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Abstract

In this work, we present Qwen3, the latest version of the Qwen model family. Qwen3
comprises a series of large language models (LLMs) designed to advance performance,
efficiency, and multilingual capabilities. The Qwen3 series includes models of both dense
and Mixture-of-Expert (MoE) architectures, with parameter scales ranging from 0.6 to
235 billion. A key innovation in Qwen3 is the integration of thinking mode (for complex,
multi-step reasoning) and non-thinking mode (for rapid, context-driven responses) into a
unified framework. This eliminates the need to switch between different models—–such
as chat-optimized models (e.g., GPT-4o) and dedicated reasoning models (e.g., QwQ-
32B)—–and enables dynamic mode switching based on user queries or chat templates.
Meanwhile, Qwen3 introduces a thinking budget mechanism, allowing users to allocate
computational resources adaptively during inference, thereby balancing latency and
performance based on task complexity. Moreover, by leveraging the knowledge from the
flagship models, we significantly reduce the computational resources required to build
smaller-scale models, while ensuring their highly competitive performance. Empirical
evaluations demonstrate that Qwen3 achieves state-of-the-art results across diverse
benchmarks, including tasks in code generation, mathematical reasoning, agent tasks,
etc., competitive against larger MoE models and proprietary models. Compared to its
predecessor Qwen2.5, Qwen3 expands multilingual support from 29 to 119 languages
and dialects, enhancing global accessibility through improved cross-lingual understand-
ing and generation capabilities. To facilitate reproducibility and community-driven
research and development, all Qwen3 models are publicly accessible under Apache 2.0.
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1 Introduction

The pursuit of artificial general intelligence (AGI) or artificial super intelligence (ASI) has long been a goal
for humanity. Recent advancements in large foundation models, e.g., GPT-4o (OpenAI, 2024), Claude
3.7 (Anthropic, 2025), Gemini 2.5 (DeepMind, 2025), DeepSeek-V3 (Liu et al., 2024a), Llama-4 (Meta-AI,
2025), and Qwen2.5 (Yang et al., 2024b), have demonstrated significant progress toward this objective.
These models are trained on vast datasets spanning trillions of tokens across diverse domains and tasks,
effectively distilling human knowledge and capabilities into their parameters. Furthermore, recent
developments in reasoning models, optimized through reinforcement learning, highlight the potential
for foundation models to enhance inference-time scaling and achieve higher levels of intelligence, e.g.,
o3 (OpenAI, 2025), DeepSeek-R1 (Guo et al., 2025). While most state-of-the-art models remain proprietary,
the rapid growth of open-source communities has substantially reduced the performance gap between
open-weight and closed-source models. Notably, an increasing number of top-tier models (Meta-AI, 2025;
Liu et al., 2024a; Guo et al., 2025; Yang et al., 2024b) are now being released as open-source, fostering
broader research and innovation in artificial intelligence.

In this work, we introduce Qwen3, the latest series in our foundation model family, Qwen. Qwen3 is
a collection of open-weight large language models (LLMs) that achieve state-of-the-art performance
across a wide variety of tasks and domains. We release both dense and Mixture-of-Experts (MoE) models,
with the number of parameters ranging from 0.6 billion to 235 billion, to meet the needs of different
downstream applications. Notably, the flagship model, Qwen3-235B-A22B, is an MoE model with a
total of 235 billion parameters and 22 billion activated ones per token. This design ensures both high
performance and efficient inference.

Qwen3 introduces several key advancements to enhance its functionality and usability. First, it integrates
two distinct operating modes, thinking mode and non-thinking mode, into a single model. This allows
users to switch between these modes without alternating between different models, e.g., switching from
Qwen2.5 to QwQ (Qwen Team, 2024). This flexibility ensures that developers and users can adapt the
model’s behavior to suit specific tasks efficiently. Additionally, Qwen3 incorporates thinking budgets, pro-
viding users with fine-grained control over the level of reasoning effort applied by the model during task
execution. This capability is crucial to the optimization of computational resources and performance, tai-
loring the model’s thinking behavior to meet varying complexity in real-world applications. Furthermore,
Qwen3 has been pre-trained on 36 trillion tokens covering up to 119 languages and dialects, effectively
enhancing its multilingual capabilities. This broadened language support amplifies its potential for
deployment in global use cases and international applications. These advancements together establish
Qwen3 as a cutting-edge open-source large language model family, capable of effectively addressing
complex tasks across various domains and languages.

The pre-training process for Qwen3 utilizes a large-scale dataset consisting of approximately 36 trillion
tokens, curated to ensure linguistic and domain diversity. To efficiently expand the training data, we
employ a multi-modal approach: Qwen2.5-VL (Bai et al., 2025) is finetuned to extract text from extensive
PDF documents. We also generate synthetic data using domain-specific models: Qwen2.5-Math (Yang
et al., 2024c) for mathematical content and Qwen2.5-Coder (Hui et al., 2024) for code-related data. The
pre-training process follows a three-stage strategy. In the first stage, the model is trained on about 30
trillion tokens to build a strong foundation of general knowledge. In the second stage, it is further trained
on knowledge-intensive data to enhance reasoning abilities in areas like science, technology, engineering,
and mathematics (STEM) and coding. Finally, in the third stage, the model is trained on long-context
data to increase its maximum context length from 4,096 to 32,768 tokens.

To better align foundation models with human preferences and downstream applications, we employ a
multi-stage post-training approach that empowers both thinking (reasoning) and non-thinking modes. In
the first two stages, we focus on developing strong reasoning abilities through long chain-of-thought
(CoT) cold-start finetuning and reinforcement learning focusing on mathematics and coding tasks. In the
final two stages, we combine data with and without reasoning paths into a unified dataset for further
fine-tuning, enabling the model to handle both types of input effectively, and we then apply general-
domain reinforcement learning to improve performance across a wide range of downstream tasks. For
smaller models, we use strong-to-weak distillation, leveraging both off-policy and on-policy knowledge
transfer from larger models to enhance their capabilities. Distillation from advanced teacher models
significantly outperforms reinforcement learning in performance and training efficiency.

We evaluate both pre-trained and post-trained versions of our models across a comprehensive set of
benchmarks spanning multiple tasks and domains. Experimental results show that our base pre-trained
models achieve state-of-the-art performance. The post-trained models, whether in thinking or non-
thinking mode, perform competitively against leading proprietary models and large mixture-of-experts
(MoE) models such as o1, o3-mini, and DeepSeek-V3. Notably, our models excel in coding, mathematics,
and agent-related tasks. For example, the flagship model Qwen3-235B-A22B achieves 85.7 on AIME’24

2



and 81.5 on AIME’25 (AIME, 2025), 70.7 on LiveCodeBench v5 (Jain et al., 2024), 2,056 on CodeForces,
and 70.8 on BFCL v3 (Yan et al., 2024). In addition, other models in the Qwen3 series also show strong
performance relative to their size. Furthermore, we observe that increasing the thinking budget for
thinking tokens leads to a consistent improvement in the model’s performance across various tasks.

In the following sections, we describe the design of the model architecture, provide details on its training
procedures, present the experimental results of pre-trained and post-trained models, and finally, conclude
this technical report by summarizing the key findings and outlining potential directions for future
research.

2 Architecture

The Qwen3 series includes 6 dense models, namely Qwen3-0.6B, Qwen3-1.7B, Qwen3-4B, Qwen3-8B,
Qwen3-14B, and Qwen3-32B, and 2 MoE models, Qwen3-30B-A3B and Qwen3-235B-A22B. The flagship
model, Qwen3-235B-A22B, has a total of 235B parameters with 22B activated ones. Below, we elaborate
on the architecture of the Qwen3 models.

The architecture of the Qwen3 dense models is similar to Qwen2.5 (Yang et al., 2024b), including using
Grouped Query Attention (GQA, Ainslie et al., 2023), SwiGLU (Dauphin et al., 2017), Rotary Positional
Embeddings (RoPE, Su et al., 2024), and RMSNorm (Jiang et al., 2023) with pre-normalization. Besides,
we remove QKV-bias used in Qwen2 (Yang et al., 2024a) and introduce QK-Norm (Dehghani et al., 2023)
to the attention mechanism to ensure stable training for Qwen3. Key information on model architecture
is provided in Table 1.

The Qwen3 MoE models share the same fundamental architecture as the Qwen3 dense models. Key
information on model architecture is provided in Table 2. We follow Qwen2.5-MoE (Yang et al., 2024b)
and implement fine-grained expert segmentation (Dai et al., 2024). The Qwen3 MoE models have 128 total
experts with 8 activated experts per token. Unlike Qwen2.5-MoE, the Qwen3-MoE design excludes shared
experts. Furthermore, we adopt the global-batch load balancing loss (Qiu et al., 2025) to encourage expert
specialization. These architectural and training innovations have yielded substantial improvements in
model performance across downstream tasks.

Qwen3 models utilize Qwen’s tokenizer (Bai et al., 2023), which implements byte-level byte-pair encoding
(BBPE, Brown et al., 2020; Wang et al., 2020; Sennrich et al., 2016) with a vocabulary size of 151,669.

Table 1: Model architecture of Qwen3 dense models.

Models Layers Heads (Q / KV) Tie Embedding Context Length

Qwen3-0.6B 28 16 / 8 Yes 32K
Qwen3-1.7B 28 16 / 8 Yes 32K
Qwen3-4B 36 32 / 8 Yes 128K
Qwen3-8B 36 32 / 8 No 128K
Qwen3-14B 40 40 / 8 No 128K
Qwen3-32B 64 64 / 8 No 128K

Table 2: Model architecture of Qwen3 MoE models.

Models Layers Heads (Q / KV) # Experts (Total / Activated) Context Length

Qwen3-30B-A3B 48 32 / 4 128 / 8 128K
Qwen3-235B-A22B 94 64 / 4 128 / 8 128K

3 Pre-training

In this section, we describe the construction of our pretraining data, the details of our pretraining
approach, and present experimental results from evaluating the base models on standard benchmarks.

3.1 Pre-training Data

Compared with Qwen2.5 (Yang et al., 2024b), we have significantly expanded the scale and diversity of
our training data. Specifically, we collected twice as many pre-training tokens—covering three times
more languages. All Qwen3 models are trained on a large and diverse dataset consisting of 119 languages
and dialects, with a total of 36 trillion tokens. This dataset includes high-quality content in various
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domains such as coding, STEM (Science, Technology, Engineering, and Mathematics), reasoning tasks,
books, multilingual texts, and synthetic data.

To further expand the pre-training data corpus, we first employ the Qwen2.5-VL model (Bai et al., 2025)
to perform text recognition on a large volume of PDF-like documents. The recognized text is then refined
using the Qwen2.5 model (Yang et al., 2024b), which helps improve its quality. Through this two-step
process, we are able to obtain an additional set of high-quality text tokens, amounting to trillions in total.
Besides, we employ Qwen2.5 (Yang et al., 2024b), Qwen2.5-Math (Yang et al., 2024c), and Qwen2.5-Coder
(Hui et al., 2024) models to synthesize trillions of text tokens in different formats, including textbooks,
question-answering, instructions, and code snippets, covering dozens of domains. Finally, we further
expand the pre-training corpus by incorporating additional multilingual data and introducing more
languages. Compared to the pre-training data used in Qwen2.5, the number of supported languages has
been significantly increased from 29 to 119, enhancing the model’s linguistic coverage and cross-lingual
capabilities.

