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Abstract

Our ability to continuously acquire, organize, and
leverage knowledge is a key feature of human
intelligence that Al systems must approximate
to unlock their full potential. Given the chal-
lenges in continual learning with large language
models (LLMs), retrieval-augmented generation
(RAG) has become the dominant way to intro-
duce new information. However, its reliance
on vector retrieval hinders its ability to mimic
the dynamic and interconnected nature of hu-
man long-term memory. Recent RAG approaches
augment vector embeddings with various struc-
tures like knowledge graphs to address some of
these gaps, namely sense-making and associativ-
ity. However, their performance on more basic
factual memory tasks drops considerably below
standard RAG. We address this unintended de-
terioration and propose HippoRAG 2, a frame-
work that outperforms standard RAG comprehen-
sively on factual, sense-making, and associative
memory tasks. HippoRAG 2 builds upon the
Personalized PageRank algorithm used in Hip-
poRAG and enhances it with deeper passage inte-
gration and more effective online use of an LLM.
This combination pushes this RAG system closer
to the effectiveness of human long-term mem-
ory, achieving a 7% improvement in associative
memory tasks over the state-of-the-art embed-
ding model while also exhibiting superior factual
knowledge and sense-making memory capabili-
ties. This work paves the way for non-parametric
continual learning for LLMs. Our code and data
will be released at https://github.com/
OSU-NLP-Group/HippoRAG.
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1. Introduction

In an ever-evolving world, the ability to continuously ab-
sorb, integrate, and leverage knowledge is one of the most
important features of human intelligence. From lawyers
navigating shifting legal frameworks to researchers tracking
multifaceted scientific progress, much of our productivity
relies on this incredible capacity for continual learning. It is
imperative for Al systems to approximate this capability in
order to become truly useful human-level assistants.

In recent years, large language models (LLMs) have made
remarkable progress in many aspects of human intelligence.
However, efforts to endow these models with our evolv-
ing long-term memory capabilities have faced significant
challenges in both fully absorbing new knowledge (Zhong
et al., 2023; Hoelscher-Obermaier et al., 2023) and avoiding
catastrophic forgetting (Cohen et al., 2024; Gu et al., 2024),
due to the complex distributional nature of their paramet-
ric knowledge. Retrieval-augmented generation (RAG) has
emerged as a way to circumvent these obstacles and allow
LLMs to access new information in a non-parametric fash-
ion without altering an LLM’s parametric representation.
Due to their simplicity and robustness (Zhong et al., 2023;
Xie et al., 2024), RAG has quickly become the de facto
continual learning solution for production LLM systems.
However, their reliance on simple vector retrieval results
in the inability to capture two vital aspects of our intercon-
nected long-term memory system: sense-making (Klein
et al. (2006); the ability to interpret larger, more complex,
or uncertain contexts) and associativity (Suzuki (2005); the
capacity to draw multi-hop connections between disparate
pieces of knowledge).

Several RAG frameworks that engage an LLM to explicitly
structure its retrieval corpus have been recently proposed to
address these limitations. To enhance sense-making, such
structure-augmented RAG methods allow an LLM to either
generate summaries (Edge et al., 2024; Sarthi et al., 2024;
Chen et al., 2023) or a knowledge graph (KG) structure
(Guo et al., 2024) to link groups of disparate but related
passages, thereby improving the RAG system’s ability to
understand longer and more complex discourse such as long
stories. To address the associativity gap, the authors of
HippoRAG (Gutiérrez et al., 2024) use the Personalized
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Figure 1. Evaluation of continual learning capabilities across three key dimensions: factual memory (NaturalQuestions, PopQA), sense-
making (NarrativeQA), and associativity (MuSiQue, 2Wiki, HotpotQA, and LV-Eval). HippoRAG 2 surpasses other methods across all
benchmark categories, bringing it one step closer to a true long-term memory system.

PageRank algorithm (Haveliwala, 2002) and an LLM’s abil-
ity to automatically construct a KG and endow the retrieval
process with multi-hop reasoning capabilities.

Although these methods demonstrate strong performance
in both of these more challenging memory tasks, bringing
RAG truly closer to human long-term memory requires ro-
bustness across simpler memory tasks as well. In order to
understand whether these systems could achieve such ro-
bustness, we conduct comprehensive experiments that not
only simultaneously evaluate their associativity and sense-
making capacity through multi-hop QA and large-scale dis-
course understanding, but also test their factual memory
abilities via simple QA tasks, which standard RAG is al-
ready well-equipped to handle.

As shown in Figure 1, our evaluation reveals that all pre-
vious structure-augmented methods underperform against
the strongest embedding-based RAG methods available on
all three benchmark types. Perhaps unsurprisingly, we find
that each method type experiences the largest performance
decay in tasks outside its own experimental setup. For ex-
ample, HippoRAG’s performance drops most on large-scale
discourse understanding due to its lack of query-based con-
textualization, while RAPTOR’s performance deteriorates
substantially on the simple and multi-hop QA tasks due to
the noise introduced into the retrieval corpora by its LLM
summarization mechanism.

In this work, we leverage this experimental setting to help
us address the robustness limitations of these innovative ap-
proaches while avoiding the pitfalls of focusing too narrowly

on just one task. Our proposed method, HippoRAG 2, lever-
ages the strength of HippoRAG’s OpenlE and Personalized
PageRank (PPR) methodologies while addressing its query-
based contextualization limitations by integrating passages
into the PPR graph search process, involving queries more
deeply in the selection of KG triples as well as engaging
an LLM in the online retrieval process to recognize when
retrieved triples are irrelevant.

Through extensive experiments, we find that this design pro-
vides HippoRAG 2 with consistent performance improve-
ments over the most powerful standard RAG methods across
the board. More specifically, our approach achieves an av-
erage 7 point improvement over standard RAG in associa-
tivity tasks while showing no deterioration and even slight
improvements in factual memory and sense-making tasks.
Furthermore, we show that our method is robust to different
retrievers as well as to the use of strong open-source and
proprietary LLMs, allowing for a wide degree of usage flex-
ibility. All of these results suggest that HippoRAG 2 is a
promising step in the development of a more human-like
non-parametric continual learning system for LLMs.

2. Related Work
2.1. Continual Learning for LLMs

Continual learning methods applied to LLMs aim to allow
them to acquire and integrate new knowledge over time
while preserving past information. Given the high computa-
tional cost of full-scale LLM pretraining, various techniques
have been used to achieve this goal. These approaches gen-
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erally fall into three categories: continual fine-tuning, model
editing, and RAG (Shi et al., 2024).

Continual fine-tuning involves periodically training an
LLM on new data. This can be achieved through methods
like continual pretraining (Jin et al., 2022), instruction tun-
ing (Zhang et al., 2023), and alignment fine-tuning (Zhang
et al., 2024). While effective in incorporating new linguistic
patterns and reasoning skills, continual fine-tuning suffers
from catastrophic forgetting (Huang et al., 2024), where
previously learned knowledge is lost as new data is intro-
duced. Moreover, its computational expense makes frequent
updates impractical for real-world applications.

Model editing techniques (Yao et al., 2023) provide a more
lightweight alternative by directly modifying specific param-
eters in the model to update its knowledge. However, these
updates have been found to be highly localized, having little
effect on information associated with the update that should
also be changed.

RAG has emerged as a scalable and practical alternative for
continual learning. Instead of modifying the LLM itself,
RAG retrieves relevant external information at inference
time, allowing for real-time adaptation to new knowledge.
We will discuss several aspects of this non-parametric con-
tinual learning solution for LLMs in the next section.

