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Abstract

In this work, we introduce the Qwen3 Embedding series, a significant advancement
over its predecessor, the GTE-Qwen series, in text embedding and reranking capabili-
ties, built upon the Qwen3 foundation models. Leveraging the Qwen3 LLMs’ robust
capabilities in multilingual text understanding and generation, our innovative multi-
stage training pipeline combines large-scale unsupervised pre-training with supervised
fine-tuning on high-quality datasets. Effective model merging strategies further ensure
the robustness and adaptability of the Qwen3 Embedding series. During the training
process, the Qwen3 LLMs serve not only as backbone models but also play a crucial role
in synthesizing high-quality, rich, and diverse training data across multiple domains
and languages, thus enhancing the training pipeline. The Qwen3 Embedding series
offers a spectrum of model sizes (0.6B, 4B, 8B) for both embedding and reranking tasks,
addressing diverse deployment scenarios where users can optimize for either efficiency
or effectiveness. Empirical evaluations demonstrate that the Qwen3 Embedding series
achieves state-of-the-art results across diverse benchmarks. Notably, it excels on the
multilingual evaluation benchmark MTEB for text embedding, as well as in various
retrieval tasks, including code retrieval, cross-lingual retrieval and multilingual retrieval.
To facilitate reproducibility and promote community-driven research and development,
the Qwen3 Embedding models are publicly available under the Apache 2.0 license.

1 Introduction

Text embedding and reranking are fundamental components in numerous natural language pro-
cessing and information retrieval applications, including web search, question answering, recom-
mendation systems, and beyond (Karpukhin et al., 2020; Huang et al., 2020; Zhao et al., 2023; 2024).
High-quality embeddings enable models to capture semantic relationships between texts, while
effective reranking mechanisms ensure that the most relevant results are prioritized. Recently,
emerging application paradigms such as Retrieval-Augmented Generation (RAG) and agent sys-
tems, driven by the advancement of large language models (e.g., Qwen3 (Yang et al., 2025), GPT-40
(Hurst et al., 2024)), have introduced new requirements and challenges for text embedding and
reranking, both in terms of model training paradigms and application scenarios. Despite significant
advancements, training embedding and reranking models that perform well in scalability, contextual
understanding, and alignment with specific downstream tasks remains challenging.

The emergence of large language models (LLMs) has significantly advanced the development of text
embedding and reranking models. Prior to the introduction of LLMs, the predominant approach
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involved using encoder-only pretrained language models like BERT as the foundational model
for training (Reimers & Gurevych, 2019). The richer world knowledge, text understanding, and
reasoning abilities inherent in LLMs have led to further enhancements in models trained on these
architectures. Additionally, there has been considerable research facilitating the integration of LLMs
into processes such as training data synthesis and quality data filtering (Wang et al., 2024; Lee et al.,
2024; 2025b). The fundamental characteristics of LLMs have also inspired the introduction of new
training paradigms. For instance, during the embedding model training process, incorporating
differentiated tasks across aspects such as instruction type, domain, and language has yielded
improved performance in downstream tasks (Su et al., 2023). Similarly, for reranking model training,
advancements have been realized through both zero-shot methods based on user prompts and
approaches combining supervised fine-tuning (Ma et al., 2023; Pradeep et al., 2023; Zhang et al.,
2024a; Zhuang et al., 2024).

In this work, we introduce the Qwen3 Embedding series models, which are constructed on top
of the Qwen3 foundation models. The Qwen3 foundation has simultaneously released base and
instruct model versions, and we exploit the robust multilingual text understanding and generation
capabilities of these models to fully realize their potential in training embedding and reranking
models. To train the embedding models, we implement a multi-stage training pipeline that involves
large-scale unsupervised pre-training followed by supervised fine tuning on high-quality datasets.
We also employ model merging with various model checkpoints to enhance robustness and general-
ization. The Qwen3 instruct model allows for efficient synthesis of a vast, high-quality, multilingual,
and multi-task text relevance dataset. This synthetic data is utilized in the initial unsupervised
training stage, while a subset of high-quality, small-scale data is selected for the second stage of
supervised training. For the reranking models, we adopt a two-stage training scheme in a similar
manner, consisting of high-quality supervised fine tuning and a model merging stage. Based on
different sizes of the Qwen3 backbone models (including 0.6B, 4B, and 8B), we ultimately trained
three text embedding models and three text reranking models. To facilitate their application in
downstream tasks, the Qwen3 Embedding series supports several practical features, such as flexible
dimension representation for embedding models and customizable instructions for both embedding
and reranking models.

We evaluate the Qwen3 Embedding series across a comprehensive set of benchmarks spanning
multiple tasks and domains. Experimental results demonstrate that our embedding and reranking
models achieve state-of-the-art performance, performing competitively against leading proprietary
models in several retrieval tasks. For example, the flagship model Qwen3-8B-Embedding attains a
score of 70.58 on the MTEB Multilingual benchmark (Enevoldsen et al., 2025) and 80.68 on the MTEB
Code benchmark (Enevoldsen et al., 2025), surpassing the previous state-of-the-art proprietary
embedding model, Gemini-Embedding (Lee et al., 2025b). Moreover, our reranking model delivers
competitive results across a range of retrieval tasks. The Qwen3-Reranker-0.6B model exceeds
previously top-performing models in numerous retrieval tasks, while the larger Qwen3-Reranker-8B
model demonstrates even superior performance, improving ranking results by 3.0 points over the
0.6B model across multiple tasks. Furthermore, we include a constructive ablation study to elucidate
the key factors contributing to the superior performance of the Qwen3 Embedding series, providing
insights into its effectiveness.

