1 第三章

- **3.15** (1) X 为 n=2k 元集合, 其因子 (factor) 是将 X 分为 k 个大小为 2 的集合的分划, 证明 X 的因子有 (2k-1)!! 个.
- (2) 证明: X 上的置换 σ 可以互换某些 k-子集及其补集 \iff σ 的所有轮换长度为偶数. 证明满足条件的置换有 $((2k-1)!!)^2$ 个.
- (3) 证明从 S_n 中随机取出的置换互换某个 n/2-子集及其补集的概率为 $O(1/\sqrt{n})$.
- 证明. (1) 在 X 中按顺序取出 k 个大小为 2 的集合,有 $\binom{n}{2,\cdots,2} = \frac{n!}{2!\cdots 2!} = 2^{-k}n!$ 种方式,从而无序取,即分划 X 为 k 个大小为 2 的集合的方式有 $\frac{1}{k!}\binom{n}{2,\cdots,2} = \frac{n!}{2^k k!} = \frac{(2k)!}{(2k)!!} = (2k-1)!!$ 种.
- (2) \implies :由于 A, B 中元素在置换下互换,从而在偶数次置换作用下才能返回自身,从而置换中所有轮换长度为偶数. \iff :在置换的每个轮换中将元素交替的染为红色和蓝色,则红蓝元素各有 k 个,且在置换作用下互换.

证明: 记满足条件的置换集合为 $A \subset S_n$. 再以 X 为顶点集, 以 $\sigma \in A$ 构造无向图: $\forall x \in X$ 连接 $\{x, x\sigma\}$, $\{x, x\sigma^{-1}\}$, 得到的无向图全集为 B. 再记所有 X 中因子的有序对构成的集合为 C. 显然 $|C| = (2k-1)!!^2$.

先考虑映射 $f:A\to B, \forall \sigma\in A, f(\sigma)$ 即为所构造的无向图. 注意到 σ 的 $c(\sigma)$ 个轮换对应到无向图 $G=f(\sigma)$ 的 c(G) 个圈分支,而轮换取逆对应于圈的定向取反,因此 $\left|f^{-1}(G)\right|=2^{c(G)}, |A|=\sum_{G\in B}\left|f^{-1}(G)\right|=\sum_{G\in B}2^{c(G)}$. 再考虑映射 $g:C\to B$,对于因子对 $(f_1,f_2)\in C, G=g(f_1,f_2)$ 是以 X 为顶点集, $f_1\cup f_2$ 作为边集构造的无向图. 可以认为 (f_1,f_2) 相当于将 $E(G)\cap f_1$ 染红, $E(G)\cap f_2$ 染蓝,即对应于 E(G) 的一个边 2-染色. 而 G 为 c(G) 个偶长度圈的并,因此其有 $2^{c(G)}$ 种边 2-染色方式,因此 $|g^{-1}(G)|=2^{c(G)}$. 综上所述,

$$|A| = \sum_{G \in B} |f^{-1}(G)| = \sum_{G \in B} 2^{c(G)} = \sum_{G \in B} |g^{-1}(G)| = |C| = (2k - 1)!!^2$$

(3) 由计算立得:

$$\frac{(2k-1)!!^2}{(2k)!} = \frac{(2k-1)!!}{(2k)!!} = \prod_{i=1}^k \frac{2i-1}{2i} = \prod_{i=1}^k \left(1 - \frac{1}{2i}\right) \leq \prod_{i=1}^k \mathrm{e}^{-\frac{1}{2i}} = \mathrm{e}^{-\sum_{i=1}^k \frac{1}{2i}} = \mathrm{e}^{-\frac{\log k}{2} + O(1)} = O(k^{-1/2})$$