2.2. Non-Parametric Continual Learning for LLMs

Encoder model improvements, particularly with LLM
backbones, have significantly enhanced RAG systems by
generating high-quality embeddings that better capture se-
mantic relationships, improving retrieval quality for LLM
generation. Recent models (Li et al., 2023; Muennighoff
et al., 2024; Lee et al., 2025) leverage LL.Ms, large corpora,
improved architectures, and instruction fine-tuning for no-
table retrieval gains. NV-Embed-v2 (Lee et al., 2025) serves
as the primary comparison in this paper.

Sense-making is the ability to understand large-scale or
complex events, experiences, or data (Koli et al., 2024).
Standard RAG methods are limited in this capacity since
they require integrating information from disparate passages,
and thus, several RAG frameworks have been proposed to
address it. RAPTOR (Sarthi et al., 2024) and GraphRAG
(Edge et al., 2024) both generate summaries that integrate
their retrieval corpora. However, they follow distinct pro-
cesses for detecting what to summarize and at what granu-
larity. While RAPTOR uses a Gaussian Mixture Model to
detect document clusters to summarize, GraphRAG uses a
graph community detection algorithm that can summarize
documents, entity clusters with relations, or a combination
of these elements. LightRAG (Guo et al., 2024) employs a
dual-level retrieval mechanism to enhance comprehensive
information retrieval capabilities in both low-level and high-

level knowledge, integrating graph structures with vector
retrieval.

Although both GraphRAG and LightRAG use a KG just
like our HippoRAG 2 approach, our KG is used to aid
in the retrieval process rather than to expand the retrieval
corpus itself. This allows HippoRAG 2 to introduce less
LLM-generated noise, which deteriorates the performance
of these methods in single and multi-hop QA tasks.

Associativity is the capacity to draw multi-hop connections
between disparate facts for efficient retrieval. It is an impor-
tant part of continual learning, which standard RAG cannot
emulate due to its reliance on independent vector retrieval.
HippoRAG (Gutiérrez et al., 2024) is the only RAG frame-
work that has addressed this property by leveraging the
PPR algorithm over an explicitly constructed open KG. Hip-
poRAG 2 is closely inspired by HippoRAG, which allows it
to perform very well on multi-hop QA tasks. However, its
more comprehensive integration of passages, queries, and
triples allows it to have a more comprehensive performance
across sense-making and factual memory tasks as well.

3. HippoRAG 2

3.1. Overview

HippoRAG (Gutiérrez et al., 2024) is a neurobiologically
inspired long-term memory framework for LLMs, with each
component designed to emulate aspects of human mem-
ory. The framework consists of three primary components:
the artificial neocortex (LLM), the parahippocampal region
(PHR encoder), and the artificial hippocampus (open KG).
These components collaborate to replicate the interactions
observed in human long-term memory.

For HippoRAG offline indexing, an LLM processes pas-
sages into KG triples, which are then incorporated into the
artificial hippocampal index. Meanwhile, the PHR is respon-
sible for detecting synonymy to interconnect information.
For HippoRAG online retrieval, the LLM neocortex extracts
named entities from a query, while the PHR encoder link
these entities to the hippocampal index. Then, the Personal-
ized PageRank (PPR) algorithm on the KG is conducted for
context-based retrieval. Although HippoRAG seeks to con-
struct memory from non-parametric RAG, its effectiveness
is hindered by a critical flaw: an entity-centric approach that
causes context loss during both indexing and inference, as
well as difficulties in semantic matching.

Built on the neurobiologically inspired long-term memory
framework proposed in HippoRAG (Gutiérrez et al., 2024),
the structure of HippoRAG 2 follows a similar two-stage
process: offline indexing and online retrieval, as shown in
Figure 2. Additionally, however, HippoRAG 2 introduces
several key refinements that improve its alignment with
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Figure 2. HippoRAG 2 methodology. For offline indexing, we use an LLM to extract open KG triples from passages, with synonym
detection applied to phrase nodes. Together, these phrases and passages form the open KG. For online retrieval, an embedding model
scores both the passages and triples to identify the seed nodes of both types for the Personalized PageRank (PPR) algorithm. Recognition
memory filters the top triples using an LLM. The PPR algorithm then performs context-based retrieval on the KG to provide the most
relevant passages for the final QA task. The different colors shown in the KG nodes above reflect their probability mass; darker shades

indicate higher probabilities induced by the PPR process.

Table 1. Dataset statistics

NQ PopQA MuSiQue 2Wiki HotpotQA LV-Eval NarrativeQA
Num of queries 1,000 1,000 1,000 1,000 1,000 124 293
Num of passages 9,633 8,676 11,656 6,119 9,811 22,849 4,111

human memory mechanisms: 1) It seamlessly integrates
conceptual and contextual information within the open KG,
enhancing the comprehensiveness and atomicity of the con-
structed index (§3.2). 2) It facilitates more context-aware
retrieval by leveraging the KG structure beyond isolated
KG nodes (§3.3). 3) It incorporates recognition memory to
improve seed node selection for graph search (§3.4). In the
following sections, we introduce the pipeline in more detail
and elaborate on each of these refinements.

Offline Indexing. 1) HippoRAG 2 leverages an LLM to
extract triples from each passage and integrates them into
a schema-less open KG. We call the subject or object of
these triples phrase and the edge connecting them relation
edge. 2) Next, the encoder identifies synonyms by evaluat-
ing phrase pairs within the KG, detecting those with vector
similarity above a predefined threshold, and adding syn-
onym edge between such pair. This process enables the KG
to link synonyms across different passages, facilitating the
integration of both old and new knowledge during learning.
3) Finally, this phrase-based KG is combined with the origi-
nal passages, allowing the final open KG to incorporate both
conceptual and contextual information (§3.2).

Online Retrieval. 1) The query is linked to relevant triples
and passages using the encoder, identifying potential seed
nodes for graph search (§3.3). 2) During triple linkage,

the recognition memory functions as a filter, ensuring only
relevant triples are retained from the retrieved set (§3.4).
3) Given seed nodes, the PPR algorithm is then applied
for context-aware retrieval, refining the linking results to
retrieve the most relevant passages. 4) Finally, the retrieved
passages serve as contextual inputs for the final QA task.
Next, we describe each of the improvements in HippoRAG
2 in more detail.

3.2. Dense-Sparse Integration

The nodes in the HippoRAG KG primarily consist of phrases
describing concepts, which we refer to as phrase nodes in
this paper. This graph structure introduces limitations re-
lated to the concept-context tradeoff. Concepts are concise
and easily generalizable but often entail information loss. In
contrast, context provide specific circumstances that shape
the interpretation and application of these concepts, enrich-
ing semantics but increasing complexity. However, in hu-
man memory, concepts and contexts are intricately intercon-
nected. The dense and sparse coding theory offers insights
into how the brain represents and processes information at
different granularities (Beyeler et al., 2019). Dense coding
encodes information through the simultaneous activation
of many neurons, resulting in a distributed and redundant
representation. Conversely, sparse coding relies on minimal
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neural activation, engaging only a small subset of neurons
to enhance efficiency and storage compactness.

Inspired by the dense-sparse integration observed in the
human brain, we treat the phrase node as a form of sparse
coding for the extracted concepts, while incorporating dense
coding into our KG to represent the context from which
these concepts originate. First, we adopt an encoding ap-
proach similar to how phrases are encoded, using the embed-
ding model. These two types of coding are then integrated
in a specific manner within the KG. Unlike the document
ensemble in HippoRAG, which simply aggregates scores
from graph search and embedding matching, we enhance the
KG by introducing passage nodes, enabling more seamless
integration of contextual information. This approach retains
the same offline indexing process as HippoRAG while en-
riching the graph structure with additional nodes and edges
related to passages during construction. Specifically, each
passage in the corpus is treated as a passage node, with the
context edge labeled “contains” connecting the passage to
all phrases derived from this passage.