We have developed a multilingual data annotation system designed to enhance both the quality and
diversity of training data. This system has been applied to our large-scale pre-training datasets, annotating
over 30 trillion tokens across multiple dimensions such as educational value, fields, domains, and safety.
These detailed annotations support more effective data filtering and combination. Unlike previous
studies (Xie et al., 2023; Fan et al., 2023; Liu et al., 2024b) that optimize the data mixture at the data source
or domain level, our method optimizes the data mixture at the instance-level through extensive ablation
experiments on small proxy models with the fine-grained data labels.

3.2 Pre-training Stage

The Qwen3 models are pre-trained through a three-stage process:

(1) General Stage (S1): At the first pre-training stage, all Qwen3 models are trained on over 30
trillion tokens using a sequence length of 4,096 tokens. At this stage, the models have been fully
pre-trained on language proficiency and general world knowledge, with training data covering
119 languages and dialects.

(2) Reasoning Stage (S2): To further improve the reasoning ability, we optimize the pre-training
corpus of this stage by increasing the proportion of STEM, coding, reasoning, and synthetic data.
The models are further pre-trained with about 5T higher-quality tokens at a sequence length of
4,096 tokens. We also accelerate the learning rate decay during this stage.

(3) Long Context Stage: In the final pre-training stage, we collect high-quality long context corpora
to extend the context length of Qwen3 models. All models are pre-trained on hundreds of billions
of tokens with a sequence length of 32,768 tokens. The long context corpus includes 75% of text
between 16,384 to 32,768 tokens in length, and 25% of text between 4,096 to 16,384 in length.
Following Qwen2.5 (Yang et al., 2024b), we increase the base frequency of RoPE from 10,000 to
1,000,000 using the ABF technique (Xiong et al., 2023). Meanwhile, we introduce YARN (Peng
et al., 2023) and Dual Chunk Attention (DCA, An et al., 2024) to achieve a four-fold increase in
sequence length capacity during inference.

Similar to Qwen2.5 (Yang et al., 2024b), we develop scaling laws for optimal hyper-parameters (e.g.,
learning rate scheduler, and batch size) predictions based on three pre-training stages mentioned above.
Through extensive experiments, we systematically study the relationship between model architecture,
training data, training stage, and optimal training hyper-parameters. Finally, we set the predicted optimal
learning rate and batch size strategy for each dense or MoE model.

3.3 Pre-training Evaluation

We conduct comprehensive evaluations of the base language models of the Qwen3 series. The evaluation
of base models mainly focuses on their performance in general knowledge, reasoning, mathematics,
scientific knowledge, coding, and multilingual capabilities. The evaluation datasets for pre-trained base
models include 15 benchmarks:

• General Tasks: MMLU (Hendrycks et al., 2021a) (5-shot), MMLU-Pro (Wang et al., 2024) (5-
shot, CoT), MMLU-redux (Gema et al., 2024) (5-shot), BBH (Suzgun et al., 2023) (3-shot, CoT),
SuperGPQA (Du et al., 2025)(5-shot, CoT).

• Math & STEM Tasks: GPQA (Rein et al., 2023) (5-shot, CoT), GSM8K (Cobbe et al., 2021) (4-shot,
CoT), MATH (Hendrycks et al., 2021b) (4-shot, CoT).
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• Coding Tasks: EvalPlus (Liu et al., 2023a) (0-shot) (Average of HumanEval (Chen et al., 2021),
MBPP (Austin et al., 2021), Humaneval+, MBPP+) (Liu et al., 2023a), MultiPL-E (Cassano et al.,
2023) (0-shot) (Python, C++, JAVA, PHP, TypeScript, C#, Bash, JavaScript), MBPP-3shot (Austin
et al., 2021), CRUX-O of CRUXEval (1-shot) (Gu et al., 2024).

• Multilingual Tasks: MGSM (Shi et al., 2023) (8-shot, CoT), MMMLU (OpenAI, 2024) (5-shot),
INCLUDE (Romanou et al., 2024) (5-shot).

For the base model baselines, we compare the Qwen3 series base models with the Qwen2.5 base models
(Yang et al., 2024b) and other leading open-source base models, including DeepSeek-V3 Base (Liu et al.,
2024a), Gemma-3 (Team et al., 2025), Llama-3 (Dubey et al., 2024), and Llama-4 (Meta-AI, 2025) series
base models, in terms of scale of parameters. All models are evaluated using the same evaluation pipeline
and the widely-used evaluation settings to ensure fair comparison.

Summary of Evaluation Results Based on the overall evaluation results, we highlight some key
conclusions of Qwen3 base models.

(1) Compared with the previously open-source SOTA dense and MoE base models (such as DeepSeek-
V3 Base, Llama-4-Maverick Base, and Qwen2.5-72B-Base), Qwen3-235B-A22B-Base outperforms
these models in most tasks with significantly fewer total parameters or activated parameters.

(2) For the Qwen3 MoE base models, our experimental results indicate that: (a) Using the same
pre-training data, Qwen3 MoE base models can achieve similar performance to Qwen3 dense
base models with only 1/5 activated parameters. (b) Due to the improvements of the Qwen3
MoE architecture, the scale-up of the training tokens, and more advanced training strategies,
the Qwen3 MoE base models can outperform the Qwen2.5 MoE base models with less than 1/2
activated parameters and fewer total parameters. (c) Even with 1/10 of the activated parameters of
the Qwen2.5 dense base model, the Qwen3 MoE base model can achieve comparable performance,
which brings us significant advantages in inference and training costs.

(3) The overall performance of the Qwen3 dense base models is comparable to the Qwen2.5 base
models at higher parameter scales. For example, Qwen3-1.7B/4B/8B/14B/32B-Base achieve
comparable performance to Qwen2.5-3B/7B/14B/32B/72B-Base, respectively. Especially in
STEM, coding, and reasoning benchmarks, the performance of Qwen3 dense base models even
surpasses Qwen2.5 base models at higher parameter scales.

The detailed results are as follows.

Qwen3-235B-A22B-Base We compare Qwen3-235B-A22B-Base to our previous similar-sized MoE
Qwen2.5-Plus-Base (Yang et al., 2024b) and other leading open-source base models: Llama-4-Maverick
(Meta-AI, 2025), Qwen2.5-72B-Base (Yang et al., 2024b), DeepSeek-V3 Base (Liu et al., 2024a). From
the results in Table 3, the Qwen3-235B-A22B-Base model attains the highest performance scores across
most of the evaluated benchmarks. We further compare Qwen3-235B-A22B-Base with other baselines
separately for the detailed analysis.

(1) Compared with the recently open-source model Llama-4-Maverick-Base, which has about twice
the number of parameters, Qwen3-235B-A22B-Base still performs better on most benchmarks.

(2) Compared with the previously state-of-the-art open-source model DeepSeek-V3-Base, Qwen3-
235B-A22B-Base outperforms DeepSeek-V3-Base on 14 out of 15 evaluation benchmarks with
only about 1/3 the total number of parameters and 2/3 activated parameters, demonstrating the
powerful and cost-effectiveness of our models.

(3) Compared with our previous MoE Qwen2.5-Plus of similar size, Qwen3-235B-A22B-Base sig-
nificantly outperforms it with fewer parameters and activated parameters, which shows the
remarkable advantages of Qwen3 in pre-training data, training strategy, and model architecture.

(4) Compared with our previous flagship open-source dense model Qwen2.5-72B-Base, Qwen3-
235B-A22B-Base surpasses the latter in all benchmarks and uses fewer than 1/3 of the activated
parameters. Meanwhile, due to the advantage of the model architecture, the inference costs and
training costs on each trillion tokens of Qwen3-235B-A22B-Base are much cheaper than those of
Qwen2.5-72B-Base.

Qwen3-32B-Base Qwen3-32B-Base is our largest dense model among the Qwen3 series. We compare
it to the baselines of similar sizes, including Gemma-3-27B (Team et al., 2025) and Qwen2.5-32B (Yang
et al., 2024b). In addition, we introduce two strong baselines: the recently open-source MoE model Llama-
4-Scout, which has three times the parameters of Qwen3-32B-Base but half the activated parameters;
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Table 3: Comparison among Qwen3-235B-A22B-Base and other representative strong open-source
baselines. The highest, the second-best scores are shown in bold and underlined, respectively.

Qwen2.5-72B Qwen2.5-Plus Llama-4-Maverick DeepSeek-V3 Qwen3-235B-A22B
Base Base Base Base Base

Architecture Dense MoE MoE MoE MoE
# Total Params 72B 271B 402B 671B 235B
# Activated Params 72B 37B 17B 37B 22B

General Tasks

MMLU 86.06 85.02 85.16 87.19 87.81
MMLU-Redux 83.91 82.69 84.05 86.14 87.40
MMLU-Pro 58.07 63.52 63.91 59.84 68.18
SuperGPQA 36.20 37.18 40.85 41.53 44.06
BBH 86.30 85.60 83.62 86.22 88.87

Math & STEM Tasks

GPQA 45.88 41.92 43.94 41.92 47.47
GSM8K 91.50 91.89 87.72 87.57 94.39
MATH 62.12 62.78 63.32 62.62 71.84

Coding Tasks

EvalPlus 65.93 61.43 68.38 63.75 77.60
MultiPL-E 58.70 62.16 57.28 62.26 65.94
MBPP 76.00 74.60 75.40 74.20 81.40
CRUX-O 66.20 68.50 77.00 76.60 79.00

Multilingual Tasks

MGSM 82.40 82.21 79.69 82.68 83.53
MMMLU 84.40 83.49 83.09 85.88 86.70
INCLUDE 69.05 66.97 73.47 75.17 73.46

Table 4: Comparison among Qwen3-32B-Base and other strong open-source baselines. The highest
and second-best scores are shown in bold and underlined, respectively.

Qwen2.5-32B Qwen2.5-72B Gemma-3-27B Llama-4-Scout Qwen3-32B
Base Base Base Base Base

Architecture Dense Dense Dense MoE Dense
# Total Params 32B 72B 27B 109B 32B
# Activated Params 32B 72B 27B 17B 32B

General Tasks

MMLU 83.32 86.06 78.69 78.27 83.61
MMLU-Redux 81.97 83.91 76.53 71.09 83.41
MMLU-Pro 55.10 58.07 52.88 56.13 65.54
SuperGPQA 33.55 36.20 29.87 26.51 39.78
BBH 84.48 86.30 79.95 82.40 87.38

Math & STEM Tasks

GPQA 47.97 45.88 26.26 40.40 49.49
GSM8K 92.87 91.50 81.20 85.37 93.40
MATH 57.70 62.12 51.78 51.66 61.62

Coding Tasks

EvalPlus 66.25 65.93 55.78 59.90 72.05
MultiPL-E 58.30 58.70 45.03 47.38 67.06
MBPP 73.60 76.00 68.40 68.60 78.20
CRUX-O 67.80 66.20 60.00 61.90 72.50

Multilingual Tasks

MGSM 78.12 82.40 73.74 79.93 83.06
MMMLU 82.40 84.40 77.62 74.83 83.83
INCLUDE 64.35 69.05 68.94 68.09 67.87
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Table 5: Comparison among Qwen3-14B-Base, Qwen3-30B-A3B-Base, and other strong open-source
baselines. The highest and second-best scores are shown in bold and underlined, respectively.