2 第四章

- **4.1** (1) 有 n 个座位排成一排,证明在这些座位中选择一个子集,使得任意两个所选座位不相邻的方式数为 F_{n+1} . (2) 如果这 n 个座位围成一个圆,证明选择方式的数量为 $F_n + F_{n-2} (n \ge 2)$.
- 证明. (1) 记方式数为 a_n . 对于 $n \ge 3$ 时的选取方式, 若第 n 个座位被选取, 则第 n-1 个座位不能被选取, 从而前 n-2 个座位有 a_{n-2} 种选取方式; 若第 n 个座位不被选取, 则前 n-1 个座位有 a_{n-1} 种选取方式, 即 $a_n = a_{n-1} + a_{n-2} (n \ge 3)$. 再注意到 $a_1 = 2 = F_2$, $a_2 = 3 = F_3$, 从而可知 $a_n = F_{n+1}$.
- (2) 记方式数为 b_n . 对于 $n \ge 3$ 时的选取方式, 若第 n 个座位被选取, 则第 n-1 个和第 1 个座位不能被选取, 从 而第 2 到第 n-2 个座位有 $a_{n-3} = F_{n-2}$ 种选取方式; 若第 n 个座位不被选取, 则前 n-1 个座位有 $a_{n-1} = F_n$ 种选取方式, 从而 $b_n = F_n + F_{n-2}$. 另外 $b_2 = 3 = F_2 + F_0$, 从而得证.
- **4.10** f(n) 满足

$$f(1) = 1,$$
 $f(n+1) = \begin{cases} 2f(n), & n \text{ odd,} \\ 2f(n) + 1, & n \text{ even.} \end{cases}$

证明 f(n+2) = f(n+1) + 2f(n) + 1, 由此给出 f(n) 的通项公式.

证明. 若 n 为奇数,则 f(n+2) = 2f(n+1) + 1 = f(n+1) + 2f(n) + 1; 若 n 为偶数,则 f(n+2) = 2f(n+1) = f(n+1) + 2f(n) + 1.由于递推公式的齐次形式 f(n+2) - f(n+1) - 2f(n) = 0的特征方程为 $x^2 - x - 2 = 0$,解为

2 与 -1, 且注意到递推公式有特解 $f(n) \equiv -\frac{1}{2}$, 从而通解为 $f(n) = c_1 2^n + c_2 (-1)^n - \frac{1}{2}$. 带入 f(1) = 1, f(2) = 2 可得 $f(n) = \frac{2^{n+1}}{3} - \frac{(-1)^n}{6} - \frac{1}{2} = \frac{2^{n+2} + (-1)^{n+1} - 3}{6}.$

4.13 称 [n] 上的置换 $\pi \in S_n$ 为连通的,若 $\forall 1 < k < n, \pi([k]) \neq [k]$. 令 c_n 为连通置换的数量,证明 $\sum_{i=1}^n c_i(n-i)! = n!$. 并由此证明: $F(t) = \sum_{n \geq 1} n! t^n, G(t) = \sum_{n \geq 1} c_n t^n$ 是序列 (n!) 和 (c_n) 的生成函数,则有 $1 - G(t) = (1 + F(t))^{-1}$.

证明. 对于 $k \in [n], S_k$ 中的连通置换可通过添加 $\{k+1, \cdots, n\}$ 上的置换得到 S_n 中的置换, 而有 (n-k)! 种添加方式, 从而 S_n 中有 $c_k(n-k)!$ 个置换满足 $\min\{k \in [n] | \pi([k]) = [k]\}$. 而按照 k 对 S_n 作划分, 可得 $n! = \sum_{k=1}^n c_k(n-k)!$. 故有

$$G(t)(1+F(t)) = \left(\sum_{k=1}^{\infty} c_k t^k\right) \left(\sum_{n=0}^{\infty} n! t^n\right) = \sum_{n=1}^{\infty} \sum_{k=1}^{n} c_k (n-k)! = F(t)$$

从而
$$G(1+F) = F, 1-G = 1 - \frac{F}{1+F} = (1+F)^{-1}$$
.

3 第五章

5.1 一项民意调查显示, 选民对 A,B,C 三位总统候选人满意的比例分别为 65%,57%,58%. 此外, 28% 的人接受 A 或 B, 30% 的人接受 A 或 C, 27% 的人接受 B 或 C, 12% 的人对三者均满意. 你的结论是什么?