In the following sections, we describe the design of the model architecture, detail the training
procedures, present the experimental results for both the embedding and reranking models of the
Qwen3 Embedding Series, and conclude this technical report by summarizing the key findings and
outlining potential directions for future research.

2 Model Architecture

The core idea behind embedding and reranking models is to evaluate relevance in a task-aware
manner. Given a query g and a document d, embedding and reranking models assess their relevance
based on a similarity criterion defined by instruction I. To enable the models for task-aware rele-
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Figure 1: Model architecture of Qwen3-Embedding (left) and Qwen3-Reranker (right).

positive (relevant) document for query g;, and dz_] are negative (irrelevant) documents. Training the

model on diverse text pairs broadens its applicability to a range of downstream tasks, including
retrieval, semantic textual similarity, classification, and clustering.

Architecture The Qwen3 embedding and reranking models are built on the dense version of
Qwen3 foundation models and are available in three sizes: 0.6B, 4B, and 8B parameters. We initialize
these models using the Qwen3 foundation models to leverage their capabilities in text modeling
and instruction following. The model layers, hidden size, and context length for each model
configuration are detailed in Table 1.

Embedding Models For text embeddings, we utilize LLMs with causal attention, appending an
[E0S] token at the end of the input sequence. The final embedding is derived from the hidden state
of the last layer corresponding to this [E0S] token.

To ensure embeddings follow instructions during downstream tasks, we concatenate the instruction
and the query into a single input context, while leaving the document unchanged before processing
with LLMs. The input format for queries is as follows:

{Instruction} {Queryl}<|endoftext|>

Reranking Models To more accurately evaluate text similarity, we employ LLMs for point-wise
reranking within a single context. Similar to the embedding model, to enable instruction-following
capability, we include the instruction in the input context. We use the LLM chat template and frame
the similarity assessment task as a binary classification problem. The input to LLMs adheres to the
template shown below:

<|im_start|>system

Judge whether the Document meets the requirements based on the Query and the
— Instruct provided. Note that the answer can only be "yes" or

< '"no".<|im_end|>

<|im_start|>user

<Instruct>: {Instruction}

<Query>: {Query}

<Document>: {Document}<|im_end|>

<|im_start|>assistant

<think>\n\n</think>\n\n
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Sequence Embedding ~ MRL  Instruction

Model Type Models Size | Layers Length  Dimension Support Aware
Qwen3-Embedding-0.6B | 0.6B 28 32K 1024 Yes Yes
Text Embeddin Qwen3-Embedding-4B 4B 36 32K 2560 Yes Yes
& | Qwen3-Embedding-8B 8B | 36 32K 4096 Yes Yes
Qwen3-Reranker-0.6B 0.6B 28 32K - - Yes
Text Rerankin Qwen3-Reranker-4B 4B 36 32K - - Yes
g Qwen3-Reranker-8B 8B 36 32K - - Yes

Table 1: Model architecture of Qwen3 Embedding models. “MRL Support” indicates whether the
embedding model supports custom dimensions for the final embedding. “Instruction Aware” notes
whether the embedding or reranker model supports customizing the input instruction according to
different tasks.
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Figure 2: Training pipeline of Qwen3 Embedding and Reranking models.

To calculate the relevance score based on the given input, we assess the likelihood of the next token
being “yes” or “no.” This is expressed mathematically as follows:

oP(yes| L)

d =
score(q, ) eP(yes|I,q,d)+6P(no|1,q,d)

3 Models Training

In this section, we describe the multi-stage training pipeline adopted and present the key elements of
this training recipe, including training objective, training data synthesis, and filtering of high-quality
training data.

3.1 Training Objective

Before introducing our training pipeline, we first outline the optimized loss functions used for the
embedding and reranking models during the training process. For the embedding model, we utilize
an improved contrastive loss based on the InfoNCE framework (Oord et al., 2018). Given a batch of
N training instances, the loss is defined as:

o(s(aid) /)

1 N
Lembedding N Zlog -z @
; i

where s(-, -) is a similarity function (we use cosine similarity), T is a temperature parameter, and Z;
is the normalization factor that aggregates the similarity scores of the positive pair against various
negative pairs:

K
Z; = eslid)/7) 4 Zmike(swf,d;k)/f) + Zmije(s(w;)/r) + Zmije(s(d:r/dj)/"f),
k j#i j#i
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where these terms represent similarities with: (1) the positive document d;, (2) K hard negatives d,,
(3) other in-batch queries g;, (4) other in-batch positive and negative documents d;. The mask factor

m;; is designed to mitigate the impact of false negatives and is defined as:

s — 0 if Sij > S(qi,d;’_) +0.1o0r d] == dj_,
Y711 otherwise,

among which s;; is the corresponding score of g;, d; or g;, g;.