Gemma-3-12B Qwen2.5-14B Qwen2.5-32B Qwen2.5-Turbo Qwen3-14B Qwen3-30B-A3B
Base Base Base Base Base Base

Architecture Dense Dense Dense MoE Dense MoE
# Total Params 12B 14B 32B 42B 14B 30B
# Activated Params 12B 14B 32B 6B 14B 3B

General Tasks

MMLU 73.87 79.66 83.32 79.50 81.05 81.38
MMLU-Redux 70.70 76.64 81.97 77.11 79.88 81.17
MMLU-Pro 44.91 51.16 55.10 55.60 61.03 61.49
SuperGPQA 24.61 30.68 33.55 31.19 34.27 35.72
BBH 74.28 78.18 84.48 76.10 81.07 81.54

Math & STEM Tasks

GPQA 31.31 32.83 47.97 41.41 39.90 43.94
GSM8K 78.01 90.22 92.87 88.32 92.49 91.81
MATH 44.43 55.64 57.70 55.60 62.02 59.04

Coding Tasks

EvalPlus 52.65 60.70 66.25 61.23 72.23 71.45
MultiPL-E 43.03 54.79 58.30 53.24 61.69 66.53
MBPP 60.60 69.00 73.60 67.60 73.40 74.40
CRUX-O 52.00 61.10 67.80 60.20 68.60 67.20

Multilingual Tasks

MGSM 64.35 74.68 78.12 70.45 79.20 79.11
MMMLU 72.50 78.34 82.40 79.76 79.69 81.46
INCLUDE 63.34 60.26 64.35 59.25 64.55 67.00

Table 6: Comparison among Qwen8B-Base and other strong open-source baselines. The highest and
second-best scores are shown in bold and underlined, respectively.

Llama-3-8B Qwen2.5-7B Qwen2.5-14B Qwen3-8B
Base Base Base Base

Architecture Dense Dense Dense Dense
# Total Params 8B 7B 14B 8B
# Activated Params 8B 7B 14B 8B

General Tasks

MMLU 66.60 74.16 79.66 76.89
MMLU-Redux 61.59 71.06 76.64 76.17
MMLU-Pro 35.36 45.00 51.16 56.73
SuperGPQA 20.54 26.34 30.68 31.64
BBH 57.70 70.40 78.18 78.40

Math & STEM Tasks

GPQA 25.80 36.36 32.83 44.44
GSM8K 55.30 85.36 90.22 89.84
MATH 20.50 49.80 55.64 60.80

Coding Tasks

EvalPlus 44.13 62.18 60.70 67.65
MultiPL-E 31.45 50.73 54.79 58.75
MBPP 48.40 63.40 69.00 69.80
CRUX-O 36.80 48.50 61.10 62.00

Multilingual Tasks

MGSM 38.92 63.60 74.68 76.02
MMMLU 59.65 71.34 78.34 75.72
IINCLUDE 44.94 53.98 60.26 59.40

7



Table 7: Comparison among Qwen3-4B-Base and other strong open-source baselines. The highest and
second-best scores are shown in bold and underlined, respectively.

Gemma-3-4B Qwen2.5-3B Qwen2.5-7B Qwen3-4B
Base Base Base Base

Architecture Dense Dense Dense Dense
# Total Params 4B 3B 7B 4B
# Activated Params 4B 3B 7B 4B

General Tasks

MMLU 59.51 65.62 74.16 72.99
MMLU-Redux 56.91 63.68 71.06 72.79
MMLU-Pro 29.23 34.61 45.00 50.58
SuperGPQA 17.68 20.31 26.34 28.43
BBH 51.70 56.30 70.40 72.59

Math & STEM Tasks

GPQA 24.24 26.26 36.36 36.87
GSM8K 43.97 79.08 85.36 87.79
MATH 26.10 42.64 49.80 54.10

Coding Tasks

EvalPlus 43.23 46.28 62.18 63.53
MultiPL-E 28.06 39.65 50.73 53.13
MBPP 46.40 54.60 63.40 67.00
CRUX-O 34.00 36.50 48.50 55.00

Multilingual Tasks

MGSM 33.11 47.53 63.60 67.74
MMMLU 59.62 65.55 71.34 71.42
INCLUDE 49.06 45.90 53.98 56.29

Table 8: Comparison among Qwen3-1.7B-Base, Qwen3-0.6B-Base, and other strong open-source base-
lines. The highest and second-best scores are shown in bold and underlined, respectively.

Qwen2.5-0.5B Qwen3-0.6B Gemma-3-1B Qwen2.5-1.5B Qwen3-1.7B
Base Base Base Base Base

Architecture Dense Dense Dense Dense Dense
# Total Params 0.5B 0.6B 1B 1.5B 1.7B
# Activated Params 0.5B 0.6B 1B 1.5B 1.7B

General Tasks

MMLU 47.50 52.81 26.26 60.90 62.63
MMLU-Redux 45.10 51.26 25.99 58.46 61.66
MMLU-Pro 15.69 24.74 9.72 28.53 36.76
SuperGPQA 11.30 15.03 7.19 17.64 20.92
BBH 20.30 41.47 28.13 45.10 54.47

Math & STEM Tasks

GPQA 24.75 26.77 24.75 24.24 28.28
GSM8K 41.62 59.59 2.20 68.54 75.44
MATH 19.48 32.44 3.66 35.00 43.50

Coding Tasks

EvalPlus 31.85 36.23 8.98 44.80 52.70
MultiPL-E 18.70 24.58 5.15 33.10 42.71
MBPP 29.80 36.60 9.20 43.60 55.40
CRUX-O 12.10 27.00 3.80 29.60 36.40

Multilingual Tasks

MGSM 12.07 30.99 1.74 32.82 50.71
MMMLU 31.53 50.16 26.57 60.27 63.27
INCLUDE 24.74 34.26 25.62 39.55 45.57
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and our previous flagship open-source dense model Qwen2.5-72B-Base, which has more than twice the
number of parameters compared to Qwen3-32B-Base. The results are shown in Table 4, which support
three key conclusions:

(1) Compared with the similar-sized models, Qwen3-32B-Base outperforms Qwen2.5-32B-Base and
Gemma-3-27B Base on most benchmarks. Notably, Qwen3-32B-Base achieves 65.54 on MMLU-
Pro and 39.78 on SuperGPQA, significantly outperforming its predecessor Qwen2.5-32B-Base.
In addition, Qwen3-32B-Base achieves significantly higher encoding benchmark scores than all
baseline models.

(2) Surprisingly, we find that Qwen3-32B-Base achieves competitive results compared to Qwen2.5-
72B-Base. Although Qwen3-32B-Base has less than half the number of parameters of Qwen2.5-
72B-Base, it outperforms Qwen2.5-72B-Base in 10 of the 15 evaluation benchmarks. On coding,
mathematics, and reasoning benchmarks, Qwen3-32B-Base has remarkable advantages.

(3) Compared to Llama-4-Scout-Base, Qwen3-32B-Base significantly outperforms it on all 15 bench-
marks, with only one-third of the number of parameters of Llama-4-Scout-Base, but twice the
number of activated parameters.

Qwen3-14B-Base & Qwen3-30B-A3B-Base The evaluation of the Qwen3-14B-Base and Qwen3-30B-
A3B-Base is compared against baselines of similar sizes, including Gemma-3-12B Base, Qwen2.5-14B
Base. Similarly, we also introduce two strong baselines: (1) Qwen2.5-Turbo (Yang et al., 2024b), which
has 42B parameters and 6B activated parameters. Note that its activated parameters are twice those of
Qwen3-30B-A3B-Base. (2) Qwen2.5-32B-Base, which has 11 times the activated parameters of Qwen3-
30B-A3B and more than twice that of Qwen3-14B. The results are shown in Table 5, where we can draw
the following conclusions.

(1) Compared with the similar-sized models, Qwen3-14B-Base significantly performs better than
Qwen2.5-14B-Base and Gemma-3-12B-Base on all 15 benchmarks.

(2) Similarly, Qwen3-14B-Base also achieves very competitive results compared to Qwen2.5-32B-Base
with less than half of the parameters.

(3) With only 1/5 activated non-embedding parameters, Qwen3-30B-A3B significantly outperforms
Qwen2.5-14B-Base on all tasks, and achieves comparable performance to Qwen3-14B-Base and
Qwen2.5-32B-Base, which brings us significant advantages in inference and training costs.

Qwen3-8B / 4B / 1.7B / 0.6B-Base For edge-side models, we take similar-sized Qwen2.5, Llama-3, and
Gemma-3 base models as the baselines. The results can be seen in Table 6, Table 7, and Table 8. All Qwen3
8B / 4B / 1.7B / 0.6B-Base models continue to maintain strong performance across nearly all benchmarks.
Notably, Qwen3-8B / 4B / 1.7B-Base models even outperform larger size Qwen2.5-14B / 7B / 3B Base
models on over half of the benchmarks, especially on STEM-related and coding benchmarks, reflecting
the significant improvement of the Qwen3 models.

4 Post-training

Stage 1
Long-CoT Cold Start

Stage 2
Reasoning RL

Stage 3
Thinking Mode Fusion

Stage 4
General RL

Strong-to-Weak Distillation

Qwen3-235B-A22B
Qwen3-32B

Qwen3-30B-A3B
14B/8B/4B/1.7B/0.6B

Base Models

Base Models

Lightweight Models

Flagship Models

Figure 1: Post-training pipeline of the Qwen3 series models.
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The post-training pipeline of Qwen3 is strategically designed with two core objectives:

(1) Thinking Control: This involves the integration of two distinct modes, namely the “non-thinking”
and “thinking” modes, providing users with the flexibility to choose whether the model should
engage in reasoning or not, and to control the depth of thinking by specifying a token budget for
the thinking process.

(2) Strong-to-Weak Distillation: This aims to streamline and optimize the post-training process
for lightweight models. By leveraging the knowledge from large-scale models, we substantially
reduce both the computational costs and the development efforts required for building smaller-
scale models.

As illustrated in Figure 1, the flagship models in the Qwen3 series follow a sophisticated four-stage
training process. The first two stages focus on developing the models’ “thinking” abilities. The next two
stages aim to integrate strong “non-thinking” functionalities into the models.

Preliminary experiments suggest that directly distilling the output logits from teacher models into
lightweight student models can effectively enhance their performance while maintaining fine-grained
control over their reasoning processes. This approach eliminates the necessity of performing an exhaustive
four-stage training process individually for every small-scale model. It leads to better immediate
performance, as indicated by higher Pass@1 scores, and also improves the model’s ability of exploration,
as reflected in improved Pass@64 results. In addition, it achieves these gains with much greater training
efficiency, requiring only 1/10 of the GPU hours compared to the four-stage training method.

In the following sections, we present the four-stage training process and provide a detailed explanation
of the Strong-to-Weak Distillation approach.

4.1 Long-CoT Cold Start

We begin by curating a comprehensive dataset that spans a wide range of categories, including math,
code, logical reasoning, and general STEM problems. Each problem in the dataset is paired with verified
reference answers or code-based test cases. This dataset serves as the foundation for the “cold start”
phase of long Chain-of-Thought (long-CoT) training.

