Anhui University Semester 2, 2020-2021 Final Examination Numerical Analysis (Paper A)

Author: Donghui Pan

I Single-choice Questions (3 marks for each question, 15 marks in total)

1.Suppose that $f(x) \in C[a, b]$. For all $x \in [a, b], f(x) \in [a, b]$, then f(x) has _____in [a, b].

(A) a fixed point (B) no fixed point (C) a unique fixed point (D) a simple root

2.Given the matrix $T = \begin{pmatrix} 4 & 1 & -1 \\ 1 & -5 & -1 \\ 2 & -1 & -6 \end{pmatrix}$, then _____.

(A) T is a strictly diagonally dominant matrix; (C) T is a singular matrix; (B) T is not a strictly diagonally dominant matrix; (D) det T = 0

3.For the first kind Чебышев(Chebyshev) Polynomials $T_n(x)$ with $n = 2, 3, \dots$, then $T_n(x) = _$.

(A)
$$T_{n-1}(x) - 2T_{n-2}(x)$$
 (B) $2xT_{n-1}(x) - T_{n-2}(x)$ (C) $4xT_{n-1}(x) - 2T_{n-2}(x)$ (D) $4xT_{n-1}(x) - T_{n-2}(x)$

4.Given n + 1 points $\{(x_k, y_k)\}_{k=0}^n$ where $a = x_0 < x_1 < \cdots < x_n = b$, if a cubic spline has endpoints constraints S''(a) = S''(b) = 0, then the cubic spline is _____.

- (A) clamped cubic spline (B) parabolically terminated spline
- (C) natural cubic spline (D) curvature-adjusted cubic spline

5.Assuming [a, b] subdivided into M subintervals with width $h = \frac{b-a}{M}$, and the composite trapezoidal rule T(f, h) aimed to approximate the integral $\int_{a}^{b} f(x) dx$, the error $E_{T}(f, h)$ is _____. (A) O(1) (B) O(h) (C) $O(h^{2})$ (D) $O(h^{3})$

II Fill-in-the-blanks Questions (3 marks for each question, 15 marks in total)

6. Using Gaussian elimination, the triangular factorization of the matrix $\begin{pmatrix} 1 & 1 & 6 \\ -1 & 2 & 9 \\ 1 & -2 & 3 \end{pmatrix}$ is ______.

7. For N+1 nodes x_0, x_1, \dots, x_N and its Lagrange coefficient polynomial $L_{N,k}(x)$ with degree of N, we have $\sum_{k=0}^{N} L_{N,k}(x_j) = \sum_{k=0}^{N} L_{N,k}(x_j)$

for all $j = 0, \cdots, N$.

8. The divided difference f[1, 2, 3, 4] of $f(x) = x^2 + 1$ is _____

9. The recurrence relation of Бернштейн(Bernstein) polynomial $B_{i,N}(t)$ is ______.

10. The degree of precision for Simpson's rule is _____

III Computation Problems (10 marks for each problem; reserve 4 decimal places after the decimal point)

11.Given $f(x) = xe^{-x}$, (a) Find its Newton-Raphson formula $p_k = g(p_{k-1})$; (b) Find p_1, p_2, p_3, p_4 and $\lim_{k \to \inf} p_k$ starting at $p_0 = 0.4$.

12.In the linear equation system

$$4x - y + z = 7 \qquad 4x - 8y + z = -21 \qquad -2x + y - 5z = 15$$

(a) Use Gauss-Seidel iteration to find P_1, P_2 while $P_0 = (1, 2, 2)$;

(b) Prove that the Gauss-Seidel iteration is convergent.

13.Let $f(x) = \log_2(x)$, use quadratic Newton interpolation polynomial based on the nodes $x_0 = 1, x_1 = 2, x_2 = 4$ to approximate f(3).

14. Find the least-squares polynomial approximation of degree 2 to the following data: $\frac{x \ 0 \ 1 \ 2 \ 4 \ 6}{y \ 3 \ 1 \ 0 \ 1 \ 4}$

15. Use the three-point Gauss-Legendre rule to approximate $\int_{1}^{5} \frac{dt}{t}$ and compare the result with Simpson's rule S(f,h) with h=2.

IV Proof Problems (10 marks for each question, 20 marks in total)

16. Use Heun's method to solve the initial value problem $y' = \frac{t-y}{2}, t \in [0,3]$ with y(0) = 1, for the step size h = 1.

17.Suppose that [a, b] is subdivided into M subintervals $[x_k, x_{k+1}]$ of width $h = \frac{b-a}{M}$ and the composite trapezoidal rule T(f, h) is an approximation to the integral

$$\int_{a}^{b} f(x) \mathrm{d}x = T(f,h) + E(f,h)$$

If $f \in C^2[a, b]$, prove there exists a value $c \in (a, b)$ such that the error E(f, h) has the form

$$E(f,h) = -\frac{b-a}{12}f''(c)h^2 = O(h^2).$$