<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />


<meta name="author" content="Yuxin Zou" />

<meta name="date" content="2018-07-25" />

<title>Estimate cor—max MASH</title>

<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/cosmo.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<script src="site_libs/navigation-1.1/codefolding.js"></script>
<link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<script src="site_libs/kePrint-0.0.1/kePrint.js"></script>
<link href="site_libs/font-awesome-5.0.13/css/fa-svg-with-js.css" rel="stylesheet" />
<script src="site_libs/font-awesome-5.0.13/js/fontawesome-all.min.js"></script>
<script src="site_libs/font-awesome-5.0.13/js/fa-v4-shims.min.js"></script>

<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
  pre:not([class]) {
    background-color: white;
  }
</style>
<script type="text/javascript">
if (window.hljs) {
  hljs.configure({languages: []});
  hljs.initHighlightingOnLoad();
  if (document.readyState && document.readyState === "complete") {
    window.setTimeout(function() { hljs.initHighlighting(); }, 0);
  }
}
</script>



<style type="text/css">
h1 {
  font-size: 34px;
}
h1.title {
  font-size: 38px;
}
h2 {
  font-size: 30px;
}
h3 {
  font-size: 24px;
}
h4 {
  font-size: 18px;
}
h5 {
  font-size: 16px;
}
h6 {
  font-size: 12px;
}
.table th:not([align]) {
  text-align: left;
}
</style>


</head>

<body>

<style type = "text/css">
.main-container {
  max-width: 940px;
  margin-left: auto;
  margin-right: auto;
}
code {
  color: inherit;
  background-color: rgba(0, 0, 0, 0.04);
}
img {
  max-width:100%;
  height: auto;
}
.tabbed-pane {
  padding-top: 12px;
}
.html-widget {
  margin-bottom: 20px;
}
button.code-folding-btn:focus {
  outline: none;
}
</style>


<style type="text/css">
/* padding for bootstrap navbar */
body {
  padding-top: 51px;
  padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar)  */
.section h1 {
  padding-top: 56px;
  margin-top: -56px;
}

.section h2 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h3 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h4 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h5 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h6 {
  padding-top: 56px;
  margin-top: -56px;
}
</style>

<script>
// manage active state of menu based on current page
$(document).ready(function () {
  // active menu anchor
  href = window.location.pathname
  href = href.substr(href.lastIndexOf('/') + 1)
  if (href === "")
    href = "index.html";
  var menuAnchor = $('a[href="' + href + '"]');

  // mark it active
  menuAnchor.parent().addClass('active');

  // if it's got a parent navbar menu mark it active as well
  menuAnchor.closest('li.dropdown').addClass('active');
});
</script>


<div class="container-fluid main-container">

<!-- tabsets -->
<script>
$(document).ready(function () {
  window.buildTabsets("TOC");
});
</script>

<!-- code folding -->
<style type="text/css">
.code-folding-btn { margin-bottom: 4px; }
</style>
<script>
$(document).ready(function () {
  window.initializeCodeFolding("hide" === "show");
});
</script>




<script>
$(document).ready(function ()  {

    // move toc-ignore selectors from section div to header
    $('div.section.toc-ignore')
        .removeClass('toc-ignore')
        .children('h1,h2,h3,h4,h5').addClass('toc-ignore');

    // establish options
    var options = {
      selectors: "h1,h2,h3",
      theme: "bootstrap3",
      context: '.toc-content',
      hashGenerator: function (text) {
        return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
      },
      ignoreSelector: ".toc-ignore",
      scrollTo: 0
    };
    options.showAndHide = true;
    options.smoothScroll = true;

    // tocify
    var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>

<style type="text/css">

#TOC {
  margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
  position: relative;
  width: 100%;
}
}


.toc-content {
  padding-left: 30px;
  padding-right: 40px;
}

div.main-container {
  max-width: 1200px;
}

div.tocify {
  width: 20%;
  max-width: 260px;
  max-height: 85%;
}

@media (min-width: 768px) and (max-width: 991px) {
  div.tocify {
    width: 25%;
  }
}

@media (max-width: 767px) {
  div.tocify {
    width: 100%;
    max-width: none;
  }
}

.tocify ul, .tocify li {
  line-height: 20px;
}

.tocify-subheader .tocify-item {
  font-size: 0.90em;
  padding-left: 25px;
  text-indent: 0;
}

.tocify .list-group-item {
  border-radius: 0px;
}


</style>

<!-- setup 3col/9col grid for toc_float and main content  -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>

<div class="toc-content col-xs-12 col-sm-8 col-md-9">




<div class="navbar navbar-default  navbar-fixed-top" role="navigation">
  <div class="container">
    <div class="navbar-header">
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
      </button>
      <a class="navbar-brand" href="index.html">mash_application</a>
    </div>
    <div id="navbar" class="navbar-collapse collapse">
      <ul class="nav navbar-nav">
        <li>
  <a href="index.html">Home</a>
</li>
<li>
  <a href="about.html">About</a>
</li>
<li>
  <a href="license.html">License</a>
</li>
      </ul>
      <ul class="nav navbar-nav navbar-right">
        <li>
  <a href="https://github.com/jdblischak/workflowr">
    <span class="fa fa-github"></span>
     
  </a>
</li>
      </ul>
    </div><!--/.nav-collapse -->
  </div><!--/.container -->
</div><!--/.navbar -->
<!-- Add a small amount of space between sections. -->
<style type="text/css">
div.section {
  padding-top: 12px;
}
</style>

<div class="fluid-row" id="header">

<div class="btn-group pull-right">
<button type="button" class="btn btn-default btn-xs dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"><span>Code</span> <span class="caret"></span></button>
<ul class="dropdown-menu" style="min-width: 50px;">
<li><a id="rmd-show-all-code" href="#">Show All Code</a></li>
<li><a id="rmd-hide-all-code" href="#">Hide All Code</a></li>
</ul>
</div>



<h1 class="title toc-ignore">Estimate cor—max MASH</h1>
<h4 class="author"><em>Yuxin Zou</em></h4>
<h4 class="date"><em>2018-07-25</em></h4>