The dataset construction involves a rigorous two-phase filtering process: query filtering and response
filtering. In the query filtering phase, we use Qwen2.5-72B-Instruct to identify and remove queries that
are not easily verifiable. This includes queries containing multiple sub-questions or those asking for
general text generation. Furthermore, we exclude queries that Qwen2.5-72B-Instruct can answer correctly
without using CoT reasoning. This helps prevent the model from relying on superficial guessing and
ensures that only complex problems requiring deeper reasoning are included. Additionally, we annotate
each query’s domain using Qwen2.5-72B-Instruct to maintain balanced domain representation across the
dataset.

After reserving a validation query set, we generate N candidate responses for each remaining query
using QwQ-32B (Qwen Team, 2025). When QwQ-32B consistently fails to generate correct solutions,
human annotators manually assess the accuracy of the responses. For queries with positive Pass@N,
further stringent filtering criteria are applied to remove responses that (1) yield incorrect final answers,
(2) contain substantial repetition, (3) clearly indicate guesswork without adequate reasoning, (4) exhibit
inconsistencies between the thinking and summary contents, (5) involve inappropriate language mixing or
stylistic shifts, or (6) are suspected of being overly similar to potential validation set items. Subsequently,
a carefully selected subset of the refined dataset is used for the initial cold-start training of the reasoning
patterns. The objective at this stage is to instill foundational reasoning patterns in the model without
overly emphasizing immediate reasoning performance. This approach ensures that the model’s potential
is not limited, allowing for greater flexibility and improvement during the subsequent reinforcement
learning (RL) phase. To achieve this objective effectively, it is preferable to minimize both the number of
training samples and the training steps during this preparatory phase.

4.2 Reasoning RL

The query-verifier pairs used in the Reasoning RL stage must satisfy the following four criteria: (1) They
were not used during the cold-start phase. (2) They are learnable for the cold-start model. (3) They are
as challenging as possible. (4) They cover a broad range of sub-domains. We ultimately collect a total
of 3,995 query-verifier pairs, and employed GRPO (Shao et al., 2024) to update the model parameters.
We observe that using a large batch size and a high number of rollouts per query, along with off-policy
training to improve sample efficiency, is beneficial to the training process. We have also addressed how
to balance exploration and exploitation by controlling the model’s entropy to increase steadily or remain
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Table 9: Examples of SFT data for thinking and non-thinking modes during the thinking mode fusion
stage. For the thinking mode, the /think flag can be omitted since it represents the default behavior. This
feature has been implemented in the chat template1 supported by the Hugging Face’s tokenizer, where
the thinking mode can be disabled using an additional parameter enable thinking=False.

Thinking Mode Non-Thinking Mode

<|im start|>user
{query} /think<|im end|>
<|im start|>assistant
<think>
{thinking content}
</think>

{response}<|im end|>

<|im start|>user
{query} /no think<|im end|>
<|im start|>assistant
<think>

</think>

{response}<|im end|>

stable, which is crucial for maintaining stable training. As a result, we achieve consistent improvements
in both training reward and validation performance over the course of a single RL run, without any
manual intervention on hyperparameters. For instance, the AIME’24 score of the Qwen3-235B-A22B
model increases from 70.1 to 85.1 over a total of 170 RL training steps.

4.3 Thinking Mode Fusion

The goal of the Thinking Mode Fusion stage is to integrate the “non-thinking” capabilities into the
previously developed “thinking” model. This approach allows developers to manage and control
reasoning behaviors, while also reducing the cost and complexity of deploying separate models for
thinking and non-thinking tasks. To achieve this, we conduct continual supervised fine-tuning (SFT)
on the Reasoning RL model and design a chat template to fuse the two modes. Moreover, we find that
models capable of handling both modes proficiently perform consistently well under different thinking
budgets.

Construction of SFT data. The SFT dataset combines both the “thinking” and “non-thinking” data.
To ensure that the performance of the Stage 2 model is not compromised by the additional SFT, the
“thinking” data is generated via rejection sampling on Stage 1 queries using the Stage 2 model itself. The
“non-thinking” data, on the other hand, is carefully curated to cover a diverse range of tasks, including
coding, mathematics, instruction-following, multilingual tasks, creative writing, question answering,
and role-playing. Additionally, we employ automatically generated checklists for assessing the response
quality of “non-thinking” data. To enhance the performance on tasks with low-resource languages, we
particularly increase the proportion of translation tasks.

Chat Template Design. To better integrate the two modes and enable users to dynamically switch the
model’s thinking process, we design chat templates for Qwen3, as shown in Table 9. Specifically, for
samples in thinking mode and non-thinking mode, we introduce /think and /no think flags in the user
query or system message, respectively. This allows the model to follow the user’s input and select the
appropriate thinking mode accordingly. For non-thinking mode samples, we retain an empty thinking
block in the assistant’s response. This design ensures internal format consistency within the model and
allows developers to prevent the model from engaging in thinking behavior by concatenating an empty
think block in the chat template. By default, the model operates in thinking mode; therefore, we add
some thinking mode training samples where the user queries do not include /think flags. For more
complex multi-turn dialogs, we randomly insert multiple /think and /no think flags into users’ queries,
with the model response adhering to the last flag encountered.

Thinking Budget. An additional advantage of Thinking Mode Fusion is that, once the model learns to
respond in both non-thinking and thinking modes, it naturally develops the ability to handle intermediate
cases—generating responses based on incomplete thinking. This capability lays the foundation for
implementing budget control over the model’s thinking process. Specifically, when the length of the
model’s thinking reaches a user-defined threshold, we manually halt the thinking process and insert
the stop-thinking instruction: “Considering the limited time by the user, I have to give the
solution based on the thinking directly now.\n</think>.\n\n”. After this instruction is inserted,
the model proceeds to generate a final response based on its accumulated reasoning up to that point. It
is worth noting that this ability is not explicitly trained but emerges naturally as a result of applying
Thinking Mode Fusion.
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4.4 General RL

The General RL stage aims to broadly enhance the models’ capabilities and stability across diverse
scenarios. To facilitate this, we have established a sophisticated reward system covering over 20 distinct
tasks, each with customized scoring criteria. These tasks specifically target enhancements in the following
core capabilities:

• Instruction Following: This capability ensures that models accurately interpret and follow user
instructions, including requirements related to content, format, length, and the use of structured
output, delivering responses that align with user expectations.

• Format Following: In addition to explicit instructions, we expect the model to adhere to specific
formatting conventions. For instance, it should respond appropriately to the /think and /
no think flags by switching between thinking and non-thinking modes, and consistently use
designated tokens (e.g., <think> and </think>) to separate the thinking and response parts in
the final output.

• Preference Alignment: For open-ended queries, preference alignment focuses on improving the
model’s helpfulness, engagement, and style, ultimately delivering a more natural and satisfying
user experience.

• Agent Ability: This involves training the model to correctly invoke tools via designated interfaces.
During the RL rollout, the model is allowed to perform complete multi-turn interaction cycles
with real environment execution feedback, thereby improving its performance and stability in
long-horizon decision-making tasks.

• Abilities for Specialized Scenarios: In more specialized scenarios, we design tasks tailored to the
specific context. For example, in Retrieval-Augmented Generation (RAG) tasks, we incorporate
reward signals to guide the model toward generating accurate and contextually appropriate
responses, thereby minimizing the risk of hallucination.

To provide feedback for the aforementioned tasks, we utilized three distinct types of rewards:

(1) Rule-based Reward: The rule-based reward has been widely used in the reasoning RL stage,
and is also useful for general tasks such as instruction following (Lambert et al., 2024) and format
adherence. Well-designed rule-based rewards can assess the correctness of model outputs with
high precision, preventing issues like reward hacking.

(2) Model-based Reward with Reference Answer: In this approach, we provide a reference answer
for each query and prompt Qwen2.5-72B-Instruct to score the model’s response based on this
reference. This method allows for more flexible handling of diverse tasks without requiring strict
formatting, avoiding false negatives that can occur with purely rule-based rewards.

(3) Model-based Reward without Reference Answer: Leveraging human preference data, we train
a reward model to assign scalar scores to model responses. This approach, which does not
depend on a reference answer, can handle a broader range of queries while effectively enhancing
the model’s engagement and helpfulness.

4.5 Strong-to-Weak Distillation

The Strong-to-Weak Distillation pipeline is specifically designed to optimize lightweight models, encom-
passing 5 dense models (Qwen3-0.6B, 1.7B, 4B, 8B, and 14B) and one MoE model (Qwen3-30B-A3B). This
approach enhances model performance while effectively imparting robust mode-switching capabilities.
The distillation process is divided into two primary phases:

(1) Off-policy Distillation: At this initial phase, we combine the outputs of teacher models generated
with both /think and /no think modes for response distillation. This helps lightweight student
models develop basic reasoning skills and the ability to switch between different modes of
thinking, laying a solid foundation for the next on-policy training phase.

(2) On-policy Distillation: In this phase, the student model generates on-policy sequences for
fine-tuning. Specifically, prompts are sampled, and the student model produces responses in
either /think or /no think mode. The student model is then fine-tuned by aligning its logits
with those of a teacher model (Qwen3-32B or Qwen3-235B-A22B) to minimize the KL divergence.

4.6 Post-training Evaluation

To comprehensively evaluate the quality of instruction-tuned models, we adopted automatic benchmarks
to assess model performance under both thinking and non-thinking modes. These benchmarks are
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Table 10: Multilingual benchmarks and the included languages. The languages are identified in IETF
language tags.

Benchmark # Langs Languages

Multi-IF 8 en, es, fr, hi, it, pt, ru, zh
INCLUDE 44 ar, az, be, bg, bn, de, el, es, et, eu, fa, fi, fr, he, hi, hr, hu, hy, id, it, ja, ka,

kk, ko, lt, mk, ml, ms, ne, nl, pl, pt, ru, sq, sr, ta, te, tl, tr, uk, ur, uz, vi, zh
MMMLU 14 ar, bn, de, en, es, fr, hi, id, it, ja, ko, pt, sw, zh
MT-AIME2024 55 af, ar, bg, bn, ca, cs, cy, da, de, el, en, es, et, fa, fi, fr, gu, he, hi, hr, hu, id,

it, ja, kn, ko, lt, lv, mk, ml, mr, ne, nl, no, pa, pl, pt, ro, ru, sk, sl, so, sq, sv,
sw, ta, te, th, tl, tr, uk, ur, vi, zh-Hans, zh-Hant

PolyMath 18 ar, bn, de, en, es, fr, id, it, ja, ko, ms, pt, ru, sw, te, th, vi, zh
MLogiQA 10 ar, en, es, fr, ja, ko, pt, th, vi, zh

categorized into several dimensions:

• General Tasks: We utilize benchmarks including MMLU-Redux (Gema et al., 2024), GPQA-
Diamond (Rein et al., 2023), C-Eval (Huang et al., 2023), and LiveBench (2024-11-25) (White et al.,
2024). For GPQA-Diamond, we sample 10 times for each query and report the averaged accuracy.

• Alignment Tasks: To evaluate how well the model aligns with human preferences, we employ
a suite of specialized benchmarks. For instruction-following performance, we report the strict-
prompt accuracy of IFEval (Zhou et al., 2023). To assess alignment with human preferences on
general topics, we utilize Arena-Hard (Li et al., 2024) and AlignBench v1.1 (Liu et al., 2023b). For
writing tasks, we rely on Creative Writing V3 (Paech, 2024) and WritingBench (Wu et al., 2025) to
evaluate the model’s proficiency and creativity.