证明. 记 A, B, C 为支持候选人 A, B, C 的选民集合, X 是全集, 由容斥定理知

$$|(A \cup B \cup C)^c| = |X| - (|A| + |B| + |C|) + (|A \cap B| + |A \cap C| + |B \cap C|)$$

从而对所有候选人都不满意的选民比例为 1-(0.65+0.57+0.58)+(0.28+0.30+0.27)=0.05=5%.

5.3 证明
$$S(n,1) = 1, S(n,2) = 2^{n-1} - 1, S(n,n-1) = \binom{n}{2}$$
, 并给出 $S(n,n-2)$ 的表达式.

证明. S(n,k) 的定义为分 [n] 为 k 部分的分划数.k=1 时显然仅有一种分划,S(n,1)=1;k=2 时,注意到从 [n] 中取非空非全集的子集及其补集形成一种分划,而取该子集与其补集形成的分划相同,从而 $2S(n,2)=2^n-2,S(n,2)=2^{n-1}-1$. k=n-1 时每种分划对应于在 [n] 中取 2 个元素作为 1 个子集,其他 n-2 个元素分别作为 n-2 个子集,从而 $S(n,n-1)=\binom{n}{2}$.

若 k=n-2,即有两种可能:(1) 将 [n] 分为 1 个大小为 3 的子集与 n-3 个大小为 1 的子集,即有 $\binom{n}{3}$ 种分划;(2) 分 [n] 为 2 个大小为 2 的子集与 n-4 个大小为 1 的子集,从而有 $\frac{1}{2!}\binom{n}{2,2} = \frac{n!}{2^3(n-4)!} = 3\binom{n}{4}$ 种分划. 综上知 $S(n,n-2) = \binom{n}{3} + 3\binom{n}{4}$.

5.4 用递推关系证明 |s(n,1)| = (n-1)!, 并由此证明 n 元集上的循环置换个数为 (n-1)!.

证明. |s(n,k)| 有递推关系 |s(n,k)| = (n-1)|s(n-1,k)| + |s(n,k-1)|, 从而有 |s(n,1)| = (n-1)|s(n-1,1)| + |s(n,0)|, 而 s(n,0) = 0, 故

$$|s(n,1)| = (n-1)|s(n-1,1)| = (n-1)(n-2)|s(n-2,1)| = \cdots = (n-1)!|s(1,1)| = (n-1)!$$

而由定义知 |s(n,1)| 即 S_n 中仅含 1 个轮换 (即循环置换) 的置换个数, 从而 S_n 中有 (n-1)! 个循环置换.

4 第六章

- **6.1** (1) 证明 n = 1, 2, 3, 4 时 n 阶拉丁方的个数为 1, 2, 12, 576.
- (2) 通过对拉丁方中行, 列或符号的置换, 证明 1,2,3 阶拉丁方唯一, 而 4 阶拉丁方有两个.
- (3) 对于两个类型的 4 阶拉丁方, 其中一个有正交伴侣, 而另一个没有.

证明. (1)n = 1 时显然;n = 2 时, 若取首行为 (1,2), 则末行仅能为 (2,1), 可再对方阵符号 $\{1,2\} = [2]$ 作变换, 有 2! 种变换, 从而有 2 种 2 阶拉丁方.n = 3 时, 若取首行为 (1,2,3), 则次行可能为 (2,3,1) 或 (3,1,2), 从而末行被前两行唯一确定, 故此时有 2 种可能, 再考虑方阵符号 [3] 的变换有 3! 种, 故总共有 $2 \cdot 3! = 12$ 种可能.

n=4 时, 首先取首行为 (1,2,3,4), 则次行与 S_4 中的错排 σ ——对应, 错排由 6 个 4-轮换与 3 个型为 [2,2] 的置换构成. 而第三行中的任意数 $a_{3i} \neq i, i\sigma$, 故仅有 2 种可能. 构造第三行第 i 个数可选取数的集合为 $A_i = [4] - \{i, i\sigma\}$.