For the reranking model, we optimize the Supervised Fine-Tuning (SFT) loss defined as:
Lreranking = —log P(l|77(q/ d))r 2)

where p(-|*) denotes the probability assigned by LLM. The label [ is “yes” for positive documents
and “no” for negatives. This loss function encourages the model to assign higher probabilities to
correct labels, thereby improving the ranking performance.

3.2 Multi-stage Training

The multi-stage training approach is a common practice for training text embedding models (Li et al.,
2023; Wang et al., 2022; Chen et al., 2024). This strategy typically begins with initial training on large-
scale, semi-supervised data that includes noise, followed by fine-tuning using smaller, high-quality
supervised datasets. This two-step process enhances the performance and generalization capabilities
of embedding models. Large-scale weakly supervised training data contribute significantly to
the model’s generalization, while fine-tuning with high-quality data in subsequent stages further
improves model performance. Both stages of training for embedding models utilize the optimization
objective defined in Equation 1, whereas the reranking model training employs the loss function
defined in Equation 2 as the optimization target.

Building upon the existing multi-stage training framework, the Qwen3 Embedding series introduces
the following key innovations:

e Large-Scale Synthetic Data-Driven Weak Supervision Training: Unlike previous works (e.g.,
GTE, E5, BGE models), where weakly supervised training data are primarily collected from
open-source communities such as Q&A forums or academic papers, we propose leveraging
the text understanding and generation capabilities of foundation models to synthesize pair
data directly. This approach allows for arbitrary definition of various dimensions of the
desired pair data, such as task, language, length, and difficulty within the synthesis prompts.
Compared to data collection from open-domain sources, foundation model-driven data
synthesis offers greater controllability, enabling precise management of the quality and
diversity of the generated data, particularly in low-resource scenarios and languages.

¢ High-Quality Synthetic Data Utilization in Supervised Fine Tuning: Due to the exceptional
performance of the Qwen3 Foundation model, the synthesized data is of notably high quality.
Therefore, in the second stage of supervised training, selective incorporation of this high-
quality synthetic data further enhances the overall model performance and generalization
capabilities.

¢ Model Merging: Inspired by previous work (Li et al., 2024), after completing the supervised
fine-tuning, we applied a model merging technique based on spherical linear interpolation
(slerp). This technique involves merging multiple model checkpoints saved during the
fine-tuning process. This step aims to boost the model’s robustness and generalization
performance across various data distributions.

It is important to note that the reranking model’s training process does not include a first-stage
weakly supervised training phase.
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3.3 Synthetic Dataset

To create a robust synthetic dataset for training models on various similarity tasks, we generate
diverse text pairs spanning categories such as retrieval, bitext mining, classification, and semantic
textual similarity (STS). The quality of these synthetic data pairs is ensured by utilizing the Qwen3-
32B model as the foundational model for data synthesis. We have designed a diverse prompting
strategy to improve the variety and authenticity of the generated data. For instance, in the text
retrieval task, we synthesize data using the multilingual pre-training corpus from Qwen3. During
the data synthesis process, specific roles are assigned to each document to simulate potential
users querying that document. This injection of user perspectives enhances the diversity and
realism of the synthetic queries. Specifically, we utilize a retrieval model to identify the top five
role candidates for each document from a role library and present these documents along with
their role candidates to the prompt. This guides the model in outputting the most suitable role
configuration for query generation. Moreover, the prompt incorporates various dimensions such as
query type (e.g., keyword, factual, summary, judgment), query length, difficulty, and language. This
multidimensional approach ensures the quality and diversity of the synthetic data.

Finally, we create a total of approximately 150 million pairs of multi-task weak supervision training
data. Our experiments reveal that the embedding model trained with these synthetic data performs
exceptionally well in downstream evaluations, particularly surpassing many previously supervised
models in the MTEB Multilingual benchmarks. This motivates us to filter the synthetic data to
identify high-quality pairs for inclusion in a second stage of supervised training. We employ a
simple cosine similarity calculation to select data pairs, retaining those with a cosine similarity
greater than 0.7 from randomly sampled data. Ultimately, approximately 12 million high-quality
supervised training data pairs are selected for further training.