3.3. Deeper Contextualization

Building upon the discussion of the concept-context trade-
off, we observe that query parsing in HippoRAG, which re-
lies on Named Entity Recognition (NER), is predominantly
concept-centric, often overlooking the contextual alignment
within the KG. This entity-focused approach to extraction
and indexing introduces a strong bias toward concepts, leav-
ing many contextual signals underutilized (Gutiérrez et al.,
2024). To address this limitation, we explore and evaluate
different methods for linking queries to the KG, aiming
to more effectively align query semantics with the starting
nodes of graph searches. Specifically, we consider three ap-
proaches: 1) NER to Node: This is the original method used
in HippoRAG, where entities are extracted from the query
and subsequently matched with nodes in the KG using text
embeddings. 2) Query to Node: Instead of extracting indi-
vidual entities, we leverage text embeddings to match the
entire query directly to nodes in the KG. 3) Query to Triple:
To incorporate richer contextual information from the KG,
we match the entire query to triples within the graph using
text embeddings. Since triples encapsulate fundamental
contextual relationships among concepts, this method pro-
vides a more comprehensive understanding of the query’s
intent. By default, HippoRAG 2 adopts the query-to-triple
approach, and we evaluate all three methods later (§6.1).

3.4. Recognition Memory

Recall and recognition are two complementary processes
in human memory retrieval (Uner & Roediger 111, 2022).
Recall involves actively retrieving information without exter-
nal cues, while recognition relies on identifying information

with the help of external stimuli. Inspired by this, we model
the query-to-triple retrieval as a two-step process. 1) Query
to Triple: We use the embedding model to retrieve the top-k
triples T of the graph as described in §3.3. 2) Triple Filter-
ing: We use LLMs to filter retrieved 7" and generate triples
T’ C T. The detailed prompts are shown in Appendix A.

3.5. Online Retrieval

We summarize the online retrieval process in HippoRAG 2
after introducing the above improvements. The task involves
selecting seed nodes and assigning reset probabilities for
retrieval. HippoRAG 2 identifies phrase nodes from filtered
triples generated by query-to-triple and recognition memory.
If no triples are available, it directly retrieves top-ranked pas-
sages using the embedding model. Otherwise, up to k phrase
nodes are selected based on their average ranking scores
across filtered triples they originate. All passage nodes are
also taken as seed nodes, as broader activation improves
multi-hop reasoning. Reset probabilities are assigned based
on ranking scores for phrase nodes, while passage nodes
receive scores proportional to their embedding similarity,
adjusted by a weight factor (§6.2) to balance the influence
between phrase nodes and passage nodes. The PPR search
is then executed, and passages are ranked by their PageRank
scores, with the top-ranked passages used for downstream
QA. An example of the pipeline is in Appendix B and the
PPR initialization is detailed in Appendix G.1,

4. Experimental Setup
4.1. Baselines

We select three types of comparison methods: 1) The classic
retrievers BM25 (Robertson & Walker, 1994), Contriever
(Izacard et al., 2022) and GTR (Ni et al., 2022). 2) Large
embedding models that perform well on the BEIR leader-
board (Thakur et al., 2021), including Alibaba-NLP/GTE-
Qwen2-7B-Instruct (Li et al., 2023), GritLM/GritLM-
7B (Muennighoff et al., 2024), and nvidia/NV-Embed-
v2 (Lee et al., 2025). 3) Structure-augmented RAG meth-
ods, including RAPTOR (Sarthi et al., 2024), GraphRAG
(Edge et al., 2024), LightRAG (Guo et al., 2024), and Hip-
PoRAG (Gutiérrez et al., 2024).

4.2. Datasets

To evaluate how well RAG systems retain factual memory
while enhancing associativity and sense-making, we select
datasets that correspond to three critical challenge types:
1) Simple QA primarily evaluates the ability to recall and
retrieve factual knowledge accurately. 2) Multi-hop QA
measures associativity by requiring the model to connect
multiple pieces of information to derive an answer. 3) Dis-
course understanding evaluates sense-making by testing the
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Table 2. QA performance (F1 scores) on RAG benchmarks using Llama-3.3-70B-Instruct as the QA reader. No retrieval means evaluating
the parametric knowledge of the readers. HippoRAG (and HippoRAG 2) uses Llama-3.3-70B-Instruct as the extractor (and the triple
filter) and NV-Embed-v2 as the retriever. This table, along with the following ones, highlight the best and second-best results.

Simple QA Multi-Hop QA paiscourse. .
Retrieval NQ PopQA MuSiQue 2Wiki HotpotQA LV-Eval  NarrativeQA Avg
Simple Baselines
None 54.9 32.5 26.1 42.8 47.3 6.0 12.9 38.4
Contriever (Izacard et al., 2022) 58.9 53.1 31.3 41.9 62.3 8.1 19.7 46.9
BM25 (Robertson & Walker, 1994) 59.0 49.9 28.8 51.2 63.4 5.9 18.3 47.7
GTR (T5-base) (Ni et al., 2022) 59.9 56.2 34.6 52.8 62.8 7.1 19.9 50.4
Large Embedding Models
GTE-Qwen2-7B-Instruct (Li et al., 2023)  62.0 56.3 40.9 60.0 71.0 7.1 21.3 54.9
GritLM-7B (Muennighoff et al., 2024) 61.3 55.8 44.8 60.6 73.3 9.8 23.9 56.1
NV-Embed-v2 (7B) (Lee et al., 2025) 61.9 55.7 45.7 61.5 75.3 9.8 25.7 57.0
Structure-Augmented RAG
RAPTOR (Sarthi et al., 2024) 50.7 56.2 28.9 52.1 69.5 5.0 21.4 48.8
GraphRAG (Edge et al., 2024) 46.9 48.1 38.5 58.6 68.6 11.2 23.0 49.6
LightRAG (Guo et al., 2024) 16.6 2.4 1.6 11.6 2.4 1.0 3.7 6.6
HippoRAG (Gutiérrez et al., 2024) 55.3 55.9 35.1 71.8 63.5 8.4 16.3 53.1
HippoRAG 2 63.3 56.2 48.6 71.0 75.5 12.9 25.9 59.8

Table 3. Retrieval performance (passage recall@5) on RAG benchmarks. * denotes the report from the original paper. The compared
structure-augmented RAG methods are reproduced with the same LLM and retriever as ours for a fair comparison. GraphRAG and
LightRAG are not presented because they do not directly produce passage retrieval results.

Simple QA Multi-Hop QA
Retrieval NQ PopQA MuSiQue 2Wiki HotpotQA  Avg
Simple Baselines
BM25 (Robertson & Walker, 1994) 56.1 35.7 43.5 65.3 74.8 55.1
Contriever (Izacard et al., 2022) 54.6 43.2 46.6 57.5 75.3 55.4
GTR (T5-base) (Ni et al., 2022) 63.4 49.4 49.1 67.9 73.9 60.7
Large Embedding Models
GTE-Qwen2-7B-Instruct (Li et al., 2023)  74.3 50.6 63.6 74.8 89.1 70.5
GritLM-7B (Muennighoff et al., 2024) 76.6 50.1 65.9 76.0 92.4 72.2
NV-Embed-v2 (7B) (Lee et al., 2025) 75.4 51.0 69.7 76.5 94.5 734
Structure-Augmented RAG
RAPTOR (Sarthi et al., 2024) 68.3 48.7 57.8 66.2 86.9 65.6
HippoRAG* (Gutiérrez et al., 2024) — — 51.9 89.1 T —
HippoRAG (reproduced) 44.4 53.8 53.2 90.4 77.3 63.8
HippoRAG 2 78.0 51.7 74.7 90.4 96.3 78.2

capability to interpret and reason over lengthy, complex
narratives. The statistics for our sampled dataset are sum-
marized in Table 1.