- 若 σ 为 4-轮换则 $|A_i \cap A_{i\sigma}| = |A_i \cap A_{i\sigma^{-1}}| = 1$,从而确定了 a_{3i} 即可唯一确定 $a_{3,i\sigma}$ 或 $a_{3,i\sigma^{-1}}$,以此类推从而唯一确定第三行. 所以该情形有 2 种可能.
- 若 σ 是型为 [2,2] 的置换, 则由 $i = i\sigma^2$ 知 $A_i = A_{i\sigma}$, 因此确定了 a_{3i} 仅能迫使 $a_{3,i\sigma} \in A_{i\sigma} a_{3i}$ 被唯一确定, 其余两个数同样有 2 种可能. 从而此情形有 $2 \cdot 2 = 4$ 种可能.

而末行被前三行唯一确定, 因此首行为 (1,2,3,4) 时有 $6\cdot 2 + 3\cdot 4 = 24$ 种可能. 再考虑对方阵的符号 [4] 变换有 4! 种可能, 故共有 $24\cdot 4! = 576$ 种可能.

(2) 对于全体 L(n) 个 n 阶拉丁方,可首先通过列变换将首行变为 $(1,2,\cdots,n)$,再通过对剩下 (n-1) 行的行变换使首列为 $(1,2,\cdots,n)^\mathsf{T}$. 而列变换有 n! 个,行变换有 (n-1)! 个,故能得到至多 $\frac{L(n)}{n!(n-1)!}$ 个拉丁方的等价类,带入 n=1,2,3,4 即分别为 1,1,1,4,从而仅需证明 n=4 的情形. 由上讨论知首行首列均为 (1,2,3,4) 的 4 阶拉丁方仅有 4 个,分别为:

注意到对 (D) 中符号作置换 (1234), 将末行移至首行, 再将第二列移至末列, 即得到 (B); 对 (D) 中符号作置换 (13)(24), 将前两行移至后两行即得到 (C). 从而可得两种 4 阶拉丁方 (A) 和 (C).

(3) 首先注意到

与 (C) 相互正交. 对于 (A), 若有拉丁方 $B=(b_{ij})$ 与其正交, 则取数对 $(k,1), \forall k \in [4]$, 则有唯一的 4 个位置 (i_k,j_k) 使得 $a_{i_k,j_k}=k,b_{i_k,j_k}=1$, 显然这些位置必须在不同的行列中. 考虑置换 $\sigma: k \mapsto i_k, \tau: k \mapsto j_k$, 则 $a_{k\sigma,k\tau}$ 取遍 [4], 从而

$$\sum_{k=1}^{4} a_{k\sigma,k\tau} = \frac{4(4+1)}{2} \equiv 2 \bmod 4$$

注意到 $a_{ij} = i + j - 1 \mod 4$, 从而

$$\sum_{k=1}^{4} a_{k\sigma,k\tau} = \sum_{k=1}^{4} (k\sigma + k\tau - 1) \equiv 0 \bmod 4$$

从而矛盾.

6.5 \Diamond (A_1, \dots, A_n) 是 [n] 的一个子集族, 若子集族的关联矩阵可逆, 证明该子集族有 SDR.

证明. 关联矩阵 $M=(m_{ij}), m_{ij}=[i\in A_j]$ 可逆即 $\det M\neq 0$. 而 $\det M=\sum_{\sigma\in S_n}(-1)^{\operatorname{sgn}(\sigma)}\prod_{i=1}^n m_{i,i\sigma}$, 故 $\exists \sigma\in S_n \forall i\in [n], m_{i,i\sigma}\neq 0$, 即 $i\in A_{i\sigma}$, 从而 $(1\sigma^{-1},2\sigma^{-1},\cdots,n\sigma^{-1})$ 是子集族的一个 SDR.

6.7 证明 Hall 定理的推广: 集合 X 有子集族 (A_1, \dots, A_n) , 其满足 $|A(J)| \ge |J| - r, \forall J \subset [n]$, 则子集族中有大小为 n-r 的子族有 SDR.