. | Mean | Mean | Bitext Class- Clus- Inst. Multilabel Pair .
Model Size (Task) | (Type) | Mining ification tering Retrieval Class.  Class. Rerank Retrieval STS
Selected Open-Source Models
NV-Embed-v2 7B| 56.29 | 49.58 | 57.84 5729  40.80 1.04 18.63 7894 63.82 56.72 71.10
GritLM-7B 7B| 60.92 | 53.74 | 70.53  61.83 49.75 3.45 22.77 79.94 63.78 58.31 73.33
BGE-M3 0.6B| 59.56 | 52.18 | 79.11 60.35 40.88  -3.11 20.1 80.76  62.79 54.60 7412
multilingual-e5-large-instruct 0.6B| 63.22 | 55.08 | 80.13 64.94 50.75 -0.40 2291 80.86 62.61 5712  76.81
gte-Qwen2-1.5B-instruct 1.5B| 59.45 | 52.69 | 62.51 5832 52.05 0.74 24.02 81.58 62.58 60.78  71.61
gte-Qwen2-7b-Instruct 7B| 62.51 | 5593 | 73.92 6155 52.77 494 25.48 85.13 65.55 60.08 73.98
Commercial APIs
text-embedding-3-large -1 5893 | 51.41 | 6217 60.27 46.89 -2.68 22.03 79.17  63.89 59.27  71.68
Cohere-embed-multilingual-v3.0 -1 6112 | 5323 | 70.50 6295 4689 -1.89 2274 7988 6407 59.16 74.80
Gemini Embedding -| 6837 | 59.59 | 79.28  71.82 54.59 5.18 29.16 83.63 65.58 67.71  79.40
Qwen3 Embedding Models
Qwen3-Embedding-0.6B 0.6B| 64.33 | 56.00 | 72.22  66.83 52.33 5.09 24.59 80.83 6141 64.64 76.17
Qwen3-Embedding-4B 4B| 69.45 | 60.86 | 79.36 7233 5715 11.56 26.77 85.05 65.08 69.60  80.86
Qwen3-Embedding-8B 8B| 70.58 | 61.69 | 80.89 74.00 57.65 10.06 28.66 86.40 65.63 70.88 81.08

Table 2: Performance on MTEB Multilingual (Enevoldsen et al., 2025). For compared models, the
scores are retrieved from MTEB online leaderboard on June 4th, 2025.

4 Evaluation

We conduct comprehensive and fair evaluations across multiple benchmarks to assess the capabilities
of Qwen3 Embedding models.

4.1 Settings

For the text embedding models, we utilize the Massive Multilingual Text Embedding Benchmark
(MMTEB) (Enevoldsen et al., 2025) for evaluation. MMTEB is a large-scale, community-driven
expansion of MTEB (Muennighoff et al., 2023), covering over 500 quality-controlled evaluation tasks
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Model Size | Dim | MTEB (Eng, v2) CMTEB MTEB (Code)
\ | Mean (Task) Mean (Type) | Mean (Task) Mean (Type) |
Selected Open-Source Models

NV-Embed-v2 7B | 4096 69.81 65.00 63.0 62.0 -
GritLM-7B 7B | 4096 67.07 63.22 - - 73.6"
multilingual-e5-large-instruct ~ 0.6B | 1024 65.53 61.21 - - 65.0%
gte-Qwen2-1.5b-instruct 1.5B | 1536 67.20 63.26 67.12 67.79 -
gte-Qwen2-7b-instruct 7B | 3584 70.72 65.77 71.62 72.19 56.417
Commercial APIs
text-embedding-3-large -13072 66.43 62.15 - - 58.957
cohere-embed-multilingual-v3.0 -11024 66.01 61.43 - - 51.947
Gemini Embedding -13072 73.30 67.67 - - 74.667
Qwen3 Embedding Models
Qwen3-Embedding-0.6B 0.6B|1024 70.70 64.88 66.33 67.44 75.41
Qwen3-Embedding-4B 4B | 2560 74.60 68.09 72.26 73.50 80.06
Qwen3-Embedding-8B 8B | 4096 75.22 68.70 73.83 75.00 80.68

Table 3: Performance on MTEB Engilish, MTEB Chinese, MTEB Code. “Taken from (Enevoldsen
et al., 2025). "Taken from (Lee et al., 2025b). For other compared models, the scores are retrieved
from MTEB online leaderboard on June 4th, 2025.

across more than 250 languages. In addition to classic text tasks such as as a variety of retrieval,
classification, and semantic textual similarity, MMTEB includes a diverse set of challenging and
novel tasks, such as instruction following, long-document retrieval, and code retrieval, representing
the largest multilingual collection of evaluation tasks for embedding models to date. Our MMTEB
evaluations encompass 216 individual evaluation tasks, consisting of 131 tasks for MTEB (Multilin-
gual) (Enevoldsen et al., 2025), 41 tasks for MTEB (English, v2) (Muennighoff et al., 2023), 32 tasks
for CMTEB (Xiao et al., 2024), and 12 code retrieval tasks for MTEB (Code) (Enevoldsen et al., 2025).

Moreover, we select a series of text retrieval tasks to assess the text reranking capabilities of our
models. We explore three types of retrieval tasks: (1) Basic Relevance Retrieval, categorized into
English, Chinese, and Multilingual, evaluated on MTEB (Muennighoff et al., 2023), CMTEB (Xiao
et al., 2024), MMTEB (Enevoldsen et al., 2025), and MLDR (Chen et al., 2024), respectively; (2) Code
Retrieval, evaluated on MTEB-Code (Enevoldsen et al., 2025), which comprises only code-related
retrieval data.; and (3) Complex Instruction Retrieval, evaluated on FollowIR (Weller et al., 2024).

