perldoc.perl.org/perlre.html

3.1.6. The nolabelwidthcount option

The value of the nolabelwidthcount option can only be set in the config file and not on the command line. This is because the values are Perl regular expressions and would need special quoting to set on the command line. This can get a bit tricky on some OSes (like Windows) so it's safer to set them in the config file. nolabelwidthcount allows you to ignore elements of a field when generating fixed-width substrings of labels. This is done using Perl regular expressions which specify what to ignore. You can specific multiple regular expressions and they will be removed from a field before it is passed to the label generating system.

For example, this option can be used to ignore punctuation characters when generating substrings for labels. Note that in this example we reset nolabel because by default this removes punctuation characters. Given:

```
<nolabel>
  <option value=""/>
  </nolabel>
  <nolabelwidthcount>
   <option value="\p{P}+"/>
  </nolabelwidthcount>
```

and the BibTeX datasource entry with default label generation definition (see Biblatex documentation for \DeclareLabelalphaTemplate):

```
AUTHOR = {O'Toole, Alexander},
```

Then the label for the name will be «O'To07» as the apostrophe is ignored by the substring generation routine. See the Perl regular expression manual page for details of the regular expression syntax⁹.

3.1.7. The sorting option

The sorting option defines the sorting rules for the bibliography lists. Biblatex allows multiple sorting specifications referenced by name as it can print bibliography information as many times as the user wishes with different filtering and sorting. This is normally handled by macros in Biblatex which write the XML sorting specification(s)

⁹http://perldoc.perl.org/perlre.html

to the .bcf file for Biber to read but there may be occasions (usually when using Biber in 'tool' mode (see section3.13) when you need to specify the global sorting specification directly in a Biber config file. This section documents the XML format of the sorting specification. Items in red are not literal, they are descriptive meta-values which are explained in the accompanying text. Items in blue are optional within their parent section or element. See also the nosort option in section 3.1.8.

```
<sortingtemplate name="schemename">
  <sortexclusion type=type>
     <exclusion>field</exclusion>
  </sortexclusion>
  <sort order="n"</pre>
       final=1
       sort_direction="ascending|descending"
       sort_case="1|0"
       sort_upper="1|0">
   <sortitem order="m"</pre>
             substring_side="left|right"
             substring_width="int"
             pad_side="left|right"
             pad_width="int"
             pad_char="string">field|literal|citeorder</sortitem>
  </sort>
</sortingtemplate>
```

Sorting in Biber is a sophisticated procedure of building up a sorting object for an entry based on a sorting scheme template, the general form of which is shown above. The sorting routine first traverses every entry in the bibliography list and generates a sorting object based on the sorting scheme. When this is done, it sorts the entries according to the sorting objects it has generated for each entry.

A sorting specification must be named with the schemename attribute. In 'tool' mode, this must be set to tool. Otherwise, it is a name referenced by a Biblatex refcontext sorting option. A sorting specification is comprised of a number of sort elements. Sorting is essentially a process of comparing whatever information is in the nth sort element collected for every entry (otherwise known as 'multi-field' sorting).

Within a sort element, there can be any number of sortitem elements which describe what information to look for in the entry in order to construct this part of the sorting object; either a field, a literal string or the special 'citeorder' pseudo-field.

When generating the sorting information for an entry, within each sort element, the first sortitem to return a non-empty value for the bibliography entry is used and the rest of the sortitems in the sort are skipped. A sortitem essentially looks for a piece of information in the entry and adds this to the sorting object. If it is looking for a field, then the field must exist in the entry. If it does not, the sortitem is skipped. If the field does exist, it is added to the sorting object for the entry after being modified by the attributes of the sortitem.

Once a sortitem has returned the contents of a field, you can use the substring_side (default 'left' if any other substring attributes are set) and substring_width (default '4' if any other substring attributes are set) attributes to truncate the contents of the field by reducing it to a substring taken from the left or right side of the string and of a number of (UTF-8) characters of your choice. You can also pad the field with repeated arbitrary characters on either side using the pad_side (default 'left' if any other pad attributes are set), pad_width (default '4' if any other pad attributes are set) and pad_char (default '0'—the digit zero if any other pad attributes are set) attributes.

A sortitem which is neither a known bibliography sorting field nor the special 'citeorder' string is treated as a literal string to add to the sorting object. Naturally, such a sortitem always 'finds' something to add to the sorting object and so it should never have any other sortitems after it within the sort section as they will never be considered. The 'citeorder' sortitem value has a special meaning. It requests a sort based on the lexical order of the actual citations. For entries cited in Biblatex within the same citation command like:

```
\cite{one,two}
```

there is a distinction between the lexical order and the semantic order. Here 'one' and 'two' have the same semantic order but a unique lexical order. The semantic order only matters if you specify further sorting to disambiguate entries with the same semantic order. For example, this is the definition of the Biblatex none sorting scheme:

```
<sortingtemplate>
  ort>mm</presort>
```

```
<sort order="1">
     <sortitem order="1">citeorder</sortitem>
     </sort>
</sortingtemplate>
```

This sorts the bibliography purely lexically by the order of the keys in the citation commands. In the example above, it sorts entry 'one' before 'two'. However, suppose that you consider 'one' and 'two' to have the same order (semantic order) since they are cited at the same time and want to further sort these by year. Suppose 'two' has an earlier YEAR than 'one':

This sorts 'two' before 'one', even though lexically, 'one' would sort before 'two'. This is possible because the semantic order can be disambiguated by the further sorting on year. With the standard Biblatex none sorting scheme, the lexical order and semantic order are identical because there is nothing further to disambiguate them. This means that you can use 'citeorder' just like any other sortitem value, choosing how to further sort entries cited at the same time (in the same citation command).

Both sort and sortitem elements have a mandatory order attribute which should start at '1' and increase for each further element. Order numbers for sortitem elements within a sort element always begin with '1' and don't increase between sort elements.

Once a sortitem element has added something to the sorting object (or all sortitem elements within a sort have been processed, regardless of whether anything was added to the sort object for the entry), some attributes are applied to the information added and the next sort element is processed. These attributes on the sort element further determine how any sorting specification added by the sortitem elements will be used in the sorting.

If the sort element has the final attribute set to '1', then if any sortitem within the sort returned a non-empty string to add to the sorting object, the construction of the sorting object for the entry ceases at this point and no more **sort** elements are processed. This is used typically to make sure that master sorting keys such as those specified with the **SORTKEY** field, if found, are the only thing used to construct the sorting object. The **sort** element may further specify that the information at **order** 'n' should be sorted in ascending order or descending order (default 'ascending'), whether case should be considered when sorting (default depends on the Biber **sortcase** option which defaults to true) and whether uppercase characters should be sorted before lower (default depends on the Biber 'sortupper' option which defaults to true).