证明. 考虑与 X 不交的 r 元集 $Y = \{y_1, \dots, y_r\} \cap X = \emptyset$,可构造子集族 $A_i' = A_i \cup Y$,则 $|A'(J)| = |A(J)| + |Y| \ge |J| - r + r = |J|$,从而 A' 有 SDR,删去其中的 Y 中元素,剩下 $\ge n - r$ 个元素为原先子集族 A 中大小 $\ge n - r$ 的子族的 SDR.

5 第八章

Steiner 四元系 (Steiner quadruple system, SQS) 是集合对 $(X, \mathcal{B}), X$ 是一个集合, \mathcal{B} 是 X 中一些 4-子集构成的子集族, 称这些 4-子集为四元组, X 中任意 3 点均含于唯一四元组中. 称 n = |X| 为该四元系的阶.

- **8.7** 若存在 n 阶 SQS(n > 2), 则 $n \equiv \pm 2 \mod 6$.
- 8.8 n 阶 $SQS(X, \mathcal{B})$ 有 $|\mathcal{B}| = \frac{n(n-1)(n-2)}{24}$.

证明. 固定 $x \in X$, 对集合 $\{(\{y,z\},B)|y,z \in X,y \neq z,x \notin \{y,z\},B \in \mathcal{B},\{x,y,z\} \subset B\}$ 计数. 首先 $\{y,z\}$ 有 $\binom{n-1}{2}$ 种取法, 而每种取法对应唯一的 $B \in \mathcal{B}$, 故集合有 $\binom{n}{2}$ 个元素. 再考虑 x 属于 r 个四元组中,每个四元组中可取 $\binom{3}{2} = 3$ 种二元子集, 从而集合元素个数为 $3r = \binom{n-1}{2}, r = \frac{(n-1)(n-2)}{6}$.

再对集合 $\{(x,B)|x\in X, B\in\mathcal{B}, x\in B\}$ 计数. 由于每个点在 r=(n-1)(n-2)/6 个四元组中,故集合有 n(n-1)(n-2)/6 个元素; 又由于所有 b 个四元组中每个含 4 个点,故 4b=n(n-1)(n-2)/6, b=n(n-1)(n-2)/24.

最后,由于 $r,b \in \mathbb{N}$,故 6|(n-1)(n-2),24|n(n-1)(n-2),也从而 4|n.而 $(n-1)(n-2)\equiv 0 \mod 6$ 仅在 $n\equiv \pm 1,\pm 2 \mod 6$ 时成立,故得到 $n\equiv \pm 2 \mod 6$.

8.9 $X \in \mathbb{Z}/2$ -向量空间, $\mathcal{B} = \{\{x, y, z, w\} \subset X | x + y + z + w = 0\}$, 证明 (X, \mathcal{B}) 是 SQS.

证明. 注意到 $\forall x,y,z\in X$ 引 $w=x+y+z\in X$, 从而 x,y,z 互相不等时 w 与 x,y,z 均不等: 设 w=x 则 y+z=0,y=z, 矛盾. 从而有唯一四元组 $\{x,y,z,w\}\in \mathcal{B}$ 包含 x,y,z, 从而得证.

8.11 (X, \mathcal{B}) 是 n 阶 STS,Y 是其 m 阶子系 (m < n), 证明 $n \ge 2m + 1$, 且取等当且仅当 \mathcal{B} 中每个三元组均仅含 Y 中 1 或 3 个点.

证明. 固定 $x\in X-Y$,对 $\{B\in\mathcal{B}|\exists y\in Y, x,y\in B\}$ 计数. 由于 $x\notin B$,故 B 中 Y 的元素仅有 y,否则 $B\subset Y$. 从而对 $\forall y\in Y\exists!B\in\mathcal{B}, x,y\in B$,故该集合的元素个数等于 Y 的元素个数 m. 又由于 x 在 $\frac{n-1}{2}$ 个三元组上,故 $m\leq\frac{n-1}{2}, n\geq 2m+1$.