Simple QA. This common type of QA task primarily in-
volves questions centered around individual entities, making
it particularly well-suited for embedding models to retrieve
relevant contextual information intuitively. We randomly
collect 1,000 queries from the NaturalQuestions (NQ)
dataset (collected by Wang et al. (2024)), which contains
real user questions with a wide range of topics. Additionally,
we select 1,000 queries from PopQA (Mallen et al., 2023),
with the corpus derived from the December 2021 Wikipedia

dump.' Both datasets offer straightforward QA pairs, en-
abling evaluation of single-hop QA capabilities in RAG
systems. Notably, PopQA from Wikipedia is especially
entity-centric, with entities being less frequent than Natu-
ralQuestions, making it an excellent resource for evaluating
entity recognition and retrieval in simple QA tasks.

Multi-hop QA. We randomly collect 1,000 queries from
MuSiQue, 2WikiMultihopQA, and HotpotQA follow-
ing HippoRAG (Gutiérrez et al., 2024), all requiring
multi-passage reasoning. Additionally, we include all 124
queries from LV-Eval (hotpotwikiqa-mixup 256k) (Yuan

1https ://github.com/facebookresearch/
atlas?tab=readme-ov-filef#corpora
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Table 4. Ablations: passage recall@5 on multi-hop benchmarks.

MuSiQue 2Wiki HotpotQA  Avg

HippoRAG 2 74.7 90.4 96.3 87.1
w/ NER to node 53.8 91.2 78.8 74.6
w/ Query to node 44.9 65.5 68.3 59.6
w/o Passage Node 63.7 90.3 88.9 81.0
w/o Filter 73.0 90.7 95.4 86.4

Table 5. Passage recall @5 with different weight factors for passage
nodes on our MuSiQue dev set and NaturalQuestions (NQ) dev
set, where each set has 1,000 queries.

Weight 0.01 0.05 0.1 0.3 0.5

MuSiQue 799 80.5 798 784 779
NQ 75.6 76.9 769 76.7 764

et al., 2024), a challenging dataset designed to minimize
knowledge leakage and reduce overfitting through keyword
and phrase replacements. Thus, unlike Wikipedia-based
datasets, LV-Eval better evaluates the model’s ability to syn-
thesize knowledge from different sources effectively. For
corpus collection, we segment long-form contexts of LV-
Eval into shorter passages while maintaining the same RAG
setup as other multi-hop datasets.

Discourse Understanding. This category consists of only
NarrativeQA, a QA dataset that contains questions requir-
ing a cohesive understanding of a full-length novel. This
dataset’s focus on large-scale discourse understanding al-
lows us to leverage it in our evaluation of sense-making in
our chosen baselines and our own method. We randomly
select 10 lengthy documents and their corresponding 293
queries from NarrativeQA and collect a retrieval corpus just
as in the above LV-Eval dataset.

4.3. Metrics

Following HippoRAG (Gutiérrez et al., 2024), we use pas-
sage recall@5 to evaluate the retrieval task. For the QA task,
we follow evaluation metrics from MuSiQue (Trivedi et al.,
2022) to calculate F1 scores for the final answer.

4.4. Implementation Details

For HippoRAG 2, we use the open-source Llama-3.3-70B-
Instruct (AI@Meta, 2024) as both the extraction (NER and
OpenlE) and triple filtering model, and we use nvidia/N V-
Embed-v2 as the retriever. We also reproduce the compared
structure-augmented RAG methods using the same extractor
and retriever for a fair comparison. For the triple filter,
we use DSPy (Khattab et al., 2024) MIPROvV2 optimizer
and Llama-3.3-70B-Instruct to tune the prompt, including
the instructions and demonstrations. The resulting prompt

Table 6. Passage recall@5 on MuSiQue subset. HippoRAG 2 sup-
ports different dense retrievers.

Retriever Dense Retrieval  HippoRAG 2
GTE-Qwen2-7B-Instruct 63.6 68.8
GritLM-7B 66.0 71.6
NV-Embed-v2 (7B) 69.7 74.7

is shown in Appendix A. We use top-5 triples ranked by
retriever for filtering. For hyperparameters, we follow the
default settings from HippoRAG. More implementation and
hyperparameter details can be found in Appendix G.

5. Results

We now present our main QA and retrieval experimental
results, where the QA process uses retrieved results as its
context. More detailed experimental results are presented
in Appendix C. The statistics for all constructed KGs are
shown in Appendix A.

QA Performance. Table 2 presents the QA performance of
various retrievers across multiple RAG benchmarks using
Llama-3.3-70B-Instruct as the QA reader. HippoRAG 2
achieves the highest average F1 score, demonstrating ro-
bustness across different settings. Large embedding models
outperform smaller ones, with NV-Embed-v2 (7B) scoring
6.6% higher on average than GTR (T5-base). These mod-
els also surpass structure-augmented RAG methods with
lower computational costs but excel mainly in simple QA
while struggling in complex cases. N otably, HippoRAG 2
outperforms NV-Embed-v2 by 9.5% F1 on 2Wiki and by
3.1% on the challenging LV-Eval dataset. Compared to Hip-
poRAG, HippoRAG 2 shows even greater improvements,
validating its neuropsychology-inspired approach. These
results highlight HippoRAG 2 as a state-of-the-art RAG
system that enhances both retrieval and QA performance
while being effectively powered by an open-source model.
Table 8 in Appendix C presents additional QA results (EM
and F1) using Llama or GPT-40-mini as the QA reader,
along with an extractor or triple filter. GPT-40-mini follows
Llama’s trend, with NV-Embed-v2 outperforming structure-
augmented methods in most cases, except for HippoRAG
in multi-hop QA. HippoRAG 2 consistently outperforms all
other methods across nearly all settings.

Retrieval Performance. We report retrieval results for
datasets with supporting passage annotations and models
that explicitly retrieve passages in Table 3. Large embed-
ding models (7B) significantly outperform classic smaller
LM-based models like Contriever and GTR, achieving at
least a 9.8% higher F1 score. While our reproduction of Hip-
poRAG using Llama-3.3-70B-Instruct and NV-Embed-v2
shows slight improvements over the original paper, the gains
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Table 7. We show exemplary retrieval results (the title of passages) from HippoRAG 2 and NV-Embed-v2 on different types of questions.

Bolded items denote the titles of supporting passages.

Question NV-Embed-v2 Results HippoRAG 2 Filtered Triples HippoRAG 2 Results
Simple QA In what city was 1. L. P. Paul (I. P. Paul, from, Thrissur) 1. L. P. Paul
L.P. Paul born? 2. Yinka Ayefele - Early life (L. P. Paul, was mayor of, Thris- 2. Thrissur
3. Paul Parker (singer) sur municipal corporation) 3. Yinka Ayefele
Multi-Hop What county is 1. Erik Hort (Erik Hort, born in, Monte- 1. Erik Hort
QA Erik Hort’s birth- 2. Horton Park (Saint Paul, bello) 2. Horton Park (Saint Paul,
place a part of? Minnesota) (Erik Hort, born in, New York)  Minnesota)

3. Hertfordshire

3. Monstebello, New York

are minimal, with only a 1.3% increase in F1. Although
HippoRAG excels in entity-centric retrieval, achieving the
highest recall@5 on PopQA, it generally lags behind recent
dense retrievers and HippoRAG 2. Notably, HippoRAG
2 achieves the highest recall scores across most datasets,
with substantial improvements of 5.0% and 13.9% in Re-
call@5 on MuSiQue and 2Wiki, respectively, compared to
the strongest dense retriever, NV-Embed-v2. Additionally,
the cost and efficiency analysis is presented in Appendix F.