</div>


<!-- Update knitr chunk options -->
<!-- Insert the date the file was last updated -->
<p><strong>Last updated:</strong> 2018-08-15</p>
<pre class="r"><code>library(mashr)</code></pre>
<pre><code>Loading required package: ashr</code></pre>
<pre class="r"><code>source(&#39;../code/generateDataV.R&#39;)
source(&#39;../code/estimate_cor.R&#39;)
source(&#39;../code/summary.R&#39;)
library(knitr)
library(kableExtra)</code></pre>
<p>Apply the max methods for correlation matrix on mash data. The estimated V from MLE and EM perform better than the truncated correlation (error, mash log likelihood, ROC).</p>
<div id="one-example" class="section level1">
<h1>One example</h1>
<p><span class="math display">\[
\hat{\beta}|\beta \sim N_{3}(\hat{\beta}; \beta, \left(\begin{matrix} 1 &amp; 0.7 &amp; 0.2 \\
                                          0.7 &amp; 1 &amp; 0.4 \\ 
                                          0.2 &amp; 0.4 &amp; 1 \end{matrix}\right))
\]</span></p>
<p><span class="math display">\[
\beta \sim \frac{1}{4}\delta_{0} + \frac{1}{4}N_{3}(0, \left(\begin{matrix} 1 &amp; 0 &amp;0\\
                                          0 &amp; 0 &amp; 0 \\
                                          0 &amp; 0 &amp; 0 \end{matrix}\right)) + \frac{1}{4}N_{3}(0, \left(\begin{matrix} 1 &amp; 0 &amp; 0 \\
                     0 &amp; 1 &amp; 0 \\
                     0 &amp; 0 &amp; 0 \end{matrix}\right)) + \frac{1}{4}N_{3}(0, \left(\begin{matrix} 1 &amp; 1 &amp; 1 \\
                     1 &amp; 1 &amp; 1 \\
                     1 &amp; 1 &amp; 1 \end{matrix}\right))
\]</span></p>
<pre class="r"><code>set.seed(1)
Sigma = cbind(c(1,0.7,0.2), c(0.7,1,0.4), c(0.2,0.4,1))
U0 = matrix(0,3,3)
U1 = matrix(0,3,3); U1[1,1] = 1
U2 = diag(3); U2[3,3] = 0
U3 = matrix(1,3,3)
data = generate_data(n=4000, p=3, V=Sigma, Utrue = list(U0=U0, U1=U1,U2=U2,U3=U3))</code></pre>
<pre class="r"><code>m.data = mash_set_data(data$Bhat, data$Shat)
m.1by1 = mash_1by1(m.data)
strong = get_significant_results(m.1by1)