Compared Methods We compare our models with the most prominent open-source text embed-
ding models and commercial API services. The open-source models include the GTE (Li et al,,
2023; Zhang et al., 2024b), E5 (Wang et al., 2022), and BGE (Xiao et al., 2024) series, as well as NV-
Embed-v2 (Lee et al., 2025a), GritLM-7B Muennighoff et al. (2025). The commercial APIs evaluated
are text-embedding-3-large from OpenAl, Gemini-embedding from Google, and Cohere-embed-
multilingual-v3.0. For reranking, we compare with the rerankers of jina!, mGTE (Zhang et al., 2024b)
and BGE-m3 (Chen et al., 2024).

4.2 Main Results

Embedding In Table 2, we present the evaluation results on MMTEB (Enevoldsen et al., 2025),
which comprehensively covers a wide range of embedding tasks across multiple languages. Our
Qwen3-Embedding-4B /8B models achieve the best performance, and our smallest model, Qwen3-
Embedding-0.6B, only lags behind the best-performing baseline method (Gemini-Embedding),
despite having only 0.6B parameters. In Table 3, we present the evaluation results on MTEB (English,
v2) (Muennighoff et al., 2023), CMTEB (Xiao et al., 2024), and MTEB (Code) (Enevoldsen et al.,
2025). The scores reflect similar trends as MMTEB, with our Qwen3-Embedding-4B/8B models

Ihttps://hf.co/jinaai/jina-reranker-v2-base-multilingual
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| Basic Relevance Retrieval

Model Param | MTEB-R CMTEB-R MMTEB-R MLDR MTEB-Code FollowIR
Qwen3-Embedding-0.6B 0.6B | 61.82 71.02 64.64 50.26 7541 5.09
Jina-multilingual-reranker-v2-base 0.3B | 58.22 63.37 63.73 39.66 58.98 -0.68
gte-multilingual-reranker-base 03B | 59.51 74.08 59.44 66.33 54.18 -1.64
BGE-reranker-v2-m3 0.6B | 57.03 72.16 58.36 59.51 41.38 -0.01
Qwen3-Reranker-0.6B 0.6B | 65.80 71.31 66.36 67.28 73.42 5.41
Qwen3-Reranker-4B 4B 69.76 75.94 72.74 69.97 81.20 14.84
Qwen3-Reranker-8B 8B 69.02 77.45 72.94 70.19 81.22 8.05

Table 4: Evaluation results for reranking models. We use the retrieval subsets of MTEB(eng, v2),
MTEB(cmn, v1) and MMTEB, which are MTEB-R, CMTEB-R and MMTEM-R. The rest are all retrieval
tasks. All scores are our runs based on the retrieval top-100 results from the first row.

Model | MMTEB | MTEB (Eng, v2) | CMTEB | MTEB (Code, v1)
Owen3-Embedding-0.6B w/ only synthetic data| 58.49 60.63 59.78 66.79
Qwen3-Embedding-0.6B w/o synthetic data 61.21 65.59 63.37 74.58
Qwen3-Embedding-0.6B w/o model merge 62.56 68.18 64.76 74.89
Qwen3-Embedding-0.6B | 6433 | 70.70 | 66.33 | 75.41

Table 5: Performance (mean task) on MMTEB, MTEB(eng, v2), CMTEB and MTEB(code, v1) for
Qwen3-Embedding-0.6B model with different training setting.

consistently outperforming others. Notably, the Qwen3-Embedding-0.6B model ranks just behind
the Gemini-Embedding, while being competitive with the gte-Qwen2-7B-instruct.

Reranking In Table 4, we present the evaluation results on various reranking tasks (§4.1). We
utilize the Qwen3-Embedding-0.6B model to retrieve the top-100 candidates and then apply different
reranking models for further refinement. This approach ensures a fair evaluation of the reranking
models. Our results indicate that all three Qwen3-Reranker models enhance performance compared
to the embedding model and surpass all baseline reranking methods, with Qwen3-Reranker-8B
achieving the highest performance across most tasks.

4.3 Analysis

To further analyze and explore the key elements of the Qwen3 Embedding model training framework,
we conduct an analysis from the following dimensions:

Effectiveness of Large-Scale Weakly Supervised Pre-Training We first analyze the effectiveness
of the large-scale weak supervised training stage for the embedding models. As shown in Table 5,
the Qwen3-Embedding-0.6B model trained solely on synthetic data (without subsequent training
stages, as indicated in the first row) achieves reasonable and strong performance compared to the
final Qwen3-Embedding-0.6B model (as shown in the last row). If we further remove the weak
supervised training stage (i.e., without synthetic data training, as seen in the second row), the final
performance shows a clear decline. This indicates that the large-scale weak supervised training
stage is crucial for achieving superior performance.