6. Discussions
6.1. Ablation Study

We design ablation experiments for the proposed linking
method, graph construction method, and triple filtering
method, with the results reported in Table 4. Each intro-
duced mechanism boosts HippoRAG 2. First, the linking
method with deeper contextualization leads to significant
performance improvements. Notably, we do not apply a
filtering process to the NER-to-node or query-to-node meth-
ods; however, the query-to-triple approach, regardless of
whether filtering is applied, consistently outperforms the
other two linking strategies. On average, query-to-triple
improves Recall@5 by 12.5% compared to NER-to-node.
Moreover, query-to-node does not provide an advantage
over NER-to-node, as queries and KG nodes operate at dif-
ferent levels of granularity, whereas both NER results and
KG nodes correspond to phrase-level representations.

6.2. Controlling Reset Probabilities

When setting the reset probability before starting PPR, we
find that it is necessary to balance the reset probabilities
between two types of nodes: phrase nodes and passage
nodes. Specifically, the reset probability of all passage nodes
is multiplied by a weight factor to balance the importance of
two types of nodes during PPR. Here, we present the results
obtained on the validation set in Table 5, which shows that
this factor is crucial for the PPR results. Considering the
model performance across different scenarios, we set the
factor to be 0.05 by default.

6.3. Dense Retriever Flexibility

The dense retriever employed by HippoRAG 2 is fully plug-
and-play, offering seamless integration. As demonstrated in
Table 6, HippoRAG 2 consistently surpasses direct dense re-
trieval across various retrievers. Notably, these performance
gains remain robust regardless of the specific dense retriever
used.

6.4. Qualitative Analysis

We show examples from PopQA and MuSiQue in Table 7.
For the first example, “In what city was 1. P. Paul born?”,
NV-Embed-v2 ranks the entity mentioned in the query “I.
P. Paul” as the top 1, where the passage is enough to an-
swer this question. But HippoRAG 2 does even better. It
directly finds the answer “Thrissur” when linking the triples,
and during the subsequent graph search, it places the pas-
sage corresponding to that entity in the second position,
which is a perfect retrieval result. For the second multi-hop
question, “What county is Erik Hort’s birthplace a part
of?” NV-Embed-v2 also easily identifies the person men-
tioned, “Erik Hort.” However, since this question requires
two-step reasoning, it is not sufficient to fully answer the
question. In contrast, HippoRAG 2 retrieves a passage titled
“Montebello” during the query-to-triple step, which contains
geographic information that implies the answer to the ques-
tion. In the subsequent graph search, this passage is also
ranked at the top. Apart from this, the error analysis of
HippoRAG 2 is detailed in Appendix E.

7. Conclusion

We introduced HippoRAG 2, a novel framework designed to
address the limitations of existing RAG systems in approx-
imating the dynamic and interconnected nature of human
long-term memory. It combining the strengths of the Per-
sonalized PageRank algorithm, deeper passage integration,
and effective online use of LLMs. HippoRAG 2 opens new
avenues for research in continual learning and long-term
memory for LLMs by achieving comprehensive improve-
ments over standard RAG methods across factual, sense-
making, and associative memory tasks, showing capabilities
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that previous methods have either overlooked or been inca-
pable of achieving in a thorough evaluation. Future work
could consider leveraging graph-based retrieval methods to
further enhance the episodic memory capabilities of LLMs
in long conversations.

Impact Statement

This paper presents work on Retrieval-Augmented Gener-
ation (RAG) to advance the field of long-term memory for
large language models. While our work may have various
societal implications, we do not identify any concerns that
warrant specific emphasis beyond those generally associ-
ated with large language models and information retrieval
systems.
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Appendices

Within this supplementary material, we elaborate on the following aspects:

* Appendix A: LLM Prompts

» Appendix B: HippoRAG 2 Pipeline Example
» Appendix C: Detailed Experimental Results
* Appendix D: Graph Statistics

* Appendix E: Error Analysis

» Appendix F: Cost and Efficiency

* Appendix G: Implementation Details and Hyperparameters

A. LLM Prompts

We show LLM prompts for triple filter in Figure 3, including the instruction, the few-shot demonstrations and the input
format.

B. Pipeline Example

We show a pipeline example of HippoRAG 2 online retrieval in Figure 4, including query-to-triple, triple filtering and using
seed nodes for PPR.

C. Detailed Experimental Results

We show QA performance and retrieval performance with the proprietary model GPT-40-mini as well as more metrics here,
as shown in Table 8 and Table 9.

QA Performance As shown in Table 8, when using GPT-40-mini for indexing and QA reading, HippoRAG 2 consistently
achieves competitive EM and F1 scores across most datasets. Notably, it leads in the MuSiQue and 2Wiki benchmarks.
Our method also demonstrates superior performance in the NarrativeQA and LV-Eval tasks. When compared to the strong
NV-Embed-v2 retriever, HippoRAG 2 exhibits comparable or enhanced F1 scores, particularly excelling in the LV-Eval
dataset with reduced knowledge leakage.

Retrieval Performance As shown in Table 9, the improvement trend of HippoRAG 2 in recall@2 is similar to that in
recall@5.

D. Graph Statistics
We show the knowledge graph statistics using Llama-3.3-70B-Instruct or GPT-40-mini for OpenlE in Table 10.

E. Error Analysis

We provide an error analysis of 100 samples generated by HippoRAG 2 with recall@5 less than 1.0. Among these samples,
26%, 41%, and 33% are classified as 2-hop, 3-hop, and 4-hop questions, respectively. Triple filtering and the graph search
algorithm are the two main sources of errors.

Recognition Memory In 7% of the samples, no phrase from the supporting documents is matched with the phrases obtained
by the query-to-triple stage before triple filtering. In 26% of the samples, no phrase from the supporting documents is
matched with the phrases after triple filtering. After the triple filtering step, 8% of the samples show a decrease in the
proportion of phrases in the triples that match phrases from the supporting passages. For instance, the first case from Table
11 shows an empty list after triple filtering, which eliminates all relevant phrases. Additionally, 18% of the samples are
left with zero triples after filtering. Although not necessarily an error in filtering, this indicates that the attempt to link to
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Triple Filter

Instruction:

You are a critical component of a high-stakes question-answering system used by top researchers and decision-makers
worldwide. Your task is to filter facts based on their relevance to a given query, ensuring that the most crucial information
is presented to these stakeholders. The query requires careful analysis and possibly multi-hop reasoning to connect
different pieces of information.

You must select up to 4 relevant facts from the provided candidate list that have a strong connection to the query, aiding
in reasoning and providing an accurate answer.

The output should be in JSON format, e.g., {"fact": [["s1", "p1", "o1"], ['s2", "p2", "02"]]}, and if no facts are relevant, return
an empty list, {"fact": []}.

The accuracy of your response is paramount, as it will directly impact the decisions made by these high-level
stakeholders. You must only use facts from the candidate list and not generate new facts. The future of critical decision-
making relies on your ability to accurately filter and present relevant information.