Finally, there are two special sorting section elements to consider. The presort element is mandatory and specifies a literal string to add to the very beginning of all sorting objects for all entries. This is useful when combined with the fact that you may specify an optional type attribute which specifies a particular entry type for the presort string specified. Using this mechanism, you can sort, for example, all ARTICLE entries before all BOOK entries and then all other types of entry:

```
<sortingtemplate>
  <presort type="article">aa</presort>
  <presort type="book">bb</presort>
   <presort>mm</presort>
    :
  </sortingtemplate>
```

This makes it easy to divide a bibliography by type of entry.

The optional sortexclusion element allows you to exclude fields from consideration by sortitem on a per-type basis. For example, if you wanted to ignore the YEAR field of any REPORT entry types because they are not reliably populated with data representing a year, you could do:

```
<sortingtemplate>
     :
     <sortexclusion type="report">year</sortexclusion>
          :
     </sortingtemplate>
```

It is much easier to see how intuitive this all is if you look at a standard sorting scheme definition. Below is the default Biblatex sorting scheme which appears in the .bcf when you run Biblatex with no sorting option. This is fully documented and described in

the Biblatex manual along with the LaTeX macros which generate this XML in the .bcf:

```
<sortingtemplate>
  ort>mm</presort>
  <sort order="1">
   <sortitem order="1">presort</sortitem>
  </sort>
  <sort order="2" final="1">
   <sortitem order="1">sortkey</sortitem>
  </sort>
  <sort order="3">
   <sortitem order="1">sortname</sortitem>
   <sortitem order="2">author</sortitem>
   <sortitem order="3">editor</sortitem>
   <sortitem order="4">translator</sortitem>
   <sortitem order="5">sorttitle</sortitem>
   <sortitem order="6">title</sortitem>
  </sort>
  <sort order="4">
   <sortitem order="1">sortyear</sortitem>
   <sortitem order="2">year</sortitem>
  </sort>
  <sort order="5">
   <sortitem order="1">sorttitle</sortitem>
   <sortitem order="2">title</sortitem>
  </sort>
  <sort order="6">
   <sortitem order="1" pad_side="left" pad_width="4" pad_char="0">volume</sortitem>
   <sortitem order="2">0000</sortitem>
  </sort>
</sortingtemplate>
```

3.1.8. The nosort option

The value of the **nosort** option can only be set in the config file and not on the command line. This is because the values are Perl regular expressions and would need special quoting to set on the command line. This can get a bit tricky on some OSes (like Windows) so it's safer to set them in the config file. In any case, it's unlikely you

would want to set them for particular Biber runs; they would more likely be set as your personal default and thus they would naturally be set in the config file anyway. nosort allows you to ignore parts of a field for sorting. This is done using Perl regular expressions which specify what to ignore in a field. You can specify as many patterns as you like for a specific field. Datasource field sets defined using \DeclareDatafieldSet in Biblatex are also recognised as valid values and so it is possible to specify nosort regular expressions for arbitrary sets of fields. Biblatex defines as standard two sets as shown in Table 3.

For example, this option can be used to ignore some diacritic marks and prefices in names which should not be considered when sorting. Given (the default):

```
<nosort>
  <!-- strip prefices like 'al-' when sorting names -->
  <option name="setnames" value="\A\p{L}{2}\p{Pd}"/>
    <!-- strip diacritics when sorting names -->
    <option name="setnames" value="[\x{2bf}\x{2018}]"/>
  </nosort>
and the BIBTEX datasource entry:
AUTHOR = {{al-Hasan}, Alī},
```

the prefix 'al-' and the diacritic ' ϵ ' will not be considered when sorting. See the Perl regular expression manual page for details of the regular expression syntax¹⁰.

You may specify any number of option elements. If a nosort option is found for a specific field, it will override any option for a type which also covers that field.

Here is another example. Suppose you wanted to ignore 'The' at the beginning of a TITLE field when sorting, you could add this to your biber.conf:

```
<nosort>
<option name="title" value="\AThe\s+"/>
</nosort>
```

If you wanted to do this for all title fields listed in Table 3, then you would do this:

```
<nosort>
    <nosort>
    <nosort>

value="\AThe\s+"/>
```

¹⁰http://perldoc.perl.org/perlre.html

Set	Fields	
setnames	author	
	afterword	
	annotator	
	book author	
	commentator	
	editor	
	editora	
	editorb	
	editorc	
	foreword	
	holder	
	introduction	
	namea	
	nameb	
	namec	
	shortauthor	
	shorteditor	
	translator	
settitles	booktitle	
	eventtitle	
	issuetitle	
	journal title	
	maintitle	
	origtitle	
	title	

Table 3: Default Biblatex datafield sets

Note: nosort can be specified for most fields but not for things like dates and special fields as that wouldn't make much sense.

3.1.9. The collate-options option

The collate-options option has format similar to nosort. See Section 3.5 for details about the option, here is an example of a config file setting:

```
<collate_options>
  <option name="level" value="3"/>
  <option name="table" value="/home/user/data/otherkeys.txt"/>
  </collate_options>
```

3.2. Unicode

Biber uses NFD UTF-8 internally. All data is converted to NFD UTF-8 when read. If UTF-8 output is requested (to .bb1 for example), the UTF-8 will always be NFC.

3.3. Input/Output File Locations

3.3.1. Control file

The control file is normally passed as the only argument to Biber. It is searched for in the following locations, in decreasing order of priority:

```
Absolute filename →

In the --input-directory, if specified→

In the --output-directory, if specified→

Relative to current directory→

Using kpsewhich, if available
```

3.3.2. Data sources

Local datasources of type 'file' are searched for in the following locations, in decreasing order of priority:

```
Absolute filename →

In the --input-directory, if specified→

In the --output-directory, if specified→

Relative to current directory→

In the same directory as the control file→

Using kpsewhich for supported formats, if available
```

Remote file datasources (beginning with http:// or ftp://) are retrieved to a temp file and processed as normal. Users do not specify explicitly the bibliography database files; they are passed in the .bcf control file, which is constructed from the Biblatex '\addbibresource{}' macros.

3.4. Logfile

By default, the logfile for Biber will be named \jobname.blg, so, if you run

```
biber <options> test.bcf
```

then the logfile will be called 'test.blg'. Like the .bbl output file, it will be created in the --output-directory|-c, if this option is defined. You can override the logfile name by using the --logfile option:

```
biber --logfile=lfname test.bcf
```

results in a logfile called 'lfname.blg'.