U.pca = cov_pca(m.data, 3, subset = strong)
U.ed = cov_ed(m.data, U.pca, subset = strong)
U.c = cov_canonical(m.data)</code></pre>
<p><img src="figure/EstimateCorMaxMash.Rmd/unnamed-chunk-4-1.png" width="768" style="display: block; margin: auto;" /></p>
<ol style="list-style-type: decimal">
<li>We run the algorithm in <a href="EstimateCorMax.html">estimate cor mle</a> with 3 different initial points for <span class="math inline">\(\rho\)</span> (-0.5,0,0.5). The <span class="math inline">\(\rho\)</span> in each iteration is estimated using <code>optim</code> function. The estimated correlation is</li>
</ol>
<pre class="r"><code>Vhat.mle = estimateV(m.data, c(U.c, U.ed), init_rho = c(-0.5,0,0.5), tol=1e-4, optmethod = &#39;mle&#39;)
Vhat.mle$V</code></pre>
<pre><code>          [,1]      [,2]      [,3]
[1,] 1.0000000 0.7009268 0.1588733
[2,] 0.7009268 1.0000000 0.4001842
[3,] 0.1588733 0.4001842 1.0000000</code></pre>
<ol start="2" style="list-style-type: decimal">
<li>The result uses algorithm in <a href="EstimateCorMaxEM2.html">estimate cor em</a>. <span class="math inline">\(\rho\)</span> in each iteration is the root of a third degree polynomial.</li>
</ol>
<pre class="r"><code>Vhat.em = estimateV(m.data, c(U.c, U.ed), init_rho = c(-0.5,0,0.5), tol = 1e-4, optmethod = &#39;em2&#39;)
Vhat.em$V</code></pre>
<pre><code>          [,1]      [,2]      [,3]
[1,] 1.0000000 0.7086927 0.1706391
[2,] 0.7086927 1.0000000 0.4187296
[3,] 0.1706391 0.4187296 1.0000000</code></pre>
<p>The running time (in sec.) for each pairwise correlation is</p>
<pre class="r"><code>table = data.frame(rbind(Vhat.mle$ttime, Vhat.em$ttime), row.names = c(&#39;mle&#39;, &#39;em&#39;))
colnames(table) = c(&#39;12&#39;,&#39;13&#39;,&#39;23&#39;)
table %&gt;% kable() %&gt;% kable_styling()</code></pre>
<table class="table" style="margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:left;">
</th>
<th style="text-align:right;">
12
</th>
<th style="text-align:right;">
13
</th>
<th style="text-align:right;">
23
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
mle
</td>
<td style="text-align:right;">
286.089
</td>
<td style="text-align:right;">
208.604
</td>
<td style="text-align:right;">
70.226
</td>
</tr>
<tr>
<td style="text-align:left;">
em
</td>
<td style="text-align:right;">
167.105
</td>
<td style="text-align:right;">
63.067
</td>
<td style="text-align:right;">
51.075
</td>
</tr>
</tbody>
</table>
<p>The time is the total running time with different initial point.</p>
<ol start="3" style="list-style-type: decimal">
<li>The result uses algorithm in <a href="EstimateCorMaxEMV.html">estimate cor em V</a>.</li>
</ol>
<pre class="r"><code>Vhat.emV = estimateV(m.data, c(U.c, U.ed), init_V = list(diag(ncol(m.data$Bhat)), clusterGeneration::rcorrmatrix(3), clusterGeneration::rcorrmatrix(3)), tol = 1e-4, optmethod = &#39;emV&#39;)
Vhat.emV$V</code></pre>
<pre><code>          [,1]      [,2]      [,3]
[1,] 1.0000000 0.5487183 0.2669639
[2,] 0.5487183 1.0000000 0.4654711
[3,] 0.2669639 0.4654711 1.0000000</code></pre>
<ol start="4" style="list-style-type: decimal">
<li>Using the original truncated correlation:</li>
</ol>
<pre class="r"><code>Vhat.tru = estimate_null_correlation(m.data)
Vhat.tru</code></pre>
<pre><code>          [,1]      [,2]      [,3]
[1,] 1.0000000 0.4296283 0.1222433
[2,] 0.4296283 1.0000000 0.3324459
[3,] 0.1222433 0.3324459 1.0000000</code></pre>
<p>The truncated correlation underestimates the correlations.</p>
<ol start="5" style="list-style-type: decimal">
<li>mash 1by1</li>
</ol>
<pre class="r"><code>V.mash = cor((data$Bhat/data$Shat)[-strong,])
V.mash</code></pre>
<pre><code>          [,1]      [,2]      [,3]
[1,] 1.0000000 0.5313446 0.2445663
[2,] 0.5313446 1.0000000 0.4490049
[3,] 0.2445663 0.4490049 1.0000000</code></pre>
<div id="error" class="section level2">
<h2>Error</h2>
<p>Checking the estimation error:</p>
<pre class="r"><code>FError = c(norm(Vhat.mle$V - Sigma, &#39;F&#39;),
           norm(Vhat.em$V - Sigma, &#39;F&#39;),
           norm(Vhat.emV$V - Sigma, &#39;F&#39;),
           norm(Vhat.tru - Sigma, &#39;F&#39;),
           norm(V.mash - Sigma, &#39;F&#39;))
OpError = c(norm(Vhat.mle$V - Sigma, &#39;2&#39;),
           norm(Vhat.em$V - Sigma, &#39;2&#39;),
           norm(Vhat.emV$V - Sigma, &#39;2&#39;),
           norm(Vhat.tru - Sigma, &#39;2&#39;),
           norm(V.mash - Sigma, &#39;2&#39;))
table = data.frame(FError = FError, OpError = OpError, row.names = c(&#39;mle&#39;,&#39;em&#39;,&#39;emV&#39;,&#39;trunc&#39;,&#39;m.1by1&#39;))
table %&gt;% kable() %&gt;% kable_styling()</code></pre>
<table class="table" style="margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:left;">
</th>
<th style="text-align:right;">
FError
</th>
<th style="text-align:right;">
OpError
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
mle
</td>
<td style="text-align:right;">
0.0581773
</td>
<td style="text-align:right;">
0.0411417
</td>
</tr>
<tr>
<td style="text-align:left;">
em
</td>
<td style="text-align:right;">
0.0507627
</td>
<td style="text-align:right;">
0.0391489
</td>
</tr>
<tr>
<td style="text-align:left;">
emV
</td>
<td style="text-align:right;">
0.2516219
</td>
<td style="text-align:right;">
0.1960202
</td>
</tr>
<tr>
<td style="text-align:left;">
trunc
</td>
<td style="text-align:right;">
0.4091712
</td>
<td style="text-align:right;">
0.3049974
</td>
</tr>
<tr>
<td style="text-align:left;">
m.1by1
</td>
<td style="text-align:right;">
0.2562509
</td>
<td style="text-align:right;">
0.1915171
</td>
</tr>
</tbody>
</table>
</div>
<div id="mash-log-likelihood" class="section level2">
<h2>mash log likelihood</h2>
<p>In mash model, the model with correlation from mle has larger loglikelihood.</p>
<pre class="r"><code>m.data.mle = mash_set_data(data$Bhat, data$Shat, V=Vhat.mle$V)
m.model.mle = mash(m.data.mle, c(U.c,U.ed), verbose = FALSE)</code></pre>
<pre class="r"><code>m.data.em = mash_set_data(data$Bhat, data$Shat, V=Vhat.em$V)
m.model.em = mash(m.data.em, c(U.c,U.ed), verbose = FALSE)</code></pre>
<pre class="r"><code>m.data.emV = mash_set_data(data$Bhat, data$Shat, V=Vhat.emV$V)
m.model.emV = mash(m.data.emV, c(U.c,U.ed), verbose = FALSE)</code></pre>
<pre class="r"><code>m.data.trunc = mash_set_data(data$Bhat, data$Shat, V=Vhat.tru)
m.model.trunc = mash(m.data.trunc, c(U.c,U.ed), verbose = FALSE)</code></pre>
<pre class="r"><code>m.data.1by1 = mash_set_data(data$Bhat, data$Shat, V=V.mash)
m.model.1by1 = mash(m.data.1by1, c(U.c,U.ed), verbose = FALSE)</code></pre>
<pre class="r"><code>m.data.correct = mash_set_data(data$Bhat, data$Shat, V=Sigma)
m.model.correct = mash(m.data.correct, c(U.c,U.ed), verbose = FALSE)</code></pre>
<p>The results are summarized in table:</p>
<pre class="r"><code>null.ind = which(apply(data$B,1,sum) == 0)
V.trun = c(get_loglik(m.model.trunc), length(get_significant_results(m.model.trunc)), sum(get_significant_results(m.model.trunc) %in% null.ind))
V.mle = c(get_loglik(m.model.mle), length(get_significant_results(m.model.mle)), sum(get_significant_results(m.model.mle) %in% null.ind))
V.em = c(get_loglik(m.model.em), length(get_significant_results(m.model.em)), sum(get_significant_results(m.model.em) %in% null.ind))
V.emV = c(get_loglik(m.model.emV), length(get_significant_results(m.model.emV)), sum(get_significant_results(m.model.emV) %in% null.ind))
V.1by1 = c(get_loglik(m.model.1by1), length(get_significant_results(m.model.1by1)), sum(get_significant_results(m.model.1by1) %in% null.ind))
V.correct = c(get_loglik(m.model.correct), length(get_significant_results(m.model.correct)), sum(get_significant_results(m.model.correct) %in% null.ind))
temp = cbind(V.mle, V.em, V.emV, V.trun, V.1by1, V.correct)
colnames(temp) = c(&#39;MLE&#39;,&#39;EM&#39;,&#39;EMV&#39;, &#39;Truncate&#39;, &#39;m.1by1&#39;, &#39;True&#39;)
row.names(temp) = c(&#39;log likelihood&#39;, &#39;# significance&#39;, &#39;# False positive&#39;)
temp %&gt;% kable() %&gt;% kable_styling()</code></pre>
<table class="table" style="margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:left;">
</th>
<th style="text-align:right;">
MLE
</th>
<th style="text-align:right;">
EM
</th>
<th style="text-align:right;">
EMV
</th>
<th style="text-align:right;">
Truncate
</th>
<th style="text-align:right;">
m.1by1
</th>
<th style="text-align:right;">
True
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
log likelihood
</td>
<td style="text-align:right;">
-17917.69
</td>
<td style="text-align:right;">
-17919.23
</td>
<td style="text-align:right;">
-17945.16
</td>
<td style="text-align:right;">
-17951.46
</td>
<td style="text-align:right;">
-17943.49
</td>
<td style="text-align:right;">
-17913.58
</td>
</tr>
<tr>
<td style="text-align:left;">
# significance
</td>
<td style="text-align:right;">
146.00
</td>
<td style="text-align:right;">
149.00
</td>
<td style="text-align:right;">
82.00
</td>
<td style="text-align:right;">
85.00
</td>
<td style="text-align:right;">
73.00
</td>
<td style="text-align:right;">
149.00
</td>
</tr>
<tr>
<td style="text-align:left;">
# False positive
</td>
<td style="text-align:right;">
1.00
</td>
<td style="text-align:right;">
1.00
</td>
<td style="text-align:right;">
0.00
</td>
<td style="text-align:right;">
1.00
</td>
<td style="text-align:right;">
0.00
</td>
<td style="text-align:right;">
1.00
</td>
</tr>
</tbody>
</table>
<p>The estimated <code>pi</code> is</p>
<pre class="r"><code>par(mfrow=c(2,3))
barplot(get_estimated_pi(m.model.mle), las=2, cex.names = 0.7, main=&#39;MLE&#39;, ylim=c(0,0.8))
barplot(get_estimated_pi(m.model.em), las=2, cex.names = 0.7, main=&#39;EM&#39;, ylim=c(0,0.8))
barplot(get_estimated_pi(m.model.emV), las=2, cex.names = 0.7, main=&#39;EMV&#39;, ylim=c(0,0.8))
barplot(get_estimated_pi(m.model.trunc), las=2, cex.names = 0.7, main=&#39;Truncate&#39;, ylim=c(0,0.8))
barplot(get_estimated_pi(m.model.1by1), las=2, cex.names = 0.7, main=&#39;m.1by1&#39;, ylim=c(0,0.8))
barplot(get_estimated_pi(m.model.correct), las=2, cex.names = 0.7, main=&#39;True&#39;, ylim=c(0,0.8))</code></pre>
<p><img src="figure/EstimateCorMaxMash.Rmd/unnamed-chunk-19-1.png" width="672" style="display: block; margin: auto;" /></p>
</div>
<div id="roc" class="section level2">
<h2>ROC</h2>
<pre class="r"><code>m.mle.seq = ROC.table(data$B, m.model.mle)
m.em.seq = ROC.table(data$B, m.model.em)
m.emV.seq = ROC.table(data$B, m.model.emV)
m.trun.seq = ROC.table(data$B, m.model.trunc)
m.1by1.seq = ROC.table(data$B, m.model.1by1)
m.correct.seq = ROC.table(data$B, m.model.correct)</code></pre>
<p><img src="figure/EstimateCorMaxMash.Rmd/unnamed-chunk-21-1.png" width="672" style="display: block; margin: auto;" /></p>
</div>
<div id="rrmse" class="section level2">
<h2>RRMSE</h2>
<pre class="r"><code>rrmse = rbind(RRMSE(data$B, data$Bhat, list(m.model.mle, m.model.em, m.model.emV, m.model.trunc, m.model.1by1, m.model.correct)))
colnames(rrmse) = c(&#39;MLE&#39;,&#39;EM&#39;,&#39;EMV&#39;, &#39;Truncate&#39;,&#39;m.1by1&#39;,&#39;True&#39;)
row.names(rrmse) = &#39;RRMSE&#39;
rrmse %&gt;% kable() %&gt;% kable_styling()</code></pre>
<table class="table" style="margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:left;">
</th>
<th style="text-align:right;">
MLE
</th>
<th style="text-align:right;">
EM
</th>
<th style="text-align:right;">
EMV
</th>
<th style="text-align:right;">
Truncate
</th>
<th style="text-align:right;">
m.1by1
</th>
<th style="text-align:right;">
True
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
RRMSE
</td>
<td style="text-align:right;">
0.5277488
</td>
<td style="text-align:right;">
0.5285126
</td>
<td style="text-align:right;">
0.5437355
</td>
<td style="text-align:right;">
0.5592648
</td>
<td style="text-align:right;">
0.5442074
</td>
<td style="text-align:right;">
0.5283068
</td>
</tr>
</tbody>
</table>
<pre class="r"><code>barplot(rrmse, ylim=c(0,(1+max(rrmse))/2), names.arg = c(&#39;MLE&#39;,&#39;EM&#39;, &#39;EMV&#39;,&#39;Truncate&#39;,&#39;m.1by1&#39;,&#39;True&#39;), las=2, cex.names = 0.7, main=&#39;RRMSE&#39;)</code></pre>
<p><img src="figure/EstimateCorMaxMash.Rmd/unnamed-chunk-23-1.png" width="672" style="display: block; margin: auto;" /></p>
</div>
</div>
<div id="more-simulations" class="section level1">
<h1>More simulations</h1>
<p>I randomly generate 10 positive definite correlation matrices, V. The sample size is 4000.</p>
<p><span class="math display">\[
\hat{z}|z \sim N_{5}(z, V)
\]</span> <span class="math display">\[
z\sim\frac{1}{4}\delta_{0} + \frac{1}{4}N_{5}(0,\left(\begin{matrix} 1 &amp; \mathbf{0}_{1\times 4} \\ \mathbf{0}_{4\times 1} &amp; \mathbf{0}_{4\times 4} \end{matrix}\right)) + \frac{1}{4}N_{5}(0,\left(\begin{matrix} \mathbf{1}_{2\times 2} &amp; \mathbf{0}_{1\times 3} \\ \mathbf{0}_{3\times 1} &amp; \mathbf{0}_{3\times 3} \end{matrix}\right)) + \frac{1}{4}N_{5}(0,\mathbf{1}_{5\times 5})
\]</span></p>
<pre class="r"><code>set.seed(100)
n=4000; p = 5
U0 = matrix(0,p,p)
U1 = U0; U1[1,1] = 1
U2 = U0; U2[c(1:2), c(1:2)] = 1
U3 = matrix(1, p,p)
Utrue = list(U0 = U0, U1 = U1, U2 = U2, U3 = U3)
for(t in 1:10){
  Vtrue = clusterGeneration::rcorrmatrix(p)
  data = generate_data(n, p, Vtrue, Utrue)
  # mash cov
  m.data = mash_set_data(Bhat = data$Bhat, Shat = data$Shat)
  m.1by1 = mash_1by1(m.data)
  strong = get_significant_results(m.1by1)