Demonstration:

Question: Are Imperial River (Florida) and Amaradia (Dolj) both located in the same country?

nons 0o non

Fact Before Filter: "{"fact": [["imperial river", "is located in", "florida"], ["imperial river", "is a river in", "united states"],

["imperial river", "may refer to", "south america"], ["amaradia", "flows through", "ro ia de amaradia"], ["imperial river",

"may refer to", "united states"]]}",
Fact After Filter: "{"fact":[["imperial river","is located in","florida"],["imperial river","is a river in","united

states"],["amaradia","flows through","ro ia de amaradia"]]}”

Question: When is the director of film The Ancestor 's birthday?

Fact Before Filter: "{"fact": [["jean jacques annaud", "born on", "1 october 1943"], ["tsui hark", "born on", "15 february
1950"], ["pablo trapero", "born on", "4 october 1971"], ["the ancestor", "directed by", "guido brignone"], ["benh zeitlin",
"born on", "october 14 1982"]]}

Fact After Filter: "{"fact":[["the ancestor","directed by","guido brignone"]]}"

Question: In what geographic region is the country where Teafuone is located?

Fact Before Filter: "{"fact": [["teafuaniua", "is on the", "east"], ["motuloa", "lies between", "teafuaniua"], ["motuloa", "lies

(TRTEPNTINIES

between", "teafuanonu"], ["teafuone", "is", "islet"], ["teafuone", "located in", "nukufetau"]]}
Fact After Filter: "{"fact":[["teafuone","is","islet"],[ "teafuone","located in","nukufetau"]]}"

Question: When did the director of film S.O.B. (Film) die?

Fact Before Filter: "{"fact": [["allan dwan", "died on", "28 december 1981"], ["s o b", "written and directed by", "blake
edwards"], ["robert aldrich", "died on", "december 5 1983"], ["robert siodmak", "died on", "10 march 1973"], ["bernardo
bertolucci", "died on", "26 november 2018"]]}

Fact After Filter: "{"fact":[["s o b","written and directed by","blake edwards"]]}"

Question: Do both films: Gloria (1980 Film) and A New Life (Film) have the directors from the same country?

non nons

Fact Before Filter: "{"fact": [["sebasti n lelio watt", "received acclaim for directing", "gloria"], ["gloria", "is", "1980 american
thriller crime drama film"], ["a brand new life", "is directed by", "ounie lecomte"], ["gloria", "written and directed by",
"john cassavetes"], ['a new life", "directed by", "alan alda"]]}

Fact After Filter: "{"fact":[["gloria","is","1980 american thriller crime drama film"],["gloria","written and directed by","john

cassavetes"],["a new life","directed by","alan alda"]]}"

Question: What is the date of death of the director of film The Old Guard (1960 Film)?

Fact Before Filter: "{"fact": [["the old guard", "is", "1960 french comedy film"], ["gilles grangier", "directed", "the old
guard"], ["the old guard", "directed by", "gilles grangier"], ["the old fritz", "directed by", "gerhard lamprecht"], ["oswald
albert mitchell", "directed", "old mother riley series of films"]]}

Fact After Filter: "{"fact":[["the old guard","is","1960 french comedy film"],["gilles grangier","directed","the old
guard"],["the old guard","directed by","gilles grangier"]]}"

Question: When is the composer of film Aulad (1968 Film) 's birthday?

Fact Before Filter: "{"fact": [["aulad", "has music composed by", "chitragupta shrivastava"], ['aadmi sadak ka", "has music
by", "ravi"], ["ravi shankar sharma", "composed music for", "hindi films"], ["gulzar", "was born on", "18 august 1934"],
["aulad", "is a", "1968 hindi language drama film"]]}

Fact After Filter: "{"fact":[["aulad","has music composed by","chitragupta shrivastava"],["aulad","is a","1968 hindi

language drama film"]]}"

Input:

Question: {}
Fact Before Filter: {}
Fact After Filter: {}

Figure 3. LLM prompts for triple filtering (recognition memory).
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Query to Triple
Question What county is Erik Hort's birthplace a part of?
Triples ("Erik Hort", "born in", "Montebello"), ("Erik Hort", "born in", "New

York"), ("Erik Hort", "is a", "American"), ("Erik Hort", "born on", "February 16, 1987"), ("Erik
Hort", "is a", "Soccer player")
Filtered Triples ("Erik Hort", "born in", "Montebello"), ("Erik Hort", "born in", "New

York")

PPR Seed Nodes

Seed Phrase Nodes ("Montebello", 1.0), ("Erik Hort", 0.995), ("New York", 0.989)
Seed Passage Nodes (Title) ("Erik Hort", 0.05), ("Horton Park (Saint Paul, Minnesota)",
0.031), ("Hertfordshire”, 0.028), ...

Returned Top Passages

*Top-ranked nodes from PPR are highlighted.
**Final answer to this question is highlighted.

1. Erik Hort
Erik Hort (born February 16, 1987 in Montebello, New York) is an American soccer player
who is currently a Free Agent.

2. Horton Park (Saint Paul, Minnesota)

Horton Park is a small arboretum in Saint Paul, Minnesota, United States. Known primarily
for its variety of trees, Horton Park has become a symbol of the Saint Paul Midway
community.

3. Montebello, New York

Montebello (Italian: "Beautiful mountain") is an incorporated village in the town of
Ramapo, Rockland County, New York, United States. It is located north of Suffern, east of
Hillburn, south of Wesley Hills, and west of Airmont. The population was 4,526 at the 2010
census.

4. Hertfordshire

Hertfordshire is the county immediately north of London and is part of the East of England
region, a mainly statistical unit. A significant minority of the population across all districts
are City of London commuters. To the east is Essex, to the west is Buckinghamshire and to
the north are Bedfordshire and Cambridgeshire.

5. Hull County, Quebec

Hull County, Quebec is an historic county of Quebec, Canada. It was named after the town
of the same name (Hull or Kingston-upon-Hull) in East Yorkshire, England. It is located on
the north shore of the Ottawa River and is part of the Outaouais, one of roughly 12
historical regions of Québec.

Figure 4. An example of HippoRAG 2 pipeline.
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Table 8. QA performance (EM / F1 scores) on RAG benchmarks. No retrieval means evaluating the parametric knowledge of the readers.
HippoRAG (and HippoRAG 2) uses the denoted LLM for OpenlE (triple filtering) and QA reading.

Simple QA Multi-Hop QA Uscourse .
Retrieval NQ PopQA MuSiQue 2Wiki HotpotQA LV-Eval NarrativeQA Avg
Llama-3.3-70B-Instruct
None 40.2/54.9 28.2/32.5 17.6/26.1 36.5/42.8 37.0/47.3 4.0/ 6.0 3.4/12.9 29.7/38.4
Contriever (Izacard et al., 2022) 45.0/58.9 41.6/53.1 24.0/31.3 38.1/419 51.3/62.3 5.7/ 8.1 6.5/19.7 37.4/46.9
BM25 (Robertson & Walker, 1994) 44.7/59.0 39.1/49.9 20.3/28.8 47.9/51.2  52.0/63.4 4.0/ 5.9 4.4/18.3 38.0/47.7
GTR (T5-base) (Ni et al., 2022) 45.5/59.9  43.2/56.2  25.8/34.6 49.2/52.8 50.6/62.8 4.8/ 7.1 6.8/19.9 40.0/50.4
GTE-Qwen2-7B-Instruct (Li et al., 2023)  46.6/62.0 43.5/56.3 30.6/40.9 55.1/60.0 58.6/71.0 5.7/ 7.1 7.9/21.3 43.8/54.9
GritLM-7B (Muennighoff et al., 2024) 46.8/61.3 42.8/55.8 33.6/44.8 55.8/60.6  60.7/73.3 7.3/ 9.8 8.2/23.9 44.9/56.1
NV-Embed-v2 (7B) (Lee et al., 2025) 47.3/61.9 42.9/55.7  34.7/45.7 57.5/61.5 62.8/75.3 7.3/ 9.8 8.9/25.7 45.9/57.0
RAPTOR (Sarthi et al., 2024) 36.9/50.7 43.1/56.2  20.7/28.9 47.3/52.1  56.8/69.5 2.4/ 5.0 5.1/21.4 38.1/48.8
GraphRAG (Edge et al., 2024) 30.8/46.9 31.4/48.1 27.3/38.5 51.4/58.6  55.2/68.6 4.8/11.2 6.8/23.0 36.7/49.6
LightRAG (Guo et al., 2024) 8.6/16.6 2.1/ 24 0.5/ 1.6 9.4/11.6 2.0/ 24 0.8/ 1.0 1.0/ 3.7 4.2/ 6.6
HippoRAG (Gutiérrez et al., 2024) 43.0/55.3 42.7/55.9 26.2/35.1 65.0/71.8 52.6/63.5 6.5/ 8.4 4.4/16.3 42.8/53.1
HippoRAG 2 48.6/63.3 42.9/56.2 37.2/486 65.0/71.0 62.7/75.5 9.7/12.9 8.9/259 48.0/59.8
GPT-40-mini