Warning: be careful if you are expecting Biber to write to directories which you don't have appropriate permissions to. This is more commonly an issue on non-Windows OSes. For example, if you rely on kpsewhich to find your database files which are in system TeX directories, you may well not have write permission there so Biber will not be able to write the .bbl. Use the --output-file|-0 option to specify the location to write the .bbl to in such cases.

3.5. Collation and Localisation

Biber takes care of collating the bibliography for Biblatex. It writes entries to the .bbl file sorted by a completely customisable set of rules which are passed in the .bcf file by Biblatex. Biber uses the Perl Unicode::Collate module for collation which implements the full UCA (Unicode Collation Algorithm). It also has CLDR (Common Locale Data Repository) tailoring to deal with cases which are not covered by the UCA.

The locale used for collating a particular field in the bibliography is determined by the following resource chain which is given in decreasing precedence order:

```
--collate-options|-c (e.g. -c 'locale => "de_DE"') →
--sortlocale|-l →
Biblatex per-sortset locale option →
Biblatex per-sortscheme locale option→
Biblatex global sortlocale option
```

The locale will be used to look for a collation tailoring for that locale. It will generate an informational warning if it finds none. This is not a problem as most standard collation cases are covered by the standard UCA and many locales neither have nor need any special collation tailoring.

Biblatex passes sortscheme-specific sorting locales and its global sorting locale in the .bcf. Biber uses these locales automatically to tailor sorting at various levels of granularity (see Biblatex docs for the \DeclareSortingScheme macro). Biblatex can be configured to automatically pass as locale the language setting from Babel or Polyglossia in which case Biber tries to match this to a sensible locale. See the Appendix, section A.1 for the mapping. If you want to sort using a specific locale not listed in A.1, specify this locale exactly in your LaTeX source as the Biblatex sortlocale option, as the optional argument to \DeclareSortingScheme macro or as an optional argument to the Biblatex \sort macro according to the desired granularity. For example, if you want to use traditional Spanish for sorting a reference list, you need to specify es_ES_trad directly instead of using the 'spanish' string because the Babel/Polyglossia 'spanish' language identifier by default maps to the modern es_ES locale (which doesn't include sort tailoring for 'ch' in Spanish).

Collation is by default case sensitive. You can turn this off globally using the Biber

option --sortcase=false or from Biblatex using its option sortcase=false. The option can also be defined per-field so you can sort some fields case sensitively and others case insensitively. See the Biblatex manual.

By default, Biber collates uppercase before lower. You can reverse this globally for all sorting using the Biber option --sortupper=false or from Biblatex by using its option sortupper=false. The option can also be defined per-field so you can sort some fields uppercase before lower and others lower before upper. See the Biblatex manual. Be aware though that some locales rightly enforce a particular setting for this (for example, Danish). You will be able to override it but Biber will warn you if you do.

There are in fact many options to Unicode::Collate which can tailor the collation in various ways in addition to the locale tailoring which is automatically performed. Users should see the the documentation to the module for the various options, most of which the vast majority of users will never need¹¹. Options are passed using the --collate-options|-c option as a single quoted string, each option separated by comma, each key and value separated by '=>'. See examples.

Note: Biber sets the Unicode collation option 'variable' to 'non-ignorable'. Effectively, this means that punctuation is not ignored when sorting. The default setting is to ignore such 'variable weight' elements. Sorting bibliographies is slightly more specialised than collating general text and punctuation often matters. In case you want the UCA default behaviour, see examples. Since Biber always normalises into NFD when reading data in, no normalisation is requested with Unicode collation ('normalization' option is set to 'prenormalized' by default) as this saves some time.

3.5.1. Examples

biber

Call Biber using all settings from the .bcf generated from the LaTeX run. Case sensitive UCA sorting is performed taking the locale for tailoring from the .bcf if Biber's sortlocale option is not used to override the .bcf

biber --sortlocale=de_DE_phonebook

Override any locale setting in the .bcf

biber --sortcase=false

Case insensitive sorting.

 $^{^{11}} For \ details \ on \ the \ various \ options, see \ \texttt{http://search.cpan.org/search?query=Unicode\%3A\%3ACollate\&mode=allowed and the various options are allowed as a supplied of the property of the p$

biber --sortupper=false --collate-options="backwards => 2"

Collate lowercase before upper and collate French accents in reverse order at UCA level 2.

biber --collate-options="variable => 'shifted'"

Use the UCA default setting for variable weight punctuation (which is to ignore it for sorting, effectively).

3.6. 文档的编码

Biber 满足数据源的再编码要求是非常必要的。在通常用法中,Biblatex 通过 .bcf 向 Biber 传递bibencoding选项值,该选项对应于 Biber 的 --input-encoding e 选项。Biblatex 还会传递 texencoding 选项值 (对应于 Biber 的--output-encoding | -E 选项),该选项的默认值依赖于 TEX 引擎和文档使用的编码宏包 (详见 Biblatex 手册)。

Biber 执行如下任务:

- 1. 如果数据源为非 UTF-8 编码,则将其转换 (解码)为 UTF-8
- 2. 将数据源中的 LaTeX 字符宏解码为 UTF-8 字符
- 3. 将输出的.bbl 文件转换为--output-encoding|-E 指定的编码
- 4. 当向 .bbl 文件输出已经解码为 UTF-8 的 LaTeX 字符宏时,如果该宏没有对应的 --output-encoding | -E 编码则给出警告。并用合适的 LaTeX 宏代替。

一般情况下,用户无需在 Biber 命令行中设置编码选项,因为这些通常由 Biblatex 通过.bcf 文件传递进来。然而可以通过命令行来覆盖.bcf 文件中的设置。编码设置的优先级,按降序排列为:

```
--input-encoding|-e 和 --output-encoding|-E →
Biber 配置文件 →
.bcf 控制文件
```

3.6.1. LaTeX 宏解码

如上所述,Biber 总是做尽可能多的转换,包括将 LaTeX 字符宏转换为 UTF-8。这之所以重要主要有两个原因。首先,这将允许出现如下例一般的情形:

```
@BOOK{key1,
   Author = {\"{0}leg Smith}}
```

```
@BOOK{key2,
   Author = {Öleg Smith}
}
```

这里,因为 Biber 将宏解码为 UTF-8,所以它知道例中的两本书相同的,很显然转换后两本书的作者名是一样的。

其次,这也允许 Biber 输出规范的 latex 宏,当用户设置 --output-encoding=ascii 等的时候。这意味着 Biblatex 样式中使用的很多做比较用途的宏可以对包含宏的域进行可靠地比较。宏向 UTF-8 的转换使用 --decodecharsset 选项指定的解码集,见下文。如果要禁止所有的宏转换为 UTF-8 ,你可以指定一个空集'null'作为--decodecharsset 选项的值,或者使用output-safecharsset 选项。前者用于关闭宏向 UTF-8 转换,后者则用于阻止输出时的 utf-8 编码,即它会将 utf-8 字符转换回 latex 宏。