Effectiveness of Model Merging Next, we compare the performance differences arising from the
model merging stage. As shown in Table 5, the model trained without model merging techniques
(the third row, which uses data sampling to balance various tasks) performs considerably worse
than the final Qwen3-Embedding-0.6B model (which employs model merging, as shown in the last
row). This indicates that the model merging stage is also critical for developing strong models.
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5 Conclusion

In this technical report, we present the Qwen3-Embedding series, a comprehensive suite of text
embedding and reranking models based on the Qwen3 foundation models. These models are
designed to excel in a wide range of text embedding and reranking tasks, including multilingual
retrieval, code retrieval, and complex instruction following. The Qwen3-Embedding models are
built upon a robust multi-stage training pipeline that combines large-scale weakly supervised
pre-training on synthetic data with supervised fine-tuning and model merging on high-quality
datasets. The Qwen3 LLMs play a crucial role in synthesizing diverse training data across multiple
languages and tasks, thereby enhancing the models’ capabilities. Our comprehensive evaluations
demonstrate that the Qwen3-Embedding models achieve state-of-the-art performance across various
benchmarks, including MTEB, CMTEB, MMTEB, and several retrieval benchmarks. We are pleased
to open-source the Qwen3-Embedding and Qwen3-Reranker models (0.6B, 4B, and 8B), making
them available for the community to use and build upon.

References

Jianlyu Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. M3-embedding;:
Multi-linguality, multi-functionality, multi-granularity text embeddings through self-knowledge
distillation. In Findings of the Association for Computational Linguistics: ACL 2024, pp. 2318-2335,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL https://
aclanthology.org/2024.findings-acl.137/.

Kenneth Enevoldsen, Isaac Chung, Imene Kerboua, Marton Kardos, Ashwin Mathur, David Stap,
Jay Gala, Wissam Siblini, Dominik Krzemirniski, Genta Indra Winata, et al. MMTEB: Massive
multilingual text embedding benchmark. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=z13pfz4VCV.

Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data creation
with 1,000,000,000 personas. arXiv preprint arXiv:2406.20094, 2024.

Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin, Janani Padman-
abhan, Giuseppe Ottaviano, and Linjun Yang. Embedding-based retrieval in facebook search. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 2553-2561, 2020.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Dangi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP
(1), pp. 6769-6781, 2020.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding models.
arXiv preprint arXiv:2405.17428, 2024.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. NV-embed: Improved techniques for training LLMs as generalist embedding
models. In The Thirteenth International Conference on Learning Representations, 2025a. URL https:
//openreview.net/forum?id=1gsyLSsDRe.

Jinhyuk Lee, Feiyang Chen, Sahil Dua, Daniel Cer, Madhuri Shanbhogue, Iftekhar Naim, Gus-

tavo Hernandez Abrego, Zhe Li, Kaifeng Chen, Henrique Schechter Vera, et al. Gemini embedding:
Generalizable embeddings from gemini. arXiv preprint arXiv:2503.07891, 2025b.


https://aclanthology.org/2024.findings-acl.137/
https://aclanthology.org/2024.findings-acl.137/
https://openreview.net/forum?id=zl3pfz4VCV
https://openreview.net/forum?id=lgsyLSsDRe
https://openreview.net/forum?id=lgsyLSsDRe

Technical Report W

Mingxin Li, Zhijie Nie, Yanzhao Zhang, Dingkun Long, Richong Zhang, and Pengjun Xie. Improving
general text embedding model: Tackling task conflict and data imbalance through model merging.
arXiv preprint arXiv:2410.15035, 2024.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning, 2023. URL https://arxiv.org/
abs/2308.03281.

Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and Jimmy Lin. Zero-shot listwise document reranking
with a large language model. arXiv preprint arXiv:2305.02156, 2023.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. MTEB: Massive text embed-
ding benchmark. In Proceedings of the 17th Conference of the European Chapter of the Association for
Computational Linguistics, pp. 2014-2037, Dubrovnik, Croatia, May 2023. Association for Computa-
tional Linguistics. URL https://aclanthology.org/2023.eacl-main.148/.

Niklas Muennighoff, Hongjin SU, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. Generative representational instruction tuning. In The Thirteenth International Con-
ference on Learning Representations, 2025. URL https://openreview.net/forum?id=BC41IvfSzv.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. Rankvicuna: Zero-shot listwise docu-
ment reranking with open-source large language models. arXiv preprint arXiv:2309.15088, 2023.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp.
3982-3992, Hong Kong, China, November 2019. Association for Computational Linguistics. URL
https://aclanthology.org/D19-1410/.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-tau Yih,
Noah A Smith, Luke Zettlemoyer, and Tao Yu. One embedder, any task: Instruction-finetuned text
embeddings. In Findings of the Association for Computational Linguistics: ACL 2023, pp. 1102-1121,
2023.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training, 2022. URL
https://arxiv.org/abs/2212.03533.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Im-
proving text embeddings with large language models. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 11897-11916,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.acl-long.642/.