• Math & Text Reasoning: For evaluating mathematical and logical reasoning skills, we em-
ploy high-level math benchmarks including MATH-500 (Lightman et al., 2023), AIME’24 and
AIME’25 (AIME, 2025), and text reasoning tasks including ZebraLogic (Lin et al., 2025) and
AutoLogi (Zhu et al., 2025). For AIME problems, each year’s questions include Part I and Part II,
totaling 30 questions. For each question, we sample 64 times and take the average accuracy as
the final score.

• Agent & Coding: To test the model’s proficiency in coding and agent-based tasks, we use BFCL
v3 (Yan et al., 2024), LiveCodeBench (v5, 2024.10-2025.02) (Jain et al., 2024), and Codeforces
Ratings from CodeElo (Quan et al., 2025). For BFCL, all Qwen3 models are evaluated using the
FC format, and yarn was used to deploy the models to a context length of 64k for Multi-Turn
evaluation. Some baselines are derived from the BFCL leaderboard, taking the higher scores
between FC and Prompt formats. For models not reported on the leaderboard, the Prompt
formats are evaluated. For LiveCodeBench, for the non-thinking mode, we use the officially
recommended prompt, while for the thinking mode, we adjust the prompt template to allow
the model to think more freely, by removing the restriction You will not return anything
except for the program. To evaluate the performance gap between models and competitive
programming experts, we use CodeForces to calculate Elo ratings. In our benchmark, each
problem is solved by generating up to eight independent reasoning attempts.

• Multilingual Tasks: For multilingual capabilities, we evaluate four kinds of tasks: instruction
following, knowledge, mathematics, and logical reasoning. Instruction following is assessed
using Multi-IF (He et al., 2024), which focuses on 8 key languages. Knowledge assessment
consisted of two types: regional knowledge evaluated through INCLUDE (Romanou et al.,
2024), covering 44 languages, and general knowledge assessed with MMMLU (OpenAI, 2024)
across 14 languages, excluding the unoptimized Yoruba language; for these two benchmarks,
we sample only 10% of the original data to improve evaluation efficiency. The mathematics task
employ MT-AIME2024 (Son et al., 2025), encompassing 55 languages, and PolyMath (Wang et al.,
2025), which includes 18 languages. Logical reasoning is evaluated using MlogiQA, covering 10
languages, sourced from Zhang et al. (2024).

For all Qwen3 models in the thinking mode, we utilize a sampling temperature of 0.6, a top-p value
of 0.95, and a top-k value of 20. Additionally, for Creative Writing v3 and WritingBench, we apply a
presence penalty of 1.5 to encourage the generation of more diverse content. For Qwen3 models in the
non-thinking mode, we configure the sampling hyperparameters with temperature = 0.7, top-p = 0.8,
top-k = 20, and presence penalty = 1.5. For both the thinking and non-thinking modes, we set the max
output length to 32,768 tokens, except AIME’24 and AIME’25 where we extend this length to 38,912
tokens to provide sufficient thinking space.
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Table 11: Comparison among Qwen3-235B-A22B (Thinking) and other reasoning baselines. The
highest and second-best scores are shown in bold and underlined, respectively.

OpenAI-o1 DeepSeek-R1 Grok-3-Beta
(Think) Gemini2.5-Pro Qwen3-235B-A22B

Architecture - MoE - - MoE
# Activated Params - 37B - - 22B
# Total Params - 671B - - 235B

General
Tasks

MMLU-Redux 92.8 92.9 - 93.7 92.7
GPQA-Diamond 78.0 71.5 80.2 84.0 71.1
C-Eval 85.5 91.8 - 82.9 89.6
LiveBench 2024-11-25 75.7 71.6 - 82.4 77.1

Alignment
Tasks

IFEval strict prompt 92.6 83.3 - 89.5 83.4
Arena-Hard 92.1 92.3 - 96.4 95.6
AlignBench v1.1 8.86 8.76 - 9.03 8.94
Creative Writing v3 81.7 85.5 - 86.0 84.6
WritingBench 7.69 7.71 - 8.09 8.03

Math & Text
Reasoning

MATH-500 96.4 97.3 98.8 98.0
AIME’24 74.3 79.8 83.9 92.0 85.7
AIME’25 79.2 70.0 77.3 86.7 81.5
ZebraLogic 81.0 78.7 - 87.4 80.3
AutoLogi 79.8 86.1 - 85.4 89.0

Agent &
Coding

BFCL v3 67.8 56.9 - 62.9 70.8
LiveCodeBench v5 63.9 64.3 70.6 70.4 70.7
CodeForces (Rating / Percentile) 1891 / 96.7% 2029 / 98.1% - 2001 / 97.9% 2056 / 98.2%

Multilingual
Tasks

Multi-IF 48.8 67.7 - 77.8 71.9
INCLUDE 84.6 82.7 - 85.1 78.7
MMMLU 14 languages 88.4 86.4 - 86.9 84.3
MT-AIME2024 67.4 73.5 - 76.9 80.8
PolyMath 38.9 47.1 - 52.2 54.7
MLogiQA 75.5 73.8 - 75.6 77.1

Table 12: Comparison among Qwen3-235B-A22B (Non-thinking) and other non-reasoning baselines.
The highest and second-best scores are shown in bold and underlined, respectively.

GPT-4o
-2024-11-20 DeepSeek-V3 Qwen2.5-72B

-Instruct
LLaMA-4
-Maverick Qwen3-235B-A22B

Architecture - MoE Dense MoE MoE
# Activated Params - 37B 72B 17B 22B
# Total Params - 671B 72B 402B 235B

General
Tasks

MMLU-Redux 87.0 89.1 86.8 91.8 89.2
GPQA-Diamond 46.0 59.1 49.0 69.8 62.9
C-Eval 75.5 86.5 84.7 83.5 86.1
LiveBench 2024-11-25 52.2 60.5 51.4 59.5 62.5

Alignment
Tasks

IFEval strict prompt 86.5 86.1 84.1 86.7 83.2
Arena-Hard 85.3 85.5 81.2 82.7 96.1
AlignBench v1.1 8.42 8.64 7.89 7.97 8.91
Creative Writing v3 81.1 74.0 61.8 61.3 80.4
WritingBench 7.11 6.49 7.06 5.46 7.70

Math & Text
Reasoning

MATH-500 77.2 90.2 83.6 90.6 91.2
AIME’24 11.1 39.2 18.9 38.5 40.1
AIME’25 7.6 28.8 15.0 15.9 24.7
ZebraLogic 27.4 42.1 26.6 40.0 37.7
AutoLogi 65.9 76.1 66.1 75.2 83.3

Agent &
Coding

BFCL v3 72.5 57.6 63.4 52.9 68.0
LiveCodeBench v5 32.7 33.1 30.7 37.2 35.3
CodeForces (Rating / Percentile) 864 / 35.4% 1134 / 54.1% 859 / 35.0% 712 / 24.3% 1387 / 75.7%

Multilingual
Tasks

Multi-IF 65.6 55.6 65.3 75.5 70.2
INCLUDE 78.8 76.7 69.6 80.9 75.6
MMMLU 14 languages 80.3 81.1 76.9 82.5 79.8
MT-AIME2024 9.2 20.9 12.7 27.0 32.4
PolyMath 13.7 20.4 16.9 26.1 27.0
MLogiQA 57.4 58.9 59.3 59.9 67.6
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Summary of Evaluation Results From the evaluation results, we summarize several key conclusions of
the finalized Qwen3 models as follows:

(1) Our flagship model, Qwen3-235B-A22B, demonstrates the state-of-the-art overall performance
among open-source models in both the thinking and non-thinking modes, surpassing strong
baselines such as DeepSeek-R1 and DeepSeek-V3. Qwen3-235B-A22B is also highly competitive
to closed-source leading models, such as OpenAI-o1, Gemini2.5-Pro, and GPT-4o, showcasing its
profound reasoning capabilities and comprehensive general abilities.

(2) Our flagship dense model, Qwen3-32B, outperforms our previous strongest reasoning model,
QwQ-32B, in most of the benchmarks, and performs comparably to the closed-source OpenAI-o3-
mini, indicating its compelling reasoning capabilities. Qwen3-32B is also remarkably performant
in the non-thinking mode and surpasses our previous flagship non-reasoning dense model,
Qwen2.5-72B-Instruct.

(3) Our lightweight models, including Qwen3-30B-A3B, Qwen3-14B, and other smaller dense ones,
possess consistently superior performance to the open-source models with a close or larger
amount of parameters, proving the success of our Strong-to-Weak Distillation approach.

The detailed results are as follows.

Qwen3-235B-A22B For our flagship model Qwen3-235B-A22B, we compare it with the leading reason-
ing and non-reasoning models. For the thinking mode, we take OpenAI-o1 (OpenAI, 2024), DeepSeek-R1
(Guo et al., 2025), Grok-3-Beta (Think) (xAI, 2025), and Gemini2.5-Pro (DeepMind, 2025) as the reasoning
baselines. For the non-thinking mode, we take GPT-4o-2024-11-20 (OpenAI, 2024), DeepSeek-V3 (Liu
et al., 2024a), Qwen2.5-72B-Instruct (Yang et al., 2024b), and LLaMA-4-Maverick (Meta-AI, 2025) as the
non-reasoning baselines. We present the evaluation results in Table 11 and 12.

(1) From Table 11, with only 60% activated and 35% total parameters, Qwen3-235B-A22B (Thinking)
outperforms DeepSeek-R1 on 17/23 the benchmarks, particularly on the reasoning-demanded
tasks (e.g., mathematics, agent, and coding), demonstrating the state-of-the-art reasoning capabil-
ities of Qwen3-235B-A22B among open-source models. Moreover, Qwen3-235B-A22B (Thinking)
is also highly competitive to the closed-source OpenAI-o1, Grok-3-Beta (Think), and Gemini2.5-
Pro, substantially narrowing the gap in the reasoning capabilities between open-source and
close-source models.

(2) From Table 12, Qwen3-235B-A22B (Non-thinking) exceeds the other leading open-source models,
including DeepSeek-V3, LLaMA-4-Maverick, and our previous flagship model Qwen2.5-72B-
Instruct, and also surpasses the closed-source GPT-4o-2024-11-20 in 18/23 the benchmarks,
indicating its inherent strong capabilities even when not enhanced with the deliberate thinking
process.

Qwen3-32B For our flagship dense model, Qwen3-32B, we take DeepSeek-R1-Distill-Llama-70B, OpenAI-
o3-mini (medium), and our previous strongest reasoning model, QwQ-32B (Qwen Team, 2025), as the
baselines in the thinking mode. We also take GPT-4o-mini-2024-07-18, LLaMA-4-Scout, and our previ-
ous flagship model, Qwen2.5-72B-Instruct, as the baselines in the non-thinking mode. We present the
evaluation results in Table 13 and 14.

(1) From Table 13, Qwen3-32B (Thinking) outperforms QwQ-32B on 17/23 the benchmarks, making
it the new state-of-the-art reasoning model at the sweet size of 32B. Moreover, Qwen3-32B (Think-
ing) also competes with the closed-source OpenAI-o3-mini (medium) with better alignment and
multilingual performance.