如果使用 PDFLaTeX 和 \usepackage[utf8]{inputenc}, Biber 对内部 LaTeX 字符宏解码得到的 UTF-8 可能破坏inputenc。这是因为 inputenc 未实现全部 UTF-8,而是只有一个常用子集。

举个例子:如果你的.bib 数据源中存在有\DJ 字符,Biber 将其正确解码为'Đ',但这破坏了inputenc,因为它不理解 UTF-8 字符。其解决方法是使用完全支持 UTF-8 的 TEX 引擎,比如 XTEX 或 LuaTEX,因为这些引擎不需要 inputenc。然而,你也可以使用 --output-safechars 选项,使其在输出时将 UTF-8 字符转换为 LaTeX 宏。关于--output-safechars 的更多信息,见 3.6.2 节。

3.6.2. LaTeX 宏的编码

解码的反面就是编码,即把 UTF-8 字符转换为 LaTeX 宏。你可以利用 --output-safechars 来强制实现这种转换,该选项一般工作得相当好,能确保 .bbl 是纯 ASCII 文档。这在一些特殊情况会很有用,比如文献中引入了主文档不能处理的字符的时候,示例见上面的3.6.1 节。

LaTeX 宏编码的常用情形是,文献数据源是非 ASCII 编码的,但.tex 文件是,如果做合适的设置,这中情况即可自动处理:Biblatex 选项 'texencoding' (对应 Biber 选项 '--output-encoding|-E') 设置为 ASCII 编码 ('ascii' or 'x-ascii'),且 '--input-encoding|-e' 是非 ASCII 的,则 Biber 将自动设置--output-safechars。

因为 Biber 总是会在内部做 UTF-8 解码,如果 --output-encoding | -E 不设置为 UTF-8 ,Biber 会把无法编码成指定输出编码的字符自动替换为等价的 TeX 宏。这也将会给出警告。

关于--output-safecharsset 和 --decodecharsset(可用于定制要使用的转换规则集),另可参考biber --help输出。编码和解码过程中 Biber 做内部映射的字符和宏的集见文档¹²。

也可以使用--recodedata选项来提供一个自定义的编码和解码映射文件。但必须遵守用于再编码的默认数据文件即recode_data.xml 的格式,该文件具有与 Biber 的 Recode.pm 模块相同的 perl 安装路径。当然,通过 Biber 源文件树能更容易的找到它们。更可能的情况是,当你需要使用一个自定义的映射文件时,可以复制默认文件并编辑它,删除相同的内容,然后定义一些定制的编码集配合 --output-safecharsset 和 --decodecharsset 使用。

在 XML 文件中使用正确的 'type' 属性来分类项的时候要小心,因为这将决定执行替换的代码处理宏的方式。如果需要添加新的条目,只需要从默认编码数据文件中复制一个相似类型的宏,因为该文件相当复杂所以添加新项比较困难。还要注意另外一件事: 'preferred' 属性告诉 Biber 从 UTF-8 映射时使用指定的 LaTeX 宏,因为对于一个特定的字符,可能有多种映射。当然一般也不必使用它。

3.6.3. 示例

biber

根据配置文件或 .bcf 文件设置 input-encoding and output-encoding。

biber --output-encoding=latin2

将 .bbl 编码为 latin2,覆盖 .bcf 中的设置。

biber --output-safechars

使用默认转换集,强制将 UTF-8 字符编码为 LaTeX 宏。

biber --output-encoding=ascii

自动设置 --output-safechars 选项,强制将 UTF-8 字符编码为 LaTeX 宏。

biber --output-encoding=ascii --output-safecharsset=full

自动设置 --output-safechars 选项,使用完整的转换集,强制将 UTF-8 字符编码为 LaTeX 宏。

biber --decodecharsset=full

使用完整的转换集,强制将 LaTeX 宏解码为 UTF-8 字符,因为 bib 文件中有很多字符宏,而你需要进行正确排序。

biber --recodedata=/tmp/recode.xml --decodecharsset=special

https://sourceforge.net/projects/biblatex-biber/files/biblatex-biber/2.11/documentation/ utf8-macro-map.html

使用一个自定义的重 (再) 编码数据文件,该文件定义了一个新的再编码集 'special', 并适应该集将 LaTeX 宏解码为 UTF-8 字符。

```
biber -u

biber --input-encoding=UTF-8选项的快捷方式

biber -U

biber --output-encoding=UTF-8选项的快捷方式
```

3.7. List and Name Separators

With traditional BibTeX, the name and list field separator 'and' is hard-coded. The btparse C library and therefore Biber allows the use of any fixed string, subject to the same rules as 'and' (not at the beginning or end of the name/list, whitespace must surround the string etc.). This is settable using the options listsep and namesep, both of which default to the usual 'and'. You can also change the default final name in a list which implies 'et al'. In BibTeX, this is by default the English 'others' which is the Biber default also. Don't try to put any whitespace in these strings, this is ignored by btparse anyway. Perhaps you prefer your .bib in more obvious German—set --namesep=und and --others-string=andere and then you can do:

```
@BOOK{key,
  AUTHOR = {Hans Harman und Barbara Blaupunkt und andere},
}
```

Bear in mind that these are global settings and apply to all entries in the BibTeX data format read by Biber. Also bear in mind that this is very unportable as all BibTeX input/output programs rely on the hard-coded 'and' and 'others'. Hopefully this will change as these two hard-coded English terms look really rather bad in the context of multilingual bibliographies.

3.8. Extended Name Format

The parsing rules for BibTeX names are rather archaic and not suited to many international name formats. Biber supports an extended name format which allows explicit specification of the parts of names. This allows the use of custom name parts apart from the four standard BibTeX parts. Extended name formats are supported in all name fields and can be used along with the usual BibTeX name format. Recognition

of extended name format can be disabled with the Biber option --noxname in case you do not need the extended format and the auto-detection causes problems with normal name parsing. The separator = which comes between the namepart names and values is customisable with the Biber option --xnamesep. Here is an example:

```
AUTHOR = {Hans Harman and Simon de Beumont}
```

```
AUTHOR = {given=Hans, family=Harman and given=Simon, prefix=de, family=Beumont}
```

These two name specifications are equivalent but the extended format explicitly names the parts. The supported parts are those specified by the Biblatex data mode constant nameparts, the default value of which is:

\DeclareDatamodelConstant[type=list]{nameparts}{prefix,family,suffix,given}

As with traditional BibTeX name parsing, initials are automatically generated but it is also possible to specify these explicitly:

```
AUTHOR = {given=Jean, prefix=de la, prefix-i=d, family=Rousse}
AUTHOR = {given={Jean Pierre Simon}, given-i=JPS}
```

Initials are specified by adding the suffix -i to the namepart name. Compound parts may be protected with braces:

```
AUTHOR = {given={Jean Pierre}}
```

If a namepart contains a comma, the whole namepart should be protected with quotes:

```
AUTHOR = {"family={Robert and Sons, Inc.}"}
```

Traditional BibTeX name formats and the extended form may be used together:

```
AUTHOR = {Hans Harman and given=Simon, prefix=de, family=Beumont}
```

Per-namelist and per-name options may be specified in the extended name format:

```
AUTHOR = {namelistopt=true and Hans Harman and given=Simon, family=Beumont, nameopt=true}
```

3.9. Editor Integration

Visit http://tex.stackexchange.com/questions/154751/ for a comprehensive overview on Biber integration in most editors.