Orion Weller, Benjamin Chang, Sean MacAvaney, Kyle Lo, Arman Cohan, Benjamin Van Durme,
Dawn Lawrie, and Luca Soldaini. Followir: Evaluating and teaching information retrieval models
to follow instructions. arXiv preprint arXiv:2403.15246, 2024.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
Packed resources for general chinese embeddings. In Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR "24, pp. 641-649, New
York, NY, USA, 2024. Association for Computing Machinery. URL https://doi.org/10.1145/
3626772.3657878.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Ly, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

10


https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281
https://aclanthology.org/2023.eacl-main.148/
https://openreview.net/forum?id=BC4lIvfSzv
https://aclanthology.org/D19-1410/
https://arxiv.org/abs/2212.03533
https://aclanthology.org/2024.acl-long.642/
https://aclanthology.org/2024.acl-long.642/
https://doi.org/10.1145/3626772.3657878
https://doi.org/10.1145/3626772.3657878

Technical Report 5

Longhui Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, Meishan Zhang, and Min Zhang. A
two-stage adaptation of large language models for text ranking. In Findings of the Association for
Computational Linguistics ACL 2024, pp. 11880-11891, 2024a.

Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, Jialong Tang, Huan Lin, Baosong
Yang, Pengjun Xie, Fei Huang, Meishan Zhang, Wenjie Li, and Min Zhang. mGTE: Generalized
long-context text representation and reranking models for multilingual text retrieval. In Franck
Dernoncourt, Daniel Preotiuc-Pietro, and Anastasia Shimorina (eds.), Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing: Industry Track, pp. 1393-1412,
Miami, Florida, US, November 2024b. Association for Computational Linguistics. doi: 10.18653/
v1/2024.emnlp-industry.103. URL https://aclanthology.org/2024.emnlp-industry.103/.

Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong Wen. Dense text retrieval based on pretrained
language models: A survey. ACM Transactions on Information Systems, 42(4):1-60, 2024.

Xiangyu Zhao, Maolin Wang, Xinjian Zhao, Jiansheng Li, Shucheng Zhou, Dawei Yin, Qing Li,
Jiliang Tang, and Ruocheng Guo. Embedding in recommender systems: A survey. arXiv preprint
arXiv:2310.18608, 2023.

Shengyao Zhuang, Honglei Zhuang, Bevan Koopman, and Guido Zuccon. A setwise approach for
effective and highly efficient zero-shot ranking with large language models. In Proceedings of the
47th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
38-47,2024.

11


https://aclanthology.org/2024.emnlp-industry.103/

&y

Technical Report

A  Appendix

A.1l Synthetic Data

We construct four types of synthetic data—retrieval, bitext mining, semantic textual similarity, and
classification to enable the model to adapt to various similarity tasks during pre-training. To ensure
both multilingual and cross-lingual diversity, the data is generated using Qwen3 32B. Below is an
example of a synthetic retrieval text pair. The retrieval data is synthesized using a document-to-
query approach. We collect a multilingual corpus from the pre-training corpus of the Qwen3 base
model to serve as the document source. A two-stage generation pipeline is then applied, consisting
of: (1) configuration and (2) query generation. In the configuration stage, we use large language
models (LLMs) to determine the “Question Type”, “Difficulty”, and “Character” for the synthetic
query. The candidate characters are retrieved from Persona Hub (Ge et al., 2024), selecting the top
five most relevant to the given document. This step aims to enhance the diversity of the generated
queries. The template used is as follows:

Given a **Passagex** and **Character**, select the appropriate option from

« three fields: Character, Question_Type, Difficulty, and return the output
< in JSON format.

First, select the Character who are likely to be interested in the Passage

<> from the candidates. Then select the Question_Type that the Character

— might ask about the Passage; Finally, choose the Difficulty of the

— possible question based on the Passage, the Character, and the

— Question_Type.

Character: Given by input **Character**

Question_Type:

- keywords:

- acquire_knowledge:
- summary:

- yes_or_no:

- background:

Difficulty:

- high_school:
- university:
- phd:

Here are some examples
<Examplel> <Example2> <Example3>

Now, generate the **output** based on the **Passage** and **Character** from
— user, the **Passage** will be in {language} language and the **Character*x
— will be in English.

Ensure to generate only the JSON output with content in English.

**Passagexx*:
{passage}
*xCharacter**:
{character}

In the query generation stage, we use the configuration selected in the first stage to guide the
generation of queries. Additionally, we explicitly specify the desired length and language of the
generated query. The template used is as follows:
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Given a **Character**, **Passage**, and **Requirement**, generate a query from
— the **Character**'s perspective that satisfies the **Requirement** and can
— be used to retrieve the **Passage**. Please return the result in JSON

— format.

Here is an example:
<example>

Now, generate the **output** based on the **Character**, **Passage** and

— *xRequirement** from user, the **Passage** will be in {corpus_language}

< language, the **Character** and **Requirement** will be in English.

Ensure to generate only the JSON output, with the key in English and the value
— 1in {queries_language} language.

*xCharacter*x*

{character}

**Passage*x*

{passage}

**Requirment**

- Type: {typel};

- Difficulty: {difficulty};

- Length: the length of the generated sentences should be {length} words;
- Languange: the language in which the results are generated should be

— {language} language;

Stage \ Dataset \ Size

Weakly Supervised Pre-Training | Synthetic Data ‘ ~ 150M

MS MARCO, NQ, HotpotQA, NLI,
Dureader, Tz-Ranking, SimCLUE,
Supervised Fine Tuning MIRACL, MLDR, Mr.TyD;j,
Multi-CPR, CodeSearchNet .etc
+ High-quality Synthetic Data

Labeled Data: ~ 7M
Synthetic Data: ~ 12M

Table 6: Statistics of training data utilized at each stage.