(2) From Table 14, Qwen3-32B (Non-thinking) exhibits superior performance to all the baselines
on almost all the benchmarks. Particularly, Qwen3-32B (Non-thinking) performs on par with
Qwen2.5-72B-Instruct on the general tasks with significant advantages on the alignment, multi-
lingual, and reasoning-related tasks, again proving the fundamental improvements of Qwen3
over our previous Qwen2.5 series models.

Qwen3-30B-A3B & Qwen3-14B For Qwen3-30B-A3B and Qwen3-14B, we compare them with DeepSeek-
R1-Distill-Qwen-32B and QwQ-32B in the thinking mode, and Phi-4 (Abdin et al., 2024), Gemma-3-27B-IT
(Team et al., 2025), and Qwen2.5-32B-Instruct in the non-thinking mode, respectively. We present the
evaluation results in Table 15 and 16.

(1) From Table 15, Qwen3-30B-A3B and Qwen3-14B (Thinking) are both highly competitive to
QwQ-32B, especially on the reasoning-related benchmarks. It is noteworthy that Qwen3-30B-
A3B achieves comparable performance to QwQ-32B with a smaller model size and less than
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Table 13: Comparison among Qwen3-32B (Thinking) and other reasoning baselines. The highest and
second-best scores are shown in bold and underlined, respectively.

DeepSeek-R1
-Distill-Llama-70B QwQ-32B OpenAI-o3-mini

(medium) Qwen3-32B

Architecture Dense Dense - Dense
# Activated Params 70B 32B - 32B
# Total Params 70B 32B - 32B

General
Tasks

MMLU-Redux 89.3 90.0 90.0 90.9
GPQA-Diamond 65.2 65.6 76.8 68.4
C-Eval 71.8 88.4 75.1 87.3
LiveBench 2024-11-25 54.5 72.0 70.0 74.9

Alignment
Tasks

IFEval strict prompt 79.3 83.9 91.5 85.0
Arena-Hard 60.6 89.5 89.0 93.8
AlignBench v1.1 6.74 8.70 8.38 8.72
Creative Writing v3 62.1 82.4 74.8 81.0
WritingBench 6.08 7.86 7.52 7.90

Math & Text
Reasoning

MATH-500 94.5 98.0 98.0 97.2
AIME’24 70.0 79.5 79.6 81.4
AIME’25 56.3 69.5 74.8 72.9
ZebraLogic 71.3 76.8 88.9 88.8
AutoLogi 83.5 88.1 86.3 87.3

Agent &
Coding

BFCL v3 49.3 66.4 64.6 70.3
LiveCodeBench v5 54.5 62.7 66.3 65.7
CodeForces (Rating / Percentile) 1633 / 91.4% 1982 / 97.7% 2036 / 98.1% 1977 / 97.7%

Multilingual
Tasks

Multi-IF 57.6 68.3 48.4 73.0
INCLUDE 62.1 69.7 73.1 73.7
MMMLU 14 languages 69.6 80.9 79.3 80.6
MT-AIME2024 29.3 68.0 73.9 75.0
PolyMath 29.4 45.9 38.6 47.4
MLogiQA 60.3 75.5 71.1 76.3

Table 14: Comparison among Qwen3-32B (Non-thinking) and other non-reasoning baselines. The
highest and second-best scores are shown in bold and underlined, respectively.

GPT-4o-mini
-2024-07-18

LLaMA-4
-Scout

Qwen2.5-72B
-Instruct Qwen3-32B

Architecture - MoE Dense Dense
# Activated Params - 17B 72B 32B
# Total Params - 109B 72B 32B

General
Tasks

MMLU-Redux 81.5 86.3 86.8 85.7
GPQA-Diamond 40.2 57.2 49.0 54.6
C-Eval 66.3 78.2 84.7 83.3
LiveBench 2024-11-25 41.3 47.6 51.4 59.8

Alignment
Tasks

IFEval strict prompt 80.4 84.7 84.1 83.2
Arena-Hard 74.9 70.5 81.2 92.8
AlignBench v1.1 7.81 7.49 7.89 8.58
Creative Writing v3 70.3 55.0 61.8 78.3
WritingBench 5.98 5.49 7.06 7.54

Math & Text
Reasoning

MATH-500 78.2 82.6 83.6 88.6
AIME’24 8.1 28.6 18.9 31.0
AIME’25 8.8 10.0 15.0 20.2
ZebraLogic 20.1 24.2 26.6 29.2
AutoLogi 52.6 56.8 66.1 78.5

Agent &
Coding

BFCL v3 64.0 45.4 63.4 63.0
LiveCodeBench v5 27.9 29.8 30.7 31.3
CodeForces (Rating / Percentile) 1113 / 52.6% 981 / 43.7% 859 / 35.0% 1353 / 71.0%

Multilingual
Tasks

Multi-IF 62.4 64.2 65.3 70.7
INCLUDE 66.0 74.1 69.6 70.9
MMMLU 14 languages 72.1 77.5 76.9 76.5
MT-AIME2024 6.0 19.1 12.7 24.1
PolyMath 12.0 20.9 16.9 22.5
MLogiQA 42.6 53.9 59.3 62.9
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Table 15: Comparison among Qwen3-30B-A3B / Qwen3-14B (Thinking) and other reasoning baselines.
The highest and second-best scores are shown in bold and underlined, respectively.

DeepSeek-R1
-Distill-Qwen-32B QwQ-32B Qwen3-14B Qwen3-30B-A3B

Architecture Dense Dense Dense MoE
# Activated Params 32B 32B 14B 3B
# Total Params 32B 32B 14B 30B

General
Tasks

MMLU-Redux 88.2 90.0 88.6 89.5
GPQA-Diamond 62.1 65.6 64.0 65.8
C-Eval 82.2 88.4 86.2 86.6
LiveBench 2024-11-25 45.6 72.0 71.3 74.3

Alignment
Tasks

IFEval strict prompt 72.5 83.9 85.4 86.5
Arena-Hard 60.8 89.5 91.7 91.0
AlignBench v1.1 7.25 8.70 8.56 8.70
Creative Writing v3 55.0 82.4 80.3 79.1
WritingBench 6.13 7.86 7.80 7.70

Math & Text
Reasoning

MATH-500 94.3 98.0 96.8 98.0
AIME’24 72.6 79.5 79.3 80.4
AIME’25 49.6 69.5 70.4 70.9
ZebraLogic 69.6 76.8 88.5 89.5
AutoLogi 74.6 88.1 89.2 88.7

Agent &
Coding

BFCL v3 53.5 66.4 70.4 69.1
LiveCodeBench v5 54.5 62.7 63.5 62.6
CodeForces (Rating / Percentile) 1691 / 93.4% 1982 / 97.7% 1766 / 95.3% 1974 / 97.7%

Multilingual
Tasks

Multi-IF 31.3 68.3 74.8 72.2
INCLUDE 68.0 69.7 71.7 71.9
MMMLU 14 languages 78.6 80.9 77.9 78.4
MT-AIME2024 44.6 68.0 73.3 73.9
PolyMath 35.1 45.9 45.8 46.1
MLogiQA 63.3 75.5 71.1 70.1

Table 16: Comparison among Qwen3-30B-A3B / Qwen3-14B (Non-thinking) and other non-reasoning
baselines. The highest and second-best scores are shown in bold and underlined, respectively.

Phi-4 Gemma-3
-27B-IT

Qwen2.5-32B
-Instruct Qwen3-14B Qwen3-30B-A3B

Architecture Dense Dense Dense Dense MoE
# Activated Params 14B 27B 32B 14B 3B
# Total Params 14B 27B 32B 14B 30B

General
Tasks

MMLU-Redux 85.3 82.6 83.9 82.0 84.1
GPQA-Diamond 56.1 42.4 49.5 54.8 54.8
C-Eval 66.9 66.6 80.6 81.0 82.9
LiveBench 2024-11-25 41.6 49.2 50.0 59.6 59.4

Alignment
Tasks

IFEval strict prompt 62.1 80.6 79.5 84.8 83.7
Arena-Hard 75.4 86.8 74.5 86.3 88.0
AlignBench v1.1 7.61 7.80 7.71 8.52 8.55
Creative Writing v3 51.2 82.0 54.6 73.1 68.1
WritingBench 5.73 7.22 5.90 7.24 7.22

Math & Text
Reasoning

MATH-500 80.8 90.0 84.6 90.0 89.8
AIME’24 22.9 32.6 18.8 31.7 32.8
AIME’25 17.3 24.0 12.8 23.3 21.6
ZebraLogic 32.3 24.6 26.1 33.0 33.2
AutoLogi 66.2 64.2 65.5 82.0 81.5

Agent &
Coding

BFCL v3 47.0 59.1 62.8 61.5 58.6
LiveCodeBench v5 25.2 26.9 26.4 29.0 29.8
CodeForces (Rating / Percentile) 1280 / 65.3% 1063 / 49.3% 903 / 38.2% 1200 / 58.6% 1267 / 64.1%

Multilingual
Tasks

Multi-IF 49.5 69.8 63.2 72.9 70.8
INCLUDE 65.3 71.4 67.5 67.8 67.8
MMMLU 14 languages 74.7 76.1 74.2 72.6 73.8
MT-AIME2024 13.1 23.0 15.3 23.2 24.6
PolyMath 17.4 20.3 18.3 22.0 23.3
MLogiQA 53.1 58.5 58.0 58.9 53.3
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Table 17: Comparison among Qwen3-8B / Qwen3-4B (Thinking) and other reasoning baselines. The
highest and second-best scores are shown in bold and underlined, respectively.

DeepSeek-R1
-Distill-Qwen-14B

DeepSeek-R1
-Distill-Qwen-32B Qwen3-4B Qwen3-8B

Architecture Dense Dense Dense Dense
# Activated Params 14B 32B 4B 8B
# Total Params 14B 32B 4B 8B

General
Tasks

MMLU-Redux 84.1 88.2 83.7 87.5
GPQA-Diamond 59.1 62.1 55.9 62.0
C-Eval 78.1 82.2 77.5 83.4
LiveBench 2024-11-25 52.3 45.6 63.6 67.1

Alignment
Tasks

IFEval strict prompt 72.6 72.5 81.9 85.0
Arena-Hard 48.0 60.8 76.6 85.8
AlignBench v1.1 7.43 7.25 8.30 8.46
Creative Writing v3 54.2 55.0 61.1 75.0
WritingBench 6.03 6.13 7.35 7.59

Math & Text
Reasoning

MATH-500 93.9 94.3 97.0 97.4
AIME’24 69.7 72.6 73.8 76.0
AIME’25 44.5 49.6 65.6 67.3
ZebraLogic 59.1 69.6 81.0 84.8
AutoLogi 78.6 74.6 87.9 89.1

Agent &
Coding

BFCL v3 49.5 53.5 65.9 68.1
LiveCodeBench v5 45.5 54.5 54.2 57.5
CodeForces (Rating / Percentile) 1574 / 89.1% 1691 / 93.4% 1671 / 92.8% 1785 / 95.6%

Multilingual
Tasks

Multi-IF 29.8 31.3 66.3 71.2
INCLUDE 59.7 68.0 61.8 67.8
MMMLU 14 languages 73.8 78.6 69.8 74.4
MT-AIME2024 33.7 44.6 60.7 65.4
PolyMath 28.6 35.1 40.0 42.7
MLogiQA 53.6 63.3 65.9 69.0

Table 18: Comparison among Qwen3-8B / Qwen3-4B (Non-thinking) and other non-reasoning baselines.
The highest and second-best scores are shown in bold and underlined, respectively.