3.10. BibTFX macros and the MONTH field

BIBTEX defines macros for month abbreviations like 'jan', 'feb' etc. Biber also does this, defining them as numbers since that is what Biblatex wants. In case you are also defining these yourself (although if you are only using Biblatex, there isn't much point), you will get macro redefinition warnings from the btparse library. You can turn off Biber's macro definitions to avoid this by using the option --nostdmacros.

Biber will look at any MONTH field in a BIBTEX data source and if it's not a number as Biblatex expects (because it wasn't one of the macros as mentioned above or these macros were disabled by --nostdmacros), it will try to turn it into the right number in the .bbl. If you only use Biblatex with your BIBTEX datasource files, you should probably make any MONTH fields be the numbers which Biblatex expects.

3.11. Biber datasource drivers

Biber uses a modular datasource driver model to provide access to supported datasources. The drivers are responsible for mapping driver entrytypes and fields to the Biblatex data model according to a data model specification in the Biblatex file blx-dm.def. The data model can be changed using Biblatex macros in case you would like to, for example, use your own entrytype or field names or perhaps have Biber do some validation on your datasources (see the Biblatex manual).

Data model mapping is an imprecise art and the drivers are the necessarily the most messy parts of Biber. Most datasource models are not designed with typesetting in mind and are usually not fine-grained enough to provide the sorts of information that Biblatex needs. Biber does its best to obtain as much meaningful information from a datasource as possible. Currently supported datasources drivers are:

- BibTeX BibTeX data files
- biblatexml Experimental Biblatex XML format

3.12. Visualising the Output

The option --output-format=dot will cause Biber to write a GraphViz¹³ .dot file instead of a .bbl. This file graphs the bibliographic data as it exists after all processing. You can transform this file using the dot program from GraphViz to generate a high

¹³http://www.graphviz.org

Sub-option	Description				
crossref	Show crossreference relationships				
field	Show fields within entries				
related	Show related entries and clones				
section	Show sections				
xdata	Show XDATA relationships				
xref	Show XREF relationships				

Table 4: Valid sub-options for the dot-include option

quality graphical representation of the data in a format of your choice. A good output format choice with dot is SVG¹⁴ which can be viewed in any modern web browser. This format has the advantage of tooltips and Biber uses these to give you more information on connections between entries: hover the cursor on an arrow in the output and it will tell you what it means. To output in SVG, use this command after installing GraphViz:

The --dot-include option takes a comma delimited string as argument. The elements of this string define the information to include in the .dot output graph. The valid sub-options are shown in Table 4. If the --dot-include option is not given then the default setting is implicitly used, which is:

--dot-include=crossref, section, xdata, xref

3.13. Tool Mode

Biber can run in 'tool' mode which is enabled with the --tool command-line only option. In this mode, Biber is called: biber --tool <datasource>. Tool mode is a datasource rather than document oriented mode intended for transformations and modifications of datasources. It does not read a .bcf but instead, it reads all entries from the file 'datasource', applies any changes specified in the command-line options and Biber config file and writes the resulting datasource out to a new file, defaulting to

 $^{^{14}{\}rm Scalable~Vector~Graphics}$

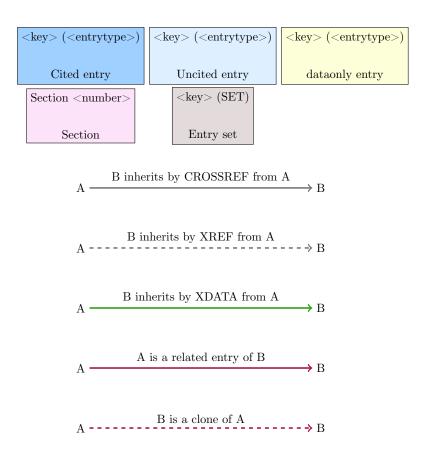


Figure 3: Key to $\mbox{.dot}$ output format

a BibTeX file called '<datasource>_bibertool.bib' if the options output-file and output-format are not specified.

Tool mode is useful if you need to programatically change your datasource using the semantics provided by Biber or if you would like to convert your data to a different format. For example, you could choose to reencode your datasource by turning all UTF-8 characters into LaTeX macros:

```
biber --tool --output-encoding=ascii file.bib
```

This would output a copy of file.bib called file_bibertool.bib with all UTF-8 chars changed to LaTeX macros (because when the output is ASCII and the input encoding is not (it is by default UTF-8), then the --output-safechars option is automatically enabled). If you utilise the Biber config file, you can set up a complex set of mappings to transform your datasource however you wish in a semantic manner much more robust than just textual search/replace. You can also use the --output-resolve meta-option which will process any XDATA fields/entries, entry aliases and inheritance rules mentioned in the config file (see below).

Sometimes, you might wish to output fields which are BibTeX macros, that is, you might want this:

```
@Entrytype{key,
    Field = something,
}
instead of this:
@Entrytype{key,
    Field = {something},
}
```

That is, you might not want the output field in braces or quotes as this prevents BibTeX interpreting the field value as a macro. Use the --output-macro-fields option to specify a comma-separated list of fields whose values you wish to output without any BibTeX quoting. You can have spaces between the items in the field list but then you must enclose the whole option value in quotes. For example, these two will do the same thing:

```
biber --tool --output-macro_fields=month,publisher
biber --tool --output-macro_fields='month, publisher'
```

Tool mode also allows some reformatting of the .bib file. The option --tool-fieldcase can be used to force the entrytype and fieldnames to upper, lower or title case. The option --tool-indent can be used to customise the indentation of fields. The option output-align can be used to align all field values neatly. See the Biber --help output for documentation and defaults. For example, the command:

```
biber --tool --output-fieldcase=title --output-indent=4 \
       --output-align file.bib
results in .bib entries which look like this:
@Entrytype{key,
             = \{...\},
   Author
             = \{...\},
   Title
   Publisher = \{...\},
   Year
             = \{...\},
}
another example:
biber --tool --output-fieldcase=upper --output-indent=2 file.bib
results in entries like this:
@ENTRYTYPE{key,
 AUTHOR = \{\ldots\},
 TITLE = \{...\},
 PUBLISHER = \{...\},
 YEAR = \{\ldots\},
}
```