A.2 Detail Results

Mean Mean Class- Clus- Pair

(Task) (Type) | ification tering Class. Rerank  Retrieval = STS  Summ.

MTEB(eng, v2) Param

multilingual-e5-large-instruct ~ 0.6B 65.53 6121 75.54 4989 86.24  48.74 53.47 84.72  29.89
NV-Embed-v2 7.8B 69.81  65.00 87.19 47.66 88.69  49.61 62.84 83.82  35.21
GritLM-7B 7.2B 67.07  63.22 81.25 50.82 8729  49.59 54.95 83.03  35.65
gte-Qwen2-1.5B-instruct 1.5B 6720  63.26 85.84 5354 8752 4925 50.25 82.51  33.94
stella_en_1.5B_v5 1.5B 69.43  65.32 89.38 57.06 88.02  50.19 52.42 83.27 3691
gte-Qwen2-7B-instruct 7.6B 70.72  65.77 88.52 58.97  85.9 50.47 58.09 82.69 35.74
gemini-embedding-exp-03-07 - 73.3 67.67 90.05 59.39 877 48.59 64.35 85.29  38.28
Qwen3-Embedding-0.6B 0.6B 70.70  64.88 85.76 54.05 8437  48.18 61.83 86.57  33.43
Qwen3-Embedding-4B 4B 74.60  68.09 89.84 5751 87.01  50.76 68.46 88.72  34.39
Qwen3-Embedding-8B 8B 7522 68.70 90.43 58.57 8752 5156 69.44 88.58  34.83

Table 7: Results on MTEB(eng, v2) (Muennighoff et al., 2023). We compare models from the online
leaderboard.
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Mean Mean lass- lus-  Pair .
MTEB(cmn, v1) Param ea ea C 55 C us Rerank Retrieval STS
(Task) (Type) | ification tering Class.
multilingual-e5-large-instruct ~ 0.6B 58.08  58.24 69.80 4823 6452 5745 63.65 45.81
gte-Qwen2-7B-instruct 7.6B 7162 7219 75.77 66.06 81.16  69.24 75.70 65.20
gte-Qwen?2-1.5B-instruct 1.5B 67.12  67.79 72.53 5461 795 68.21 71.86 60.05
Qwen3-Embedding-0.6B 0.6B 66.33 6744 71.40 68.74 7642 6258 71.03 54.52
Qwen3-Embedding-4B 4B 7226  73.50 75.46 7789 8334  66.05 77.03 61.26
Qwen3-Embedding-8B 8B 73.84  75.00 76.97 80.08 84.23  66.99 78.21 63.53
Table 8: Results on C-MTEB (Xiao et al., 2024) (MTEB(cmn, v1).
COR-  Code Code  Code  Code  (ouo w9 Code- Stack- g 4
MTEB(Code, v1) Avg. | Apps CodeSearch- Edit- Feedback- Feedback- SearchNet- s Oh?\l " Orans_ Trans-  CosQA Overflow- TyntZSeCSi
Net Search MT CCR carchiNe C cean- Ocean-DL QA ex
ontest
BGE uilingual 62042293  68.14 6048 6052 76.70 73.23 8343 8684 3264 2793 9293 58.67
NV-Embed-v2 6374|2972 61.85 7396 60.27 81.72 68.82 86.61 8914 3340 3482 9236 60.90
gte-Qwen2-7B-instruct  62.17| 2839 71.79 6706 5766 85.15 66.24 8696 8183 3217 3126 8434 53.22
gte-Qwen2-1.5B-instruct 61.98] 2891 7156 5960  49.92 81.92 72.08 91.08  79.02 3273 3223 9027 54.49
BGE-M3 (Dense) 5822|1477 58.07 5083  47.86 69.27 53.55 6198 8622 2937 2736  80.71 49.65
Jina-v3 58.8528.99  67.83 5724 59.66 78.13 54.17 8550 7737 3091 3515  90.79 4149
Qwen3-Embedding-0.6B 75.41| 7534 84.69 6442 9082 86.39 91.72 91.01 8605 3136 3648  89.99 76.74
Qwen3-Embedding-4B  80.06| 89.18  87.93 7649 9321 89.51 95.59 9234 9099 3504 3798 9432 78.21
Qwen3-Embedding-8B  80.68| 91.07  89.51 7697  93.70 89.93 96.35 9266 9373 3281 3804 9475 78.75
Qwen3-Reranker-0.6B  73.42| 69.43  85.09 7237 8383 78.05 94.76 88.8 8469 3394 3683 9324 62.48
Qwen3-Reranker-4B  81.20/ 9425  90.91 8253 9525 88.54 97.58 9248 9366 3678 3514 9711 75.06
Qwen3-Reranker-8B  81.22| 9455  91.88 84.58  95.64 88.43 95.67 9278  90.83 3489 3743 973 734

Table 9: Performance on MTEB(Code, v1) (Enevoldsen et al., 2025). We report nDCG@10 scores.
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