LLaMA-3.1-8B
-Instruct

Gemma-3
-12B-IT

Qwen2.5-7B
-Instruct

Qwen2.5-14B
-Instruct Qwen3-4B Qwen3-8B

Architecture Dense Dense Dense Dense Dense Dense
# Activated Params 8B 12B 7B 14B 4B 8B
# Total Params 8B 12B 7B 14B 4B 8B

General
Tasks

MMLU-Redux 61.7 77.8 75.4 80.0 77.3 79.5
GPQA-Diamond 32.8 40.9 36.4 45.5 41.7 39.3
C-Eval 52.0 61.1 76.2 78.0 72.2 77.9
LiveBench 2024-11-25 26.0 43.7 34.9 42.2 48.4 53.5

Alignment
Tasks

IFEval strict prompt 75.0 80.2 71.2 81.0 81.2 83.0
Arena-Hard 30.1 82.6 52.0 68.3 66.2 79.6
AlignBench v1.1 6.01 7.77 7.27 7.67 8.10 8.38
Creative Writing v3 52.8 79.9 49.8 55.8 53.6 64.5
WritingBench 4.57 7.05 5.82 5.93 6.85 7.15

Math & Text
Reasoning

MATH-500 54.8 85.6 77.6 83.4 84.8 87.4
AIME’24 6.3 22.4 9.1 15.2 25.0 29.1
AIME’25 2.7 18.8 12.1 13.6 19.1 20.9
ZebraLogic 12.8 17.8 12.0 19.7 35.2 26.7
AutoLogi 30.9 58.9 42.9 57.4 76.3 76.5

Agent &
Coding

BFCL v3 49.6 50.6 55.8 58.7 57.6 60.2
LiveCodeBench v5 10.8 25.7 14.4 21.9 21.3 22.8
CodeForces (Rating / Percentile) 473 / 14.9% 462 / 14.7% 191 / 0.0% 904 / 38.3% 842 / 33.7% 1110 / 52.4%

Multilingual
Tasks

Multi-IF 52.1 65.6 47.7 55.5 61.3 69.2
INCLUDE 34.0 65.3 53.6 63.5 53.8 62.5
MMMLU 14 languages 44.4 70.0 61.4 70.3 61.7 66.9
MT-AIME2024 0.4 16.7 5.5 8.5 13.9 16.6
PolyMath 5.8 17.6 11.9 15.0 16.6 18.8
MLogiQA 41.9 54.5 49.5 51.3 49.9 51.4
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Table 19: Comparison among Qwen3-1.7B / Qwen3-0.6B (Thinking) and other reasoning baselines.
The highest and second-best scores are shown in bold and underlined, respectively.

DeepSeek-R1
-Distill-Qwen-1.5B

DeepSeek-R1
-Distill-Llama-8B Qwen3-0.6B Qwen3-1.7B

Architecture Dense Dense Dense Dense
# Activated Params 1.5B 8B 0.6B 1.7B
# Total Params 1.5B 8B 0.6B 1.7B

General
Tasks

MMLU-Redux 45.4 66.4 55.6 73.9
GPQA-Diamond 33.8 49.0 27.9 40.1
C-Eval 27.1 50.4 50.4 68.1
LiveBench 2024-11-25 24.9 40.6 30.3 51.1

Alignment
Tasks

IFEval strict prompt 39.9 59.0 59.2 72.5
Arena-Hard 4.5 17.6 8.5 43.1
AlignBench v1.1 5.00 6.24 6.10 7.60
Creative Writing v3 16.4 51.1 30.6 48.0
WritingBench 4.03 5.42 5.61 7.02

Math & Text
Reasoning

MATH-500 83.9 89.1 77.6 93.4
AIME’24 28.9 50.4 10.7 48.3
AIME’25 22.8 27.8 15.1 36.8
ZebraLogic 4.9 37.1 30.3 63.2
AutoLogi 19.1 63.4 61.6 83.2

Agent &
Coding

BFCL v3 14.0 21.5 46.4 56.6
LiveCodeBench v5 13.2 42.5 12.3 33.2

Multilingual
Tasks

Multi-IF 13.3 27.0 36.1 51.2
INCLUDE 21.9 34.5 35.9 51.8
MMMLU 14 languages 27.3 40.1 43.1 59.1
MT-AIME2024 12.4 13.2 7.8 36.1
PolyMath 14.5 10.8 11.4 25.2
MLogiQA 29.0 32.8 40.9 56.0

Table 20: Comparison among Qwen3-1.7B / Qwen3-0.6B (Non-thinking) and other non-reasoning
baselines. The highest and second-best scores are shown in bold and underlined, respectively.

Gemma-3
-1B-IT Phi-4-mini Qwen2.5-1.5B

-Instruct
Qwen2.5-3B

-Instruct Qwen3-0.6B Qwen3-1.7B

Architecture Dense Dense Dense Dense Dense Dense
# Activated Params 1.0B 3.8B 1.5B 3.1B 0.6B 1.7B
# Total Params 1.0B 3.8B 1.5B 3.1B 0.6B 1.7B

General
Tasks

MMLU-Redux 33.3 67.9 50.7 64.4 44.6 64.4
GPQA-Diamond 19.2 25.2 29.8 30.3 22.9 28.6
C-Eval 28.5 40.0 53.3 68.2 42.6 61.0
LiveBench 2024-11-25 14.4 25.3 18.0 23.8 21.8 35.6

Alignment
Tasks

IFEval strict prompt 54.5 68.6 42.5 58.2 54.5 68.2
Arena-Hard 17.8 32.8 9.0 23.7 6.5 36.9
AlignBench v1.1 5.3 6.00 5.60 6.49 5.60 7.20
Creative Writing v3 52.8 10.3 31.5 42.8 28.4 43.6
WritingBench 5.18 4.05 4.67 5.55 5.13 6.54

Math & Text
Reasoning

MATH-500 46.4 67.6 55.0 67.2 55.2 73.0
AIME’24 0.9 8.1 0.9 6.7 3.4 13.4
AIME’25 0.8 5.3 0.4 4.2 2.6 9.8
ZebraLogic 1.9 2.7 3.4 4.8 4.2 12.8
AutoLogi 16.4 28.8 22.5 29.9 37.4 59.8

Agent &
Coding

BFCL v3 16.3 31.3 47.8 50.4 44.1 52.2
LiveCodeBench v5 1.8 10.4 5.3 9.2 3.6 11.6

Multilingual
Tasks

Multi-IF 32.8 40.5 20.2 32.3 33.3 44.7
INCLUDE 32.7 43.8 33.1 43.8 34.4 42.6
MMMLU 14 languages 32.5 51.4 40.4 51.8 37.1 48.3
MT-AIME2024 0.2 0.9 0.7 1.6 1.5 4.9
PolyMath 3.5 6.7 5.0 7.3 4.6 10.3
MLogiQA 31.8 39.5 40.9 39.5 37.3 41.1
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1/10 activated parameters, demonstrating the effectiveness of our Strong-to-Weak Distillation
approach in endowing lightweight models with profound reasoning capabilities.

(2) From Table 16, Qwen3-30B-A3B and Qwen3-14B (Non-thinking) surpass the non-reasoning
baselines in most of the benchmarks. They exceed our previous Qwen2.5-32B-Instruct model
with significantly fewer activated and total parameters, allowing for more efficient and cost-
effective performance.

Qwen3-8B / 4B / 1.7B / 0.6B For Qwen3-8B and Qwen3-4B, we compare them with DeepSeek-R1-Distill-
Qwen-14B and DeepSeek-R1-Distill-Qwen-32B in the thinking mode, and LLaMA-3.1-8B-Instruct (Dubey
et al., 2024), Gemma-3-12B-IT (Team et al., 2025), Qwen2.5-7B-Instruct, and Qwen2.5-14B-Instruct in the
non-thinking mode, respectively. For Qwen3-1.7B and Qwen3-0.6B, we compare them with DeepSeek-
R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-Llama-8B in the thinking mode, and Gemma-3-1B-IT,
Phi-4-mini, Qwen2.5-1.5B-Instruct, and Qwen2.5-3B-Instruct in the non-thinking mode, respectively. We
present the evaluation results of Qwen3-8B and Qwen3-4B in Table 17 and 18 and those of Qwen3-1.7B
and Qwen3-0.6B in Table 19 and 20, respectively. Overall, these edge-side models exhibit impressive
performance and outperform baselines even with more parameters, including our previous Qwen2.5
models, in either the thinking or the non-thinking mode. These results, once again, demonstrate the
efficacy of our Strong-to-Weak Distillation approach, making it possible for us to build the lightweight
Qwen3 models with remarkably reduced costs and efforts.

4.7 Discussion

The Effectiveness of Thinking Budget To verify that Qwen3 can enhance its intelligence level by
leveraging an increased thinking budget, we adjust the allocated thinking budget on four benchmarks
across Mathematics, Coding, and STEM domains. The resulting scaling curves are presented in Figure 2,
Qwen3 demonstrates scalable and smooth performance improvements correlated to the allocated thinking
budget. Moreover, we observe that if we further extend the output length beyond 32K, the model’s
performance is expected to improve further in the future. We leave this exploration as future work.

Figure 2: Performance of Qwen3-235B-A22B with respect to the thinking budget.

The Effectiveness and Efficiency of On-Policy Distillation We evaluate the effectiveness and efficiency
of on-policy distillation by comparing the performance and computational cost—measured in GPU
hours—after undergoing distillation versus direct reinforcement learning, both starting from the same
off-policy distilled 8B checkpoint. For simplicity, we focus solely on math and code-related queries in
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this comparison. The results, summarized in Table 21, show that distillation achieves significantly better
performance than reinforcement learning while requiring approximately only 1/10 of the GPU hours.
Furthermore, distillation from teacher logits enables the student model to expand its exploration space
and enhance its reasoning potential, as evidenced by the improved pass@64 scores on the AIME’24
and AIME’25 benchmarks after distillation, compared to the initial checkpoint. In contrast, reinforce-
ment learning does not lead to any improvement in pass@64 scores. These observations highlight the
advantages of leveraging a stronger teacher model in guiding student model learning.

Table 21: Comparison of reinforcement learning and on-policy distillation on Qwen3-8B. Numbers in
parentheses indicate pass@64 scores.

Method AIME’24 AIME’25 MATH500 LiveCodeBench
v5

MMLU
-Redux

GPQA
-Diamond

GPU
Hours

Off-policy Distillation 55.0 (90.0) 42.8 (83.3) 92.4 42.0 86.4 55.6 -
+ Reinforcement Learning 67.6 (90.0) 55.5 (83.3) 94.8 52.9 86.9 61.3 17,920
+ On-policy Distillation 74.4 (93.3) 65.5 (86.7) 97.0 60.3 88.3 63.3 1,800

The Effects of Thinking Mode Fusion and General RL To evaluate the effectiveness of Thinking Mode
Fusion and General Reinforcement Learning (RL) during the post-training, we conduct evaluations on
various stages of the Qwen-32B model. In addition to the datasets mentioned earlier, we introduce several
in-house benchmarks to monitor other capabilities. These benchmarks include:

• CounterFactQA: Contains counterfactual questions where the model needs to identify that the
questions are not factual and avoid generating hallucinatory answers.