Here is an example using the Biber config file to specify all options. This example uses tool mode to reformat the .bib and also to do some transformations using the source map functionality. Suppose test.bib contains the following:

```
@book{book1,
  author = {Doe,J.P.},
  title = {Ökologische Enterprises},
  year = {2013}
}
```

Further suppose that the biber-tool.conf contains the following:

```
<?xml version="1.0" encoding="UTF-8"?>
<config>
  <output_fieldcase>title</output_fieldcase>
  <output_encoding>ascii</output_encoding>
  <output_safechars>1</output_safechars>
  <sourcemap>
    <maps datatype="bibtex" map_overwrite="1">
      <map map_overwrite="1">
        <map_step map_field_source="AUTHOR" map_match="Doe," map_final="1"/>
        <map_step map_field_source="AUTHOR"</pre>
             map_match="Doe,\s*J(?:\.|ohn)(?:[-]*)(?:P\.|Paul)*"
             map_replace="Doe, John Paul"/>
      </map>
   </maps>
  </sourcemap>
</config>
Now you can run Biber like this:
biber --tool --configfile=biber-tool.conf test.bib
The result will be in test_bibertool.bib and will look like this:
@Book{book1,
 Author = {Doe, John Paul},
 Title = {\"{0}kologische Enterprises},
 Year = \{2013\},
}
```

Tool mode is a versatile way of performing many different operations on a .bib file. By using the config file and tool mode, we have:

- Consistently indented and aligned the entry, normalising fields and entrytype to title case
- Normalised the AUTHOR field name using regular expressions
- Converted UTF-8 characters to LaTeX macros, and made the output pure ASCII

If you do not specify any configuration file to use in tool mode, Biber will by default look for a config file in the usual way (see section 3.1) with the only difference that if

no config file is found, it will use the default biber-tool.conf which is located in the Biber install tree in the same location as the Config.pm file. This default config file contains the default Biblatex source mappings for BibTeX datasources and also the default inheritance rules for CROSSREF processing. This means that when you use the --output-resolve meta-option, inheritance processing is performed on the entries and the results of this are 'materialised' in the output. For example, consider a test.bib file:

```
@BOOK{xd1,
 AUTHOR = {Edward Ellington},
 DATE = \{2007\},
 XDATA = {macmillanalias}
@XDATA{macmillan,
 IDS = {macmillanalias},
 XDATA = {macmillan:pubALIAS, macmillan:loc}
@XDATA{macmillan:pub,
           = {macmillan:pubALIAS},
 PUBLISHER = {Macmillan}
@XDATA{macmillan:loc,
 LOCATION = {New York and London},
 NOTE
           = {A Note}
@BOOK{b1,
 TITLE = {Booktitle},
 CROSSREF = {mvalias}
@MVBOOK{mv1,
 IDS = {mvalias},
 TITLE = {Maintitle},
 SUBTITLE = {Mainsubtitle},
 TITLEADDON = {Maintitleaddon}
}
```

```
Running Biber as:
```

```
biber --tool --output-resolve test.bib
The result of this would be a file test_bibertool.bib with contents:
@BOOK{xd1,
 AUTHOR
           = {Edward Ellington},
 DATE
           = \{2007\},
 LOCATION = {New York and London},
           = {A Note},
 PUBLISHER = {Macmillan},
@XDATA{macmillan,
 LOCATION = {New York and London},
 NOTE
          = {A Note},
 PUBLISHER = {Macmillan},
@XDATA{macmillan:pub,
 PUBLISHER = {Macmillan},
@XDATA{macmillan:loc,
 LOCATION = {New York and London},
 NOTE
          = {A Note},
@BOOK{b1,
 MAINSUBTITLE = {Mainsubtitle},
 MAINTITLE
              = {Maintitle},
 MAINTITLEADDON = {Maintitleaddon},
 TITLE
              = {Booktitle},
@MVBOOK{mv1,
 SUBTITLE = {Mainsubtitle},
 TITLE
            = {Maintitle},
 TITLEADDON = {Maintitleaddon},
```

Notice here that:

- XDATA references have been resolved completely for entry xd1
- CROSSREF inheritance has been resolved according to the default Biblatex inheritance rules for entry b1
- Entry key aliases have been resolved as required in order to perform these tasks

Tool mode can also be used to convert between datasource formats. For example, if you wish to covert a BibTeX format data file to the experimental biblatexml XML format, you can do:

biber --tool --output-format=biblatexml file.bib

This will output a file file_bibertool.bltxml by default. The applicability of the various output options depends on the output format as shown in table 5 where dash means that the options has no relevance for the output format.

The order of the fields when writing BibTeX data is controlled by the --output-field-order option. This is a comma-separated list of fields or field classes and fields will be output to entries in the order specified. Any unspecified fields will be output in sorted order after the specified fields. The field classes are:

names All name fieldslists All non-name list fieldsdates All date fields

For the default value, run Biber with the --help option and see the documentation for the option. --output-listsep, output-namesep and output-xnamesep can be used to customise separators on output and their default values are the same as their input option counterparts --listsep, --namesep and --xnamesep. The option --output-xname can be used to specify that the extended name format (see section ??) is to be used to output names. --output-annotation-marker can be used to specify the annotation marker to write for annotated fields on output. See the Data Annotation feature documentation in the Biblatex manual.

		Output format		
Option	bibtex	biblatexml	bbl	dot
output-align	\checkmark	-	-	-
output-annotation-marker	\checkmark	-	-	-
output-indent	\checkmark	\checkmark	-	-
output-field-order	\checkmark	-	-	-
output-fieldcase	\checkmark	-	-	-
output-listsep	\checkmark	-	-	-
output-macro-fields	\checkmark	-	-	-
output-namesep	\checkmark	-	-	-
output-resolve-xdata	\checkmark	\checkmark	-	-
output-resolve-crossrefs	\checkmark	\checkmark	-	-
output-resolve-sets	\checkmark	\checkmark	-	-
output-xname	\checkmark	-	-	-
output-xnamesep	✓	-	-	-

Table 5: Applicability of the output options

3.13.1. Customising Tool Mode Inheritance Resolution

The default biber-tool.conf contains, as mentioned above, the default Biblatex CROSSREF inheritance setup and BibTeX source mappings so that tool mode resolution works as expected. Of course it is possible to customise these. In Biblatex, this is accomplished by the \DeclareDataInheritance macros which write appropriate XML into the .bcf file. Since no .bcf file is used in tool mode, the desired configuration must be put into a Biber config file. The source mapping XML specification is given in section 3.1.2. The inheritance XML specification is given in section 3.1.3. It is recommended to copy the default biber-tool.conf file, modify this and then use it as your own biber.conf file or pass it explicitly using the --configfile|-g option. You can determine the location of the default tool mode config file by using the --tool-config option which will show you the location of the config file and exit.