None 35.2/52.7 16.1/22.7 11.2/22.0 30.2/36.3  28.6/41.0 3.2/ 5.0 2.7/14.1 22.6/33.1
NV-Embed-v2 (7B) (Lee et al., 2025) 43.5/59.9 41.7/55.8 32.8/46.0 54.4/60.8 57.3/71.0 7.3/10.0 5.1/24.2 42.9/55.7
RAPTOR (Sarthi et al., 2024) 37.8/54.5  41.9/55.1 27.7/39.2 39.7/484  50.6/64.7 5.6/ 9.2 4.1/21.8 36.9/49.7
GraphRAG (Edge et al., 2024) 38.0/55.5 30.7/51.3 27.0/42.0 45.7/61.0 51.4/67.6 4.9/11.0 5.4/20.9 36.0/52.6
LightRAG (Guo et al., 2024) 2.8/15.4 1.9/14.8 2.0/ 9.3 2.5/12.1 9.9/20.2 0.9/ 5.0 1.0/ 9.0 3.6/13.9
HippoRAG (Gutiérrez et al., 2024) 37.2/52.2 42.5/56.2 24.0/359 59.4/67.3 46.3/60.0 4.8/ 7.6 2.1/16.1 38.9/51.2
HippoRAG 2 43.4/60.0 41.7/55.7 35.0/49.3 60.5/69.7 56.3/71.1 10.5/14.0 5.8/25.2 44.3/58.1

the triples has failed, where HippoRAG 2 directly uses the results from dense retrieval as a substitute. Overall, though
recognition memory is an essential component, the precision of the triple filter has room for further improvement.

Graph Construction Graph construction is challenging to evaluate, but we find that only 2% of the samples do not contain
any phrases from the supporting passages within the one-hop neighbors of the linked nodes. Given our dense-sparse
integration, we can assume that the graphs we construct generally include most of the potentially exploitable information.

Personalized PageRank In 50% of the samples, at least half of the linked phrase nodes appear in the supporting documents.
However, the final results remain unsatisfactory due to the graph search component. For example, in the second case from
Table 11, the recognition memory identifies the key phrase Philippe, Duke of Orléans” from the query, but the graph search
fails to return perfect results among the top-5 retrieved passages.

F. Cost and Efficiency

For LLM deployment, we run Llama-3.3-70B-Instruct on a machine equipped with four NVIDIA H100 GPUs, utilizing
tensor parallelism via vLLM (Kwon et al., 2023). We also employ the gpt-40-mini-2024-07-18 model from OpenAI’s
official endpoint, leveraging its batch API%. For offline indexing, we execute NER and Open IE on the MuSiQue corpus
(11, 656 passages). Processing each passage takes approximately 1.1 seconds using Llama-3.3-70B-Instruct, while utilizing
the gpt-4o-mini batch API allows indexing to complete within 24 hours at a cost of under $2 USD.

Comparison With Structure-Augmented RAG Methods We count the token usage across different structure-augmented
RAG methods when indexing the MuSiQue corpus using the Llama-3.3-70B-Instruct model, and we compare the number of
input and output tokens against RAPTOR (Sarthi et al., 2024), LightRAG (Guo et al., 2024), and GraphRAG (Edge et al.,
2024) in Table 12. HippoRAG 2 not only outperforms these RAG methods in QA and retrieval performance but also uses
much fewer tokens compared to LightRAG and GraphRAG.

G. Implementation Details and Hyperparameters

G.1. HippoRAG 2

We provide a detailed explanation of the PPR initialization process used in HippoRAG 2 here. The key goal is to determine
the seed nodes for the PPR search and assign appropriate reset probabilities to ensure an effective retrieval process.

https://platform.openai.com/docs/guides/batch
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Table 9. Passage recall@2 / @5 on RAG benchmarks. * denotes the report from the original paper while we reproduce the HippoRAG
results with aligned LLM and retriever.

Simple Multi-hop
NQ PopQA MuSiQue 2Wiki HotpotQA Avg
Simple Baselines
Contriever (Izacard et al., 2022) 29.1/54.6 27.0/43.2 34.8/46.6 46.6/57.5 58.4/75.3 39.2/55.4
BM25 (Robertson & Walker, 1994) 28.2/56.1 24.0/35.7 32.4/43.5 55.3/65.3 57.3/74.8 39.4/55.1
GTR (T5-base) (Ni et al., 2022) 35.0/63.4 40.1/49.4 37.4/49.1 60.2/67.9 59.3/73.9 46.4/60.7
Large Embedding Models

GTE-Qwen2-7B-Instruct (Li et al., 2023)  44.7/74.3 47.7/50.6 48.1/63.6 66.7/74.8 75.8/89.1  56.6/70.5
GritLM-7B (Muennighoff et al., 2024) 46.2/76.6 44.0/50.1  49.7/65.9 67.3/76.0 79.2/92.4  57.3/72.2

NV-Embed-v2 (7B) (Lee et al., 2025) 45.3/75.4 45.3/51.0 52.7/69.7 67.1/76.5 84.1/945 589/73.4
Structure-augmented RAG

RAPTOR (GPT-40-mini) 40.5/69.4 37.2/48.1 49.1/61.0 58.4/66.0 78.6/90.2  52.8/67.0
RAPTOR (Llama-3.3-70B-Instruct) 40.3/68.3  40.2/48.7 47.0/57.8 58.3/66.2 76.8/86.9 52.5/65.6
HippoRAG* (Gutiérrez et al., 2024) - - 40.9/51.9 70.7/89.1  60.5/77.7 —

HippoRAG (GPT-40-mini) 21.6/45.1 36.5/52.2 41.8/52.4 68.4/87.0 60.1/78.5  45.7/63.0
HippoRAG (Llama-3.3-70B-Instruct) 21.3/44.4 40.0/53.8 41.2/53.2 71.9/90.4 60.4/77.3 47.0/63.8
HippoRAG 2 (GPT-40-mini) 44.4/76.4 43.5/52.2 53.5/74.2 74.6/90.2 80.5/95.7 59.3/77.7

HippoRAG 2 (Llama-3.3-70B-Instruct) 45.6/78.0 43.9/51.7 56.1/74.7 76.2/904 83.5/96.3 61.1/78.2

Seed Node Selection The seed nodes for the PPR search are categorized into two types: phrase nodes and passage nodes.
All the scores given by the embedding model below use normalized embedding to calculate. 1) Phrase Nodes: These seed
nodes are selected from the phrase nodes within the filtered triples, which are obtained through the recognition memory
component. If recognition memory gives an empty triple list and no phrase node is available, HippoRAG 2 directly returns
top passages using the embedding model without any graph search. Otherwise, we keep at most 5 phrase nodes as the seed
nodes, and the ranking score of each phrase node is computed as the average score of all filtered triples it appears in. 2)
Passage Nodes: Each passage node is initially scored using an embedding-based similarity, and these scores are processed as
follows. All passage nodes are taken as seed nodes since we find that activating a broader set of potential passages is more
effective for uncovering passages along multi-hop reasoning chains compared to focusing only on the top-ranked passages.