  U.pca = cov_pca(m.data, 3, subset = strong)
  U.ed = cov_ed(m.data, U.pca, subset = strong)
  U.c = cov_canonical(m.data)
  Vhat.mle &lt;- estimateV(m.data, c(U.c, U.ed), init_rho = c(-0.5,0,0.5), tol=1e-4, optmethod = &#39;mle&#39;)
  Vhat.em &lt;- estimateV(m.data, c(U.c, U.ed), init_rho = c(-0.5,0,0.5), tol=1e-4, optmethod = &#39;em2&#39;)
  Vhat.emV &lt;- estimateV(m.data, c(U.c, U.ed), init_V = list(diag(ncol(m.data$Bhat)), clusterGeneration::rcorrmatrix(p), clusterGeneration::rcorrmatrix(p)),tol=1e-4, optmethod = &#39;emV&#39;)
  saveRDS(list(V.true = Vtrue, V.mle = Vhat.mle, V.em = Vhat.em, V.emV = Vhat.emV, data = data, strong=strong),
          paste0(&#39;../output/MASH.result.&#39;,t,&#39;.rds&#39;))
}</code></pre>
<pre class="r"><code>files = dir(&quot;../output/AddEMV/&quot;); files = files[grep(&quot;MASH.result&quot;,files)]
times = length(files)
result = vector(mode=&quot;list&quot;,length = times)
for(i in 1:times) {
  result[[i]] = readRDS(paste(&quot;../output/AddEMV/&quot;, files[[i]], sep=&quot;&quot;))
}</code></pre>
<pre class="r"><code>mle.pd = numeric(times)
em.pd = numeric(times)
for(i in 1:times){
  m.data = mash_set_data(result[[i]]$data$Bhat, result[[i]]$data$Shat)
  