3.13.2. Customising Tool Mode Sorting

A sorting scheme called 'tool' can be defined in the config file in order to sort the entries in tool mode output. See section 3.1.7 for the format of the config file sorting specification. By default, in tool mode the sorting scheme is the same as the Biblatex

none scheme, that is, no sorting is performed. The sorting locale in tool mode defaults to 'en_US' if you do not use Biber's sortlocale option.

4. Binaries

Biber is a Perl application which relies heavily on quite a few modules. It is packaged as a stand-alone binary using the excellent PAR::Packer module which can pack an entire Perl tree plus dependencies into one file which acts as a stand-alone binary and is indistinguishable from such to the end user. You can also simply download the Perl source and run it as a normal Perl program which requires you to have a working Perl 5.24+ installation and the ability to install the pre-requisite modules. You would typically only do this if you wanted to keep up with all the bleeding-edge git commits before they had been packaged as a binary. Almost all users will not want to do this and should use the binaries from their TeX distribution or downloaded directly from SourceForge in case they need to use a more recent binary than is included in their TeX distribution.

The binary distributions of Biber are made using the Perl PAR::Packer module. They can be used as a normal binary but have some behaviour which is worth noting:

- Don't be worried by the size of the binaries. PAR::Packer essentially constructs a self-extracting archive which unpacks the needed files first.
- On the first run of a new version (that is, with a specific hash), they actually unpack themselves to a temporary location which varies by operating system. This unpacking can take a little while and only happens on the first run of a new version. Please don't kill the process if it seems to take some time to do anything on the first run of a new binary. If you do, it will not unpack everything and it will almost certainly break Biber. You will then have to delete your binary cache (see section 4.1 below) and re-run the Biber executable again for the first time to allow it to unpack properly.

4.1. Binary Caches

PAR::Packer works by unpacking the required files to a cache location. It only does this on the first run of a binary by computing a hash of the binary and comparing it with the cache directory name which contains the hash. So, if you run several versions of a binary, you will end up with several cached trees which are never used. This is particularly true if you are regularly testing new versions of the Biber binary. It is a good idea to delete the caches for older binaries as they are not needed and can take up a fair bit of space. The caches are located in a temporary location which varies from OS to OS. The cache name is:

```
\label{linux} $$ par-<hex_encoded_username>/cache-<hash> (Linux/Unix/OSX) $$ par-<hex_encoded_username>\\cache-<hash> (Windows) $$ $$
```

The temp location is not always obvious but these are sensible places to look (where * can vary depending on username):

- /var/folders/*/*/ (OSX, local GUI login shell)
- /var/tmp/ (OSX (remote ssh login shell), Unix)
- /tmp/ (Linux)
- C:\Documents and Settings\<username>\Local Settings\Temp (Windows/Cygwin)
- C:\Windows\Temp (Windows)

To clean up, you can just remove the whole par-<hex_encoded_username> directory/folder and then run the current binary again. You can see the active cache by running
biber with the --cache option which will print the current cache location and exit.

4.2. Binary Architectures

Binaries are available for many architectures, directly on SourceForge and also via $T_{E}XLive$:

- darwin_x86_64
- darwin_x86_i386
- linux_x86_32
- linux_x86_64
- MSWin32
- MSWin64

- $cygwin32^{15}$
- freebsd_x86¹⁵
- freebsd_amd6415
- solaris_i386¹⁵
- solaris_x86_64¹⁵

If you want to run development versions, they are usually only regularly updated for the core architectures which are not flagged as third-party built above. If you want to regularly run the latest development version, you should probably git clone the relevant branch and run Biber as a pure Perl program directly.

4.3. Installing

These instructions only apply to manually downloaded binaries. If Biber came with your T_EX distribution just use it as normal.

Download the binary appropriate to you OS/arch¹⁶. Below I assume it's on your desktop.

You have to move the binary to somewhere in you command-line or TEX utility path so that it can be found. If you know how to do this, just ignore the rest of this section which contains some instructions for users who are not sure about this.

4.3.1. OSX

If you are using the TeXLive MacTeX distribution:

```
sudo mv ~/Desktop/biber /usr/texbin/
sudo chmod +x /usr/texbin/biber
```

If you are using the MacPorts TeXLive distribution:

```
sudo mv ~/Desktop/biber /opt/local/bin/
sudo chmod +x /opt/local/bin/biber
```

The 'sudo' commands will prompt you for your password.

¹⁵Binary maintained by third party. See README in binary download directory for this platform for support/contact details. Usually, the binary maintainer is also the binary build provider for TEXLive.

 $^{^{16}}$ https://sourceforge.net/projects/biblatex-biber

4.3.2. Windows

The easiest way is to just move the executable into your C:\Windows directory since that is always in your path. A more elegant way is to put it somewhere in your TEX distribution that is already in your path. For example if you are using MiKTEX:

C:\Program Files\MiKTeX 2.9\miktex\bin\

4.3.3. Unix/Linux

```
sudo mv ~/Desktop/biber /usr/local/bin/biber
sudo chmod +x /usr/local/bin/biber
```

Make sure /usr/local/bin is in your PATH. Search Google for 'set PATH linux' if unsure about this. There are many pages about this, for example: http://www.cyberciti.biz/faq/unix-linux-adding-path/

4.4. Building

Instructions for those who want/need to build an executable from the Perl version. For this, you will need to have Perl 5.24+ with the following modules (best installed in this order):

• Module::Build and all dependencies

• All Biber pre-requisites

• PAR::Packer and all dependencies

Biber is very specific in some cases about module versions and sometimes depends on recent fixes. You can see if you have the Biber Perl dependencies by the usual Module::Build command:

perl ./Build.PL

run at the root of the Biber Perl distribution directory. Normally, the build procedure for the binaries is as follows¹⁷:

• Get the Biber source tree from SF and put it on the architecture you are building for

 $^{^{17}\}mathrm{On}$ Unix-like systems, you may need to specify a full path to the scripts e.g. ./Build

- cd to the root of the source tree
- perl Build.PL (this will check your module dependencies)
- If you are missing dependencies, you will be informed and then you should run Build installdeps (may need to run this with sudo on Unix-like systems)
- Run the test suite with Build test
- Install with Build install (may need to run this with sudo on Unix-like systems)
- cd dist/<arch>
- build.sh (build.bat on Windows)