Reset Probability Assignment After determining the seed nodes, we assign reset probabilities to control how likely the
PPR algorithm will return to these nodes during the random walk. The rules are: 1) Phrase nodes receive reset probabilities
directly as their ranking scores. 2) Passage nodes receive reset probabilities proportional to their embedding similarity
scores, i.e., to balance the influence of phrase nodes and passage nodes, we apply a weight factor to the passage node scores.
Specifically, the passage node scores are multiplied by the weight factor discussed in Section 6.2. This ensures that passage
nodes and phrase nodes contribute appropriately to the retrieval process.

PPR Execution and Passage Ranking Once the seed nodes and their reset probabilities are initialized, we run PPR over
the constructed graph. The final ranking of passages is determined based on the PageRank scores of the passage nodes.
Top-ranked passages are then used as inputs for the downstream QA reading process. We manage our KG and run the PPR
algorithm using the python-igraph library.?

By incorporating both phrase nodes and passage nodes into the PPR initialization, our approach ensures a more effective

retrieval of relevant passages, especially for multi-hop reasoning tasks.

Hyperparameters We perform hyperparameter tuning on 100 examples from MuSiQue’s training data. The hyperparame-
ters are listed in Table 13.

G.2. Comparison Methods

We use PyTorch (Paszke et al., 2019) and HuggingFace (Wolf et al., 2019) for dense retrievers and BM25s (Lu, 2024)
for the BM25 implementation. For GraphRAG (Edge et al., 2024) and LightRAG (Guo et al., 2024), we adhere to their

*https://python.igraph.org/en/stable/
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Table 10. Knowledge graph statistics using different LLMs for OpenlE. The nodes and triples are counted based on unique values.

NQ PopQA MuSiQue 2Wiki  HotpotQA LV-Eval NarrativeQA
Llama-3.3-70B-Instruct
# of phrase nodes 68,375 76,539 85,288 44,004 81,200 175,195 9,224
# of passage nodes 9,633 8,676 11,656 6,119 9,811 22,849 4,111
# of total nodes 78,008 85,215 96,944 50,123 91,011 198,044 13,335
# of extracted edges 125,777 124,579 140, 830 68, 881 130,058 314,324 26, 208
# of synonym edges 899, 031 845,014 1,125,951 593,298 994,187 2,674,833 72,494
# of context edges 126, 757 118,909 132,586 64,132 122,437 375,424 33,395
# of total edges 1,151,565 1,088,502 1,399,367 726,311 1,246,682 3,364,581 132,097
GPT-40-mini

# of phrase nodes 86,904 85,744 101, 641 49,544 95,105 217,085 15,365
# of passage nodes 9,633 8,676 11,656 6,119 9,811 22,849 4,111
# of total nodes 96, 537 94, 420 113,297 55,663 104,916 239,934 19,476
# of extracted edges 114,900 108,989 125,903 62,626 119,630 303,491 24,373
# of synonym edges 1,094,651 901,528 1,304,605 715,763 1,126,501 3,268,084 14,075
# of context edges 142,419 127,568 146,293 68,348 133,220 404,210 38,632
# of total edges 1,351,970 494,082 1,576,801 846,737 1,379,351 3,975,785 77,080

Table 11. Two examples from MuSiQue where passage recall@S5 is less than 1.0.

Query

Answer

Where is the district that the person who wanted to reform and address Bernhard Lichtenberg’s religion
preached a sermon on Marian devotion before his death located?
Saxony-Anhalt

Supporting Passages (Title)
Retrieved Passages (Title)

1. Mary, mother of Jesus 2. Reformation 3. Wittenberg (district) 4. Bernhard Lichtenberg
1. Bernhard Lichtenberg 2. Mary, mother of Jesus 3. Ambroise-Marie Carré 4. Reformation 5.
Henry Scott Holland (Recall @5 is 0.75)

Query to Triple (Top-5)

("Bernhard Lichtenberg”, ”was”, "Roman Catholic Priest”)
("Bernhard Lichtenberg”, "’beatified by”, ”Catholic Church”)
("Bernhard Lichtenberg”, died on”, 5 November 1943”)
(”Catholic Church”, "beatified”, "Bernhard Lichtenberg”)
("Bernhard Lichtenberg”, ”was”, "Theologian”)

All above subjects and objects appear in supporting passages

Filtered Triple Empty
Query Who is the grandmother of Philippe, Duke of Orléans?
Answer Marie de’ Medici

Supporting Passages (Title)
Retrieved Passages (Title)

1. Philippe I, Duke of Orléans 2. Leonora Dori
1. Philippe I, Duke of Orléans 2. Louise Elisabeth d’Orléans 3. Philip III of Spain 4. Anna of Lorraine
5. Louis Philippe I (Recall@5 is 0.5)

Query to Triple (Top-5)

2 9

("Bank of America”, ”purchased”, "Fleetboston Financial™)
("Fleetboston Financial”, "was acquired by”, "Bank of America”)
("Bank of America”, “acquired”, “Fleetboston Financial”)

("Bank of America”, ”announced purchase of”, ”Fleetboston Financial”)
("Bank of America”, "merged with”, ”Fleetboston Financial”)

All above subjects and objects appear in supporting passages

Filtered Triple

("Bank of America”, “purchased”, "Fleetboston Financial”)
("Fleetboston Financial”, "was acquired by”, "Bank of America”)
All above subjects and objects appear in supporting passages
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Table 12. Token usage of different structure-augmented RAG methods for indexing the MuSiQue corpus (11, 656 passages) and their
relative proportions.

HippoRAG 2 RAPTOR LightRAG GraphRAG

Input Tokens 9.2M (100.0%) 1.7M (18.5%) 68.5M (744.6%) 115.5M (1255.4%)
Output Tokens  3.0M (100.0%) 0.2M (6.7%) 18.3M (610.0%)  36.1M (1203.3%)

Table 13. Hyperparameters set on HippoRAG 2

Hyperparameter Value

Synonym Threshold 0.8
Damping Factor of PPR 0.5
Temperature 0.0

default hyperparameters and prompts. To ensure a consistent evaluation, the same QA prompt that HippoRAG 2 adopts
from HippoRAG (Gutiérrez et al., 2024) is applied to rephrase the original response of GraphRAG and LightRAG.

Hyperparameters We keep the default indexing hyperparameters for LightRAG and GraphRAG. For QA, we perform
hyperparameter tuning on the same 100 samples as Appendix G.1.

Table 14. Hyperparameters set on LightRAG and GraphRAG

Hyperparameters LightRAG  GraphRAG
Mode Local Local
Response Type Short phrase  Short phrase
Top-k Phrases for QA 60 60
Chunk Token Size 1,200 1,200
Chunk Overlap Token Size 100 100
Community Report Max Length 2,000 -
Max Input Length 8,000 -
Max Cluster Size 10 —
Entity Summary Max Tokens - 500
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