  result[[i]]$V.trun = estimate_null_correlation(m.data, apply_lower_bound = FALSE)
  m.1by1 = mash_1by1(m.data)
  strong = get_significant_results(m.1by1)
  result[[i]]$V.1by1 = cor(m.data$Bhat[-strong,])
  U.c = cov_canonical(m.data)
  U.pca = cov_pca(m.data, 3, subset = strong)
  U.ed = cov_ed(m.data, U.pca, subset = strong)

  m.data.true = mash_set_data(Bhat = m.data$Bhat, Shat = m.data$Shat, V = result[[i]]$V.true)
  m.model.true = mash(m.data.true, c(U.c,U.ed), verbose = FALSE)
  
  m.data.trunc = mash_set_data(Bhat = m.data$Bhat, Shat = m.data$Shat, V = result[[i]]$V.trun)
  m.model.trunc = mash(m.data.trunc, c(U.c,U.ed), verbose = FALSE)
  
  m.data.1by1 = mash_set_data(Bhat = m.data$Bhat, Shat = m.data$Shat, V = result[[i]]$V.1by1)
  m.model.1by1 = mash(m.data.1by1, c(U.c,U.ed), verbose = FALSE)
  
  m.data.emV = mash_set_data(Bhat = m.data$Bhat, Shat = m.data$Shat, V = result[[i]]$V.emV$V)
  m.model.emV = mash(m.data.emV, c(U.c,U.ed), verbose = FALSE)
  
  # MLE
  
  m.model.mle = m.model.mle.F = m.model.mle.2 = list()
  R &lt;- tryCatch(chol(result[[i]]$V.mle$V),error = function (e) FALSE)
  if(is.matrix(R)){
    mle.pd[i] = 1
    m.data.mle = mash_set_data(Bhat = m.data$Bhat, Shat = m.data$Shat, V = result[[i]]$V.mle$V)
    m.model.mle = mash(m.data.mle, c(U.c,U.ed), verbose = FALSE)
  }else{
    V.mle.near.F = as.matrix(Matrix::nearPD(result[[i]]$V.mle$V, conv.norm.type = &#39;F&#39;, keepDiag = TRUE)$mat)
    V.mle.near.2 = as.matrix(Matrix::nearPD(result[[i]]$V.mle$V, conv.norm.type = &#39;2&#39;, keepDiag = TRUE)$mat)
    
    result[[i]]$V.mle.F = V.mle.near.F
    result[[i]]$V.mle.2 = V.mle.near.2
    
    # mashmodel
    m.data.mle.F = mash_set_data(Bhat = m.data$Bhat, Shat = m.data$Shat, V = V.mle.near.F)
    m.model.mle.F = mash(m.data.mle.F, c(U.c,U.ed), verbose = FALSE)
    
    m.data.mle.2 = mash_set_data(Bhat = m.data$Bhat, Shat = m.data$Shat, V = V.mle.near.2)
    m.model.mle.2 = mash(m.data.mle.2, c(U.c,U.ed), verbose = FALSE)
  }
  
  # EM
  m.model.em = m.model.em.F = m.model.em.2 = list()
  R &lt;- tryCatch(chol(result[[i]]$V.em$V),error = function (e) FALSE)
  if(is.matrix(R)){
    em.pd[i] = 1
    m.data.em = mash_set_data(Bhat = m.data$Bhat, Shat = m.data$Shat, V = result[[i]]$V.em$V)
    m.model.em = mash(m.data.em, c(U.c,U.ed), verbose = FALSE)
  }else{
    V.em.near.F = as.matrix(Matrix::nearPD(result[[i]]$V.em$V, conv.norm.type = &#39;F&#39;, keepDiag = TRUE)$mat)
    V.em.near.2 = as.matrix(Matrix::nearPD(result[[i]]$V.em$V, conv.norm.type = &#39;2&#39;, keepDiag = TRUE)$mat)
    
    result[[i]]$V.em.F = V.em.near.F
    result[[i]]$V.em.2 = V.em.near.2
    
    # mashmodel
    m.data.em.F = mash_set_data(Bhat = m.data$Bhat, Shat = m.data$Shat, V = V.em.near.F)
    m.model.em.F = mash(m.data.em.F, c(U.c,U.ed), verbose = FALSE)
      
    m.data.em.2 = mash_set_data(Bhat = m.data$Bhat, Shat = m.data$Shat, V = V.em.near.2)
    m.model.em.2 = mash(m.data.em.2, c(U.c,U.ed), verbose = FALSE)
  }
  