This leaves a binary called 'biber-<arch>' (also with a '.exe' extension on Windows/Cygwin) in your current directory. The important part is constructing the information for the build script. There are two things that need to be configured, both of which are required by the PAR::Packer module:

- 1. A list of modules/libraries to include in the binary which are not automatically detected by the PAR::Packer dependency scanner
- 2. A list of extra files to include in the binary which are not automatically detected by the PAR::Packer dependency scanner

To build Biber for a new architecture you need to define these two things as part of constructing new build scripts:

- Make a new sub-folder in the dist directory named after the architecture you are building for.
- Copy the biber.files file from an existing build architecture into this directory.
- For all of the files with absolute pathnames in there (that is, ones we are not pulling from the Biber tree itself), locate these files in your Perl installation tree and put the correct path in the file.
- Copy the build script from a similar architecture (i.e. Windows/non-Windows ...) to your new architecture directory.
- Change the --link options to point to where the required libraries reside on your system.
- Change the --output option to name the resulting binary for your architecture.
- Run the build script

The --link options can be a little tricky sometimes. It is usually best to build without them once and then run 1dd¹⁸ on the binary to see which version/location of a library you should link to. You can also try just running the binary and it should complain about missing libraries and where it expected to find them. Put missing library paths into --link options. The --module options are the same for all architectures and do not need to be modified. On architectures which have or can have case-insensitive file systems, you should use the build script from either Windows or OSX as a reference as these include a step to copy the main Biber script to a new name before packing the binary. This is required as otherwise a spurious error is reported to the user on first run of the binary due to a name collision when it unpacks itself.

See the PAR wiki page¹⁹ for FAQs and help on building with PAR::Packer. Take special note of the FAQs on including libraries with the packed binary²⁰.

4.4.1. Testing a binary build

You can test a binary that you have created by copying it to a machine which preferably doesn't have perl at all on it. Running the binary with no arguments will unpack it in the background and display the help. To really test it without having LaTeX available, get the two quick test files from SourceForge²¹, put them in a directory and run Biber in that directory like this:

```
biber --validate-control --convert-control test
```

This will run Biber normally on the test files plus it will also perform an XSLT transform on the .bcf and leave an HTML representation of it in the same directory thus testing the links to the XML and XSLT libraries as well as the BIBTEX parsing libraries. The output should look something like this (may be differences of Biber version and locale of course but there should be no errors or warnings).

```
INFO - This is Biber 2.9
INFO - Logfile is 'test.blg'
INFO - BibLaTeX control file 'test.bcf' validates
INFO - Converted BibLaTeX control file 'test.bcf' to 'test.bcf.html'
```

 $^{^{18}\}mbox{otool}$ on OSX and depends.exe on Windows

¹⁹http://par.perl.org/wiki/Main_Page

²⁰ http://par.perl.org/wiki/FAQ, section entitled 'My PAR executable needs some dynamic libraries'

²¹ https://sourceforge.net/projects/biblatex-biber/files/biblatex-biber/testfiles

```
INFO - Reading 'test.bcf'
```

INFO - Found 1 citekeys in bib section 0

INFO - Processing bib section O

INFO - Looking for BibTeX format file 'test.bib' for section 0

INFO - Found BibTeX data file 'test.bib'

INFO - Decoding LaTeX character macros into UTF-8

INFO - Sorting list 'nyt/global' keys

INFO - No sort tailoring available for locale 'en_GB.UTF-8'

INFO - Sorting list 'shorthands/global' keys

INFO - No sort tailoring available for locale 'en_GB.UTF-8'

INFO - Writing 'test.bbl' with encoding 'UTF-8'

INFO - Output to test.bbl

There should now be these new files in the directory:

test.bcf.html

test.blg

test.bbl

A. Appendix

A.1. Babel/Polyglossia language to Locale mapping

Language	Locale	Language	Locale	Language	Locale	Language	Locale
acadian	fr_CA	divehi	dv_MV	latin	la_Latn	sanskrit	sa_IN
american	en_US	dutch	nl_NL	latvian	lv_LV	scottish	gd_GB
australian	en_AU	english	en_US	lithuanian	lt_LT	serbian	sr_Latn
afrikaans	af_ZA	esperanto	eo_001	lowersorbian	dsb_DE	serbianc	sr_Cyrl
albanian	sq_AL	estonian	et_EE	lsorbian	dsb_DE	slovak	sk_SK
amharic	am_ET	ethiopia	am_ET	magyar	hu_HU	slovene	sl_SI
arabic	ar_001	farsi	fa_IR	malay	id_ID	slovenian	sl_SI
armenian	hy_AM	finnish	fi_FI	malayalam	ml_IN	spanish	es_ES
asturian	ast_ES	francais	fr_FR	marathi	mr_IN	swedish	sv_SE
austrian	de_AT	french	fr_FR	meyalu	id_ID	syriac	syc
bahasa	id_ID	frenchle	fr_FR	mongolian	mn_Cyrl	tamil	ta_IN
bahasai	id_ID	friulan	fur_IT	naustrian	de_AT	telugu	te_IN
bahasam	id_ID	galician	gl_ES	newzealand	en_US	thai	th_TH
basque	eu_ES	german	de_DE	ngerman	de_DE	thaicjk	th_TH
bengali	bn_BD	germanb	de_DE	nko	ha_NG	tibetan	bo_CN
bgreek	el_GR	greek	el_GR	norsk	nb_NO	turkish	tr_TR
brazil	pt_BR	hebrew	he_IL	nynorsk	nn_NO	turkmen	tk_TM
brazilian	pt_BR	hindi	hi_IN	occitan	oc_FR	ukrainian	uk_UA
breton	br_FR	ibygreek	el_CY	piedmontese	pms_IT	urdu	ur_IN
british	en_GB	icelandic	is_IS	pinyin	pny	UKenglish	en_GB
bulgarian	bg_BG	indon	id_ID	polish	pl_PL	uppersorbian	hsb_DE
canadian	en_US	indonesia	id_ID	polutonikogreek	el_GR	USenglish	en_US
canadien	fr_CA	interlingua	ia_FR	portuges	pt_PT	usorbian	hsb_DE
catalan	ca_ES	irish	ga_IE	portuguese	pt_PT	vietnamese	vi_VN
coptic	cop	italian	it_IT	romanian	ro_RO	welsh	cy_GB
croatian	hr_HR	japanese	ja_JP	romansh	rm_CH		
czech	cs_CZ	kannada	kn_IN	russian	ru_RU		
danish	da_DK	lao	lo_LA	samin	se_NO		