若取等, 即 n=2m+1, 则任意含 $x \in X-Y$ 的三元组 B 都含 Y 中元素, 故由上可知 $|B \cap Y|=1$, 由 x 任意性可知, 任意三元组 $B \not\subset \mathbb{N}$ $|B \cap Y|=1$. 反之由上讨论, x 所在的三元组都含 Y 中元素, 故 m=(n-1)/2, 从而得证. \square

6 第十章

10.2 证明任意有限 (简单) 图中有两个顶点 u, v, d(u) = d(v).

证明. 由 $d(v) \leq n-1$ 知 $D = \{d(v)|v \in V\} \subset \{0,1,\cdots,n-1\}$. 若有顶点 v_0 度数为 n-1, 则其余点都被其连接, $D \subset [n-1]$. 若不存在, 则 $D \subset \{0,1,\cdots,n-2\}$. 从而总有 $|D| \leq n-1 < n = |V|$, 由鸽巢原理得证.

10.6 考虑 $X = \mathbb{Z}/17$ 上的完备图, 对 $\forall x, y \in \mathbb{Z}/17$, 若 $x - y = \pm 1, \pm 2, \pm 4, \pm 8$ 则将边 $\{x, y\}$ 染红, 剩下的边染蓝. 证明没有单染色 4-集.

证明. 注意到 $\pm 1, \pm 2, \pm 4, \pm 8$ 为 $\mathbb{Z}/17$ 的所有二次剩余 $(1^2 \equiv 1, 2^2 \equiv 4, 3^2 \equiv -8, 4^2 \equiv -1, 5^2 \equiv 8, 6^2 \equiv 2, 7^2 \equiv -2, 8^2 \equiv -4$,后续一致),而 a,b 是二次剩余则 a^{-1} ,ab 也是. 因此若存在单染色 4-集 $A,a \in A$,将 A 中元素同减去 a,由于加减不改变同余关系,故得到单染色 4-集 A', $0 \in A'$ 且有非零元 $b \in A'$,由同余关系知 b 也是二次剩余。将 A' 元素同乘以二次剩余 b^{-1} ,元素之差仍为二次剩余,从而可得单染色 4-集 $A'' = \{0,1,c,d\}$. 由与 0,1 的同余关系知 c,d 仅可以在 2,0,16 中,但 2,0,16 之差不是二次剩余,从而与单染色矛盾.

10.7 (1) 证明 Schur 定理: 存在函数 $f: \mathbb{N} \to \mathbb{N}$ 使得, 若 [f(n)] 被分为 n 部分, 则 $\exists x, y \in [f(n)]$ 使得 x, y, x + y 在同一部分中.(2) 陈述并证明无限版本的 Schur 定理.

证明. (1) 取 N = R(n,2,3) - 1, 若 [N] 被分为 n 部分 C_1, \dots, C_n , 则给 [N+1] 中的 2-子集染 n 种色 c_1, \dots, c_n : 对于 $\{a,b\} \subset [N+1], a < b$, 若 $b-a \in C_i$, 则染色 c_i . 由于 N+1=R(n,2,3), 因此存在单染色三元组 $\{a,b,c\}$, a < b < c, 取 $x = c - b, y = b - a \in C_i$, 则 $x + y = c - a \in C_i$. 因此取 f(n) = R(n,2,3) - 1 即可满足条件.

(2) 若 \mathbb{N} 被分为 $n < \infty$ 个子集, 则 $\exists x, y \in \mathbb{N}$ 使得 x, y, x + y 在同一子集中.

证明: 若分 \mathbb{N} 为 n 个子集 C_1, \dots, C_n , 则为 \mathbb{N} 的 2-子集染色: $\{a,b\} \subset \mathbb{N}, a < b$ 被染为 c_i 色, 若 $b-a \in C_i$. 由无限 Ramsey 定理知有单染色三元组 $\{a,b,c\}$, 从而取 $x=c-b,y=b-a \in C_i$, 则 $x+y=c-a \in C_i$.