  result[[i]]$m.model = list(m.model.true = m.model.true, m.model.trunc = m.model.trunc, 
                             m.model.1by1 = m.model.1by1, m.model.emV = m.model.emV,
                             m.model.mle = m.model.mle,
                             m.model.mle.F = m.model.mle.F, m.model.mle.2 = m.model.mle.2, 
                             m.model.em = m.model.em,
                             m.model.em.F = m.model.em.F, m.model.em.2 = m.model.em.2)
}</code></pre>
<div id="error-1" class="section level2">
<h2>Error</h2>
<p>The Frobenius norm is</p>
<pre class="r"><code>temp = matrix(0,nrow = times, ncol = 7)
for(i in 1:times){
  temp[i, ] = error.cor(result[[i]], norm.type=&#39;F&#39;, mle.pd = mle.pd[i], em.pd = em.pd[i])
}
colnames(temp) = c(&#39;Trunc&#39;,&#39;m.1by1&#39;, &#39;MLE&#39;,&#39;MLE.F&#39;, &#39;EM&#39;, &#39;EM.F&#39;, &#39;EMV&#39;)
temp %&gt;% kable() %&gt;% kable_styling()</code></pre>
<table class="table" style="margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:right;">
Trunc
</th>
<th style="text-align:right;">
m.1by1
</th>
<th style="text-align:right;">
MLE
</th>
<th style="text-align:right;">
MLE.F
</th>
<th style="text-align:right;">
EM
</th>
<th style="text-align:right;">
EM.F
</th>
<th style="text-align:right;">
EMV
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:right;">
0.5847549
</td>
<td style="text-align:right;">
0.9286016
</td>
<td style="text-align:right;">
0.3185293
</td>
<td style="text-align:right;">
0.3053278
</td>
<td style="text-align:right;">
0.0941757
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
1.0198618
</td>
</tr>
<tr>
<td style="text-align:right;">
0.6345196
</td>
<td style="text-align:right;">
0.8140108
</td>
<td style="text-align:right;">
0.1169154
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.0981075
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.8913631
</td>
</tr>
<tr>
<td style="text-align:right;">
0.7201453
</td>
<td style="text-align:right;">
0.9531300
</td>
<td style="text-align:right;">
0.2344733
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.1734402
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
1.0216638
</td>
</tr>
<tr>
<td style="text-align:right;">
0.8370832
</td>
<td style="text-align:right;">
1.0534335
</td>
<td style="text-align:right;">
0.1968091
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.2411372
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
1.1115619
</td>
</tr>
<tr>
<td style="text-align:right;">
0.8206008
</td>
<td style="text-align:right;">
0.8466408
</td>
<td style="text-align:right;">
0.1194142
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.1189734
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.9176794
</td>
</tr>
<tr>
<td style="text-align:right;">
0.8455747
</td>
<td style="text-align:right;">
1.1393764
</td>
<td style="text-align:right;">
0.1650726
</td>
<td style="text-align:right;">
0.1479670
</td>
<td style="text-align:right;">
0.1653665
</td>
<td style="text-align:right;">
0.1516188
</td>
<td style="text-align:right;">
1.2178752
</td>
</tr>
<tr>
<td style="text-align:right;">
0.5173056
</td>
<td style="text-align:right;">
0.8194980
</td>
<td style="text-align:right;">
0.1211599
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.0861518
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.8914736
</td>
</tr>
<tr>
<td style="text-align:right;">
0.8840057
</td>
<td style="text-align:right;">
0.9546138
</td>
<td style="text-align:right;">
0.1642744
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.1563607
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
1.0169747
</td>
</tr>
<tr>
<td style="text-align:right;">
0.6535878
</td>
<td style="text-align:right;">
1.0554833
</td>
<td style="text-align:right;">
0.1240352
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.1323659
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
1.1491978
</td>
</tr>
<tr>
<td style="text-align:right;">
0.6425639
</td>
<td style="text-align:right;">
0.9346341
</td>
<td style="text-align:right;">
0.0794776
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.0700813
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
1.0196620
</td>
</tr>
</tbody>
</table>
<p>The spectral norm is</p>
<pre class="r"><code>temp = matrix(0,nrow = times, ncol = 7)
for(i in 1:times){
  temp[i, ] = error.cor(result[[i]], norm.type=&#39;2&#39;, mle.pd = mle.pd[i], em.pd = em.pd[i])
}
colnames(temp) = c(&#39;Trunc&#39;,&#39;m.1by1&#39;, &#39;MLE&#39;,&#39;MLE.2&#39;, &#39;EM&#39;, &#39;EM.2&#39;, &#39;EMV&#39;)
temp %&gt;% kable() %&gt;% kable_styling()</code></pre>
<table class="table" style="margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:right;">
Trunc
</th>
<th style="text-align:right;">
m.1by1
</th>
<th style="text-align:right;">
MLE
</th>
<th style="text-align:right;">
MLE.2
</th>
<th style="text-align:right;">
EM
</th>
<th style="text-align:right;">
EM.2
</th>
<th style="text-align:right;">
EMV
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:right;">
0.4230698
</td>
<td style="text-align:right;">
0.7526315
</td>
<td style="text-align:right;">
0.2258153
</td>
<td style="text-align:right;">
0.2205340
</td>
<td style="text-align:right;">
0.0662442
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.8335745
</td>
</tr>
<tr>
<td style="text-align:right;">
0.5228925
</td>
<td style="text-align:right;">
0.6281308
</td>
<td style="text-align:right;">
0.0783098
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.0677285
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.7069909
</td>
</tr>
<tr>
<td style="text-align:right;">
0.5156642
</td>
<td style="text-align:right;">
0.7945237
</td>
<td style="text-align:right;">
0.1750836
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.1239438
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.8577274
</td>
</tr>
<tr>
<td style="text-align:right;">
0.6529121
</td>
<td style="text-align:right;">
0.8335401
</td>
<td style="text-align:right;">
0.1484773
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.1768351
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.8944724
</td>
</tr>
<tr>
<td style="text-align:right;">
0.6500336
</td>
<td style="text-align:right;">
0.6377762
</td>
<td style="text-align:right;">
0.0778356
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.0849870
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.7052165
</td>
</tr>
<tr>
<td style="text-align:right;">
0.5607948
</td>
<td style="text-align:right;">
0.8613851
</td>
<td style="text-align:right;">
0.1001500
</td>
<td style="text-align:right;">
0.0937816
</td>
<td style="text-align:right;">
0.1085885
</td>
<td style="text-align:right;">
0.1015186
</td>
<td style="text-align:right;">
0.9343139
</td>
</tr>
<tr>
<td style="text-align:right;">
0.3157614
</td>
<td style="text-align:right;">
0.6406310
</td>
<td style="text-align:right;">
0.0795125
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.0659174
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.6982291
</td>
</tr>
<tr>
<td style="text-align:right;">
0.7134025
</td>
<td style="text-align:right;">
0.7290570
</td>
<td style="text-align:right;">
0.1090477
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.1103719
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.7987348
</td>
</tr>
<tr>
<td style="text-align:right;">
0.4767534
</td>
<td style="text-align:right;">
0.8894951
</td>
<td style="text-align:right;">
0.0964157
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.0957622
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.9760343
</td>
</tr>
<tr>
<td style="text-align:right;">
0.4591215
</td>
<td style="text-align:right;">
0.7926789
</td>
<td style="text-align:right;">
0.0568252
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.0558999
</td>
<td style="text-align:right;">
0.0000000
</td>
<td style="text-align:right;">
0.8740268
</td>
</tr>
</tbody>
</table>
</div>
<div id="time" class="section level2">
<h2>Time</h2>
<p>The total running time for each matrix is</p>
<pre class="r"><code>mle.time = em.time = numeric(times)
for(i in 1:times){
  mle.time[i] = sum(result[[i]]$V.mle$ttime)
  em.time[i] = sum(result[[i]]$V.em$ttime)
}
temp = cbind(mle.time, em.time)
colnames(temp) = c(&#39;MLE&#39;, &#39;EM&#39;)
row.names(temp) = 1:10
temp %&gt;% kable() %&gt;% kable_styling()</code></pre>
<table class="table" style="margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:right;">
MLE
</th>
<th style="text-align:right;">
EM
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:right;">
3171.983
</td>
<td style="text-align:right;">
848.351
</td>
</tr>
<tr>
<td style="text-align:right;">
2341.424
</td>
<td style="text-align:right;">
704.601
</td>
</tr>
<tr>
<td style="text-align:right;">
1990.764
</td>
<td style="text-align:right;">
740.046
</td>
</tr>
<tr>
<td style="text-align:right;">
3249.162
</td>
<td style="text-align:right;">
1072.233
</td>
</tr>
<tr>
<td style="text-align:right;">
1988.220
</td>
<td style="text-align:right;">
717.808
</td>
</tr>
<tr>
<td style="text-align:right;">
2580.794
</td>
<td style="text-align:right;">
958.710
</td>
</tr>
<tr>
<td style="text-align:right;">
1928.634
</td>
<td style="text-align:right;">
597.511
</td>
</tr>
<tr>
<td style="text-align:right;">
2992.277
</td>
<td style="text-align:right;">
1114.932
</td>
</tr>
<tr>
<td style="text-align:right;">
2339.513
</td>
<td style="text-align:right;">
708.779
</td>
</tr>
<tr>
<td style="text-align:right;">
2727.560
</td>
<td style="text-align:right;">
772.780
</td>
</tr>
</tbody>
</table>
</div>
<div id="mash-log-likelihood-1" class="section level2">
<h2>mash log likelihood</h2>
<pre class="r"><code>temp = matrix(0,nrow = times, ncol = 10)
for(i in 1:times){
  temp[i, ] = loglik.cor(result[[i]]$m.model, mle.pd = mle.pd[i], em.pd = em.pd[i])
}
colnames(temp) = c(&#39;True&#39;, &#39;Trunc&#39;,&#39;m.1by1&#39;, &#39;MLE&#39;,&#39;MLE.F&#39;, &#39;MLE.2&#39;, &#39;EM&#39;, &#39;EM.F&#39;, &#39;EM.2&#39;,&#39;EMV&#39;)
temp[temp == 0] = NA
temp[,-c(6,9)] %&gt;% kable() %&gt;% kable_styling()</code></pre>
<table class="table" style="margin-left: auto; margin-right: auto;">
<thead>
<tr>
<th style="text-align:right;">
True
</th>
<th style="text-align:right;">
Trunc
</th>
<th style="text-align:right;">
m.1by1
</th>
<th style="text-align:right;">
MLE
</th>
<th style="text-align:right;">
MLE.F
</th>
<th style="text-align:right;">
EM
</th>
<th style="text-align:right;">
EM.F
</th>
<th style="text-align:right;">
EMV
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:right;">
-26039.92
</td>
<td style="text-align:right;">
-26130.50
</td>
<td style="text-align:right;">
-26112.94
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-26265.49
</td>
<td style="text-align:right;">
-26120.81
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-26136.19
</td>
</tr>
<tr>
<td style="text-align:right;">
-25669.59
</td>
<td style="text-align:right;">
-26997.92
</td>
<td style="text-align:right;">
-26950.67
</td>
<td style="text-align:right;">
-26028.96
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-25859.86
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-26967.47
</td>
</tr>
<tr>
<td style="text-align:right;">
-27473.71
</td>
<td style="text-align:right;">
-27547.11
</td>
<td style="text-align:right;">
-27535.67
</td>
<td style="text-align:right;">
-27465.76
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-27463.43
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-27551.75
</td>
</tr>
<tr>
<td style="text-align:right;">
-28215.48
</td>
<td style="text-align:right;">
-28604.98
</td>
<td style="text-align:right;">
-28646.72
</td>
<td style="text-align:right;">
-28301.41
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-28338.57
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-28669.24
</td>
</tr>
<tr>
<td style="text-align:right;">
-24988.68
</td>
<td style="text-align:right;">
-25236.18
</td>
<td style="text-align:right;">
-25110.41
</td>
<td style="text-align:right;">
-25056.59
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-25048.86
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-25123.96
</td>
</tr>
<tr>
<td style="text-align:right;">
-24299.89
</td>
<td style="text-align:right;">
-24978.79
</td>
<td style="text-align:right;">
-24972.25
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-24492.32
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-24478.09
</td>
<td style="text-align:right;">
-25020.38
</td>
</tr>
<tr>
<td style="text-align:right;">
-27574.71
</td>
<td style="text-align:right;">
-27698.40
</td>
<td style="text-align:right;">
-27662.48
</td>
<td style="text-align:right;">
-27517.65
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-27540.65
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-27684.83
</td>
</tr>
<tr>
<td style="text-align:right;">
-27941.86
</td>
<td style="text-align:right;">
-28159.65
</td>
<td style="text-align:right;">
-28182.04
</td>
<td style="text-align:right;">
-27979.99
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-27953.02
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-28222.45
</td>
</tr>
<tr>
<td style="text-align:right;">
-29788.75
</td>
<td style="text-align:right;">
-29824.45
</td>
<td style="text-align:right;">
-29921.87
</td>
<td style="text-align:right;">
-29760.81
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-29759.50
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-29954.96
</td>
</tr>
<tr>
<td style="text-align:right;">
-28542.34
</td>
<td style="text-align:right;">
-28922.58
</td>
<td style="text-align:right;">
-29163.51
</td>
<td style="text-align:right;">
-28537.96
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-28550.73
</td>
<td style="text-align:right;">
NA
</td>
<td style="text-align:right;">
-29221.61
</td>
</tr>
</tbody>
</table>
<p>The <code>NA</code> means the estimated correlation matrix is not positive definite.</p>
</div>
<div id="roc-1" class="section level2">
<h2>ROC</h2>
<pre class="r"><code>par(mfrow=c(1,2))
for(i in 1:times){
  plotROC(result[[i]]$data$B, result[[i]]$m.model, mle.pd = mle.pd[i], em.pd = em.pd[i], title=paste0(&#39;Data&#39;, i, &#39; &#39;))
}</code></pre>
<p><img src="figure/EstimateCorMaxMash.Rmd/unnamed-chunk-31-1.png" width="672" style="display: block; margin: auto;" /><img src="figure/EstimateCorMaxMash.Rmd/unnamed-chunk-31-2.png" width="672" style="display: block; margin: auto;" /><img src="figure/EstimateCorMaxMash.Rmd/unnamed-chunk-31-3.png" width="672" style="display: block; margin: auto;" /><img src="figure/EstimateCorMaxMash.Rmd/unnamed-chunk-31-4.png" width="672" style="display: block; margin: auto;" /><img src="figure/EstimateCorMaxMash.Rmd/unnamed-chunk-31-5.png" width="672" style="display: block; margin: auto;" /></p>
</div>
<div id="rrmse-1" class="section level2">
<h2>RRMSE</h2>
<pre class="r"><code>par(mfrow=c(1,2))
for(i in 1:times){
  rrmse = rbind(RRMSE(result[[i]]$data$B, result[[i]]$data$Bhat, result[[i]]$m.model))
  barplot(rrmse, ylim=c(0,(1+max(rrmse))/2), las=2, cex.names = 0.7, main=&#39;RRMSE&#39;)
}</code></pre>
<p><img src="figure/EstimateCorMaxMash.Rmd/unnamed-chunk-32-1.png" width="672" style="display: block; margin: auto;" /><img src="figure/EstimateCorMaxMash.Rmd/unnamed-chunk-32-2.png" width="672" style="display: block; margin: auto;" /><img src="figure/EstimateCorMaxMash.Rmd/unnamed-chunk-32-3.png" width="672" style="display: block; margin: auto;" /><img src="figure/EstimateCorMaxMash.Rmd/unnamed-chunk-32-4.png" width="672" style="display: block; margin: auto;" /><img src="figure/EstimateCorMaxMash.Rmd/unnamed-chunk-32-5.png" width="672" style="display: block; margin: auto;" /></p>
</div>
</div>
<div id="session-information" class="section level1">
<h1>Session information</h1>
<!-- Insert the session information into the document -->
<pre class="r"><code>sessionInfo()</code></pre>
<pre><code>R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] kableExtra_0.9.0 knitr_1.20       mashr_0.2-11     ashr_2.2-10     

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.18             highr_0.7               
 [3] compiler_3.5.1           pillar_1.3.0            
 [5] plyr_1.8.4               iterators_1.0.10        
 [7] tools_3.5.1              corrplot_0.84           
 [9] digest_0.6.15            viridisLite_0.3.0       
[11] evaluate_0.11            tibble_1.4.2            
[13] lattice_0.20-35          pkgconfig_2.0.1         
[15] rlang_0.2.1              Matrix_1.2-14           
[17] foreach_1.4.4            rstudioapi_0.7          
[19] yaml_2.2.0               parallel_3.5.1          
[21] mvtnorm_1.0-8            xml2_1.2.0              
[23] httr_1.3.1               stringr_1.3.1           
[25] REBayes_1.3              hms_0.4.2               
[27] rprojroot_1.3-2          grid_3.5.1              
[29] R6_2.2.2                 rmarkdown_1.10          
[31] rmeta_3.0                readr_1.1.1             
[33] magrittr_1.5             scales_0.5.0            
[35] backports_1.1.2          codetools_0.2-15        
[37] htmltools_0.3.6          MASS_7.3-50             
[39] rvest_0.3.2              assertthat_0.2.0        
[41] colorspace_1.3-2         stringi_1.2.4           
[43] Rmosek_8.0.69            munsell_0.5.0           
[45] pscl_1.5.2               doParallel_1.0.11       
[47] truncnorm_1.0-8          SQUAREM_2017.10-1       
[49] clusterGeneration_1.3.4  ExtremeDeconvolution_1.3
[51] crayon_1.3.4            </code></pre>
</div>

<!-- Adjust MathJax settings so that all math formulae are shown using
TeX fonts only; see
http://docs.mathjax.org/en/latest/configuration.html.  This will make
the presentation more consistent at the cost of the webpage sometimes
taking slightly longer to load. Note that this only works because the
footer is added to webpages before the MathJax javascript. -->
<script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
</script>

<hr>
<p>
    This <a href="http://rmarkdown.rstudio.com">R Markdown</a> site was created with <a href="https://github.com/jdblischak/workflowr">workflowr</a>
</p>
<hr>

<!-- To enable disqus, uncomment the section below and provide your disqus_shortname -->

<!-- disqus
  <div id="disqus_thread"></div>
    <script type="text/javascript">
        /* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */
        var disqus_shortname = 'rmarkdown'; // required: replace example with your forum shortname

        /* * * DON'T EDIT BELOW THIS LINE * * */
        (function() {
            var dsq = document.createElement('script'); dsq.type = 'text/javascript'; dsq.async = true;
            dsq.src = '//' + disqus_shortname + '.disqus.com/embed.js';
            (document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq);
        })();
    </script>
    <noscript>Please enable JavaScript to view the <a href="http://disqus.com/?ref_noscript">comments powered by Disqus.</a></noscript>
    <a href="http://disqus.com" class="dsq-brlink">comments powered by <span class="logo-disqus">Disqus</span></a>
-->


</div>
</div>

</div>

<script>

// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
  $('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
  bootstrapStylePandocTables();
});


</script>

<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>