• LengthCtrl: Includes creative writing tasks with length requirements; the final score is based on
the difference between the generated content length and the target length.

• ThinkFollow: Involves multi-turn dialogues with randomly inserted /think and /no think
flags to test whether the model can correctly switch thinking modes based on user queries.

• ToolUse: Evaluates the stability of the model in single-turn, multi-turn, and multi-step tool calling
processes. The score includes accuracy in intent recognition, format accuracy, and parameter
accuracy during the tool calling process.

Table 22: Performance of Qwen3-32B after Reasoning RL (Stage 2), Thinking Mode Fusion (Stage 3), and
General RL (Stage 4). Benchmarks with * are in-house datasets.

Stage 2
Reasoning RL

Stage 3
Thinking Mode Fusion

Stage 4
General RL

Benchmark Thinking Thinking Non-Thinking Thinking Non-Thinking

General
Tasks

LiveBench 2024-11-25 68.6 70.9+2.3 57.1 74.9+4.0 59.8+2.8

Arena-Hard 86.8 89.4+2.6 88.5 93.8+4.4 92.8+4.3

CounterFactQA* 50.4 61.3+10.9 64.3 68.1+6.8 66.4+2.1

Instruction
& Format
Following

IFEval strict prompt 73.0 78.4+5.4 78.4 85.0+6.6 83.2+4.8

Multi-IF 61.4 64.6+3.2 65.2 73.0+8.4 70.7+5.5

LengthCtrl* 62.6 70.6+8.0 84.9 73.5+2.9 87.3+2.4

ThinkFollow* - 88.7 98.9+10.2

Agent BFCL v3 69.0 68.4-0.6 61.5 70.3+1.9 63.0+1.5

ToolUse* 63.3 70.4+7.1 73.2 85.5+15.1 86.5+13.3

Knowledge &
STEM

MMLU-Redux 91.4 91.0-0.4 86.7 90.9-0.1 85.7-1.0

GPQA-Diamond 68.8 69.0+0.2 50.4 68.4-0.6 54.6+4.3

Math &
Coding

AIME’24 83.8 81.9-1.9 28.5 81.4-0.5 31.0+2.5

LiveCodeBench v5 68.4 67.2-1.2 31.1 65.7-1.5 31.3+0.2

The results are shown in Table 22, where we can draw the following conclusions:

(1) Stage 3 integrates the non-thinking mode into the model, which already possesses thinking
capabilities after the first two stages of training. The ThinkFollow benchmark score of 88.7
indicates that the model has developed an initial ability to switch between modes, though it still
occasionally makes errors. Stage 3 also enhances the model’s general and instruction-following
capabilities in thinking mode, with CounterFactQA improving by 10.9 points and LengthCtrl by
8.0 points.
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(2) Stage 4 further strengthens the model’s general, instruction-following, and agent capabilities
in both thinking and non-thinking modes. Notably, the ThinkFollow score improves to 98.9,
ensuring accurate mode switching.

(3) For Knowledge, STEM, Math, and Coding tasks, Thinking Mode Fusion and General RL do
not bring significant improvements. In contrast, for challenging tasks like AIME’24 and Live-
CodeBench, the performance in thinking mode actually decreases after these two training stages.
We conjecture this degradation is due to the model being trained on a broader range of general
tasks, which may compromise its specialized capabilities in handling complex problems. During
the development of Qwen3, we choose to accept this performance trade-off to enhance the
model’s overall versatility.

5 Conclusion

In this technical report, we introduce Qwen3, the latest version of the Qwen series. Qwen3 features
both thinking mode and non-thinking mode, allowing users to dynamically manage the number of
tokens used for complex thinking tasks. The model was pre-trained on an extensive dataset containing
36 trillion tokens, enabling it to understand and generate text in 119 languages and dialects. Through a
series of comprehensive evaluations, Qwen3 has shown strong performance across a range of standard
benchmarks for both pre-trained and post-trained models, including tasks related to code generation,
mathematics, reasoning, and agents.

In the near future, our research will focus on several key areas. We will continue to scale up pretraining by
using data that is both higher in quality and more diverse in content. At the same time, we will work on
improving model architecture and training methods for the purposes of effective compression, scaling to
extremely long contexts, etc. In addition, we plan to increase computational resources for reinforcement
learning, with a particular emphasis on agent-based RL systems that learn from environmental feedback.
This will allow us to build agents capable of tackling complex tasks that require inference time scaling.
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A Appendix

A.1 Additional Evaluation Results

A.1.1 Long-Context Ability

Table 23: Performance of Qwen3 Models on the RULER benchmark.

Model RULER

Avg. 4K 8K 16K 32K 64K 128K

Qwen2.5-7B-Instruct 85.4 96.7 95.1 93.7 89.4 82.3 55.1
Qwen2.5-14B-Instruct 91.4 97.7 96.8 95.9 93.4 86.7 78.1
Qwen2.5-32B-Instruct 92.9 96.9 97.1 95.5 95.5 90.3 82.0
Qwen2.5-72B-Instruct 95.1 97.7 97.2 97.7 96.5 93.0 88.4

Non-Thinking
Mode

Qwen3-4B 85.2 95.1 93.6 91.0 87.8 77.8 66.0
Qwen3-8B 89.1 96.3 96.0 91.8 91.2 82.1 77.4
Qwen3-14B 94.6 98.0 97.8 96.4 96.1 94.0 85.1
Qwen3-32B 93.7 98.4 96.0 96.2 94.4 91.8 85.6
Qwen3-30B-A3B 91.6 96.5 97.0 95.3 92.4 89.1 79.2
Qwen3-235B-A22B 95.0 97.7 97.2 96.4 95.1 93.3 90.6

Thinking
Mode

Qwen3-4B 83.5 92.7 88.7 86.5 83.2 83.0 67.2
Qwen3-8B 84.4 94.7 94.4 86.1 80.8 78.3 72.0
Qwen3-14B 90.1 95.4 93.6 89.8 91.9 90.6 79.0
Qwen3-32B 91.0 94.7 93.7 91.6 92.5 90.0 83.5
Qwen3-30B-A3B 86.6 94.1 92.7 89.0 86.6 82.1 75.0
Qwen3-235B-A22B 92.2 95.1 94.8 93.0 92.3 92.0 86.0

For evaluating long-context processing capabilities, we report the results on the RULER benchmark (Hsieh
et al., 2024) in Table 23. To enable length extrapolation, we utilize YARN (Peng et al., 2023) with a
scaling factor=4. In thinking mode, we set the thinking budget to 8192 tokens to mitigate overly
verbose reasoning on the extremely long inputs.

The results show that:

1. In non-thinking mode, Qwen3 outperforms Qwen2.5 models of a similar size in long-context
processing tasks.

2. In thinking mode, the model’s performance slightly degrades. We hypothesize that the thinking
content does not provide significant benefits for these retrieval tasks, which do not rely on
reasoning and may instead interfere with the retrieval process. We are committed to enhancing
the long-context capability in the thinking mode in future versions.

A.1.2 Multilingual Ability

Table 24-35 presents the detailed benchmark scores across various languages, including Spanish, French,
Portuguese, Italian, Arabic, Japanese, Korean, Indonesian, Russian, Vietnamese, German, and Thai. The
results of these tables demonstrate that the Qwen3 series models achieve competitive performance across
all evaluated benchmarks, showcasing their strong multilingual capabilities.

To evaluate the performance of Qwen3 across a broader range of languages, we utilize Belebele (Bandarkar
et al., 2023), a benchmark for natural language understanding. We conduct evaluations on 80 supported
languages from the benchmark, excluding 42 unoptimized languages, as shown in Table 36 (organized
by language family). The performance comparison between Qwen3 and other baseline models on
the Belebele benchmark is presented in Table 37. The results show that Qwen3 achieves comparable
performance to similarly-sized Gemma models while outperforming Qwen2.5 significantly.
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Table 24: Benchmark scores for language: Spanish (es). The highest and second-best scores are shown
in bold and underlined, respectively.

Model Multi-IF MLogiQA INCLUDE MMMLU MT-AIME24 PolyMath Average

Thinking

Gemini2.5-Pro 80.1 70.0 96.4 88.7 90.0 54.4 79.9
QwQ-32B 70.0 75.0 81.8 84.5 76.7 52.2 73.4
Qwen3-235B-A22B 74.2 76.2 89.1 86.7 86.7 57.3 78.4
Qwen3-32B 74.7 68.8 90.9 82.8 76.7 51.8 74.3
Qwen3-30B-A3B 74.9 71.2 80.0 81.9 76.7 48.5 72.2
Qwen3-14B 76.2 67.5 83.6 81.1 73.3 50.3 72.0
Qwen3-8B 74.1 70.0 78.2 79.2 70.0 43.7 69.2
Qwen3-4B 69.1 68.8 72.7 75.7 66.7 42.3 65.9
Qwen3-1.7B 56.0 55.0 72.7 64.5 46.7 30.2 54.2
Qwen3-0.6B 39.2 42.5 54.5 48.8 13.3 14.3 35.4

Non-thinking

GPT-4o-2024-1120 67.5 52.5 89.1 80.6 10.0 15.5 52.5
Gemma-3-27b-IT 73.5 57.5 89.1 77.7 30.0 22.4 58.4
Qwen2.5-72B-Instruct 66.7 61.3 80.0 80.1 20.0 18.8 54.5
Qwen3-235B-A22B 71.7 66.2 83.6 83.7 33.3 29.5 61.3
Qwen3-32B 72.1 65.0 83.6 80.4 26.7 24.7 58.8
Qwen3-30B-A3B 72.1 53.8 85.5 78.3 33.3 25.0 58.0
Qwen3-14B 76.2 63.7 78.2 77.4 40.0 25.0 60.1
Qwen3-8B 73.1 50.0 80.0 73.7 16.7 21.3 52.5
Qwen3-4B 65.8 50.0 60.0 68.3 13.3 17.3 45.8
Qwen3-1.7B 47.9 43.8 50.9 54.3 10.0 11.6 36.4
Qwen3-0.6B 35.5 37.5 43.6 39.5 3.3 5.8 27.5

Table 25: Benchmark scores for language: French (fr). The highest and second-best scores are shown in
bold and underlined, respectively.

Model Multi-IF MLogiQA INCLUDE MMMLU MT-AIME24 PolyMath Average

Thinking

Gemini2.5-Pro 80.5 73.8 85.7 88.3 80.0 52.8 76.8
QwQ-32B 72.4 78.8 76.2 84.0 80.0 49.4 73.5
Qwen3-235B-A22B 77.3 78.8 85.7 86.6 86.7 57.4 78.8
Qwen3-32B 76.7 81.2 76.2 82.1 83.3 47.1 74.4
Qwen3-30B-A3B 75.2 67.5 83.3 81.0 76.7 46.9 71.8
Qwen3-14B 77.6 71.2 73.8 80.4 73.3 44.2 70.1
Qwen3-8B 73.8 66.2 85.7 77.9 70.0 45.3 69.8
Qwen3-4B 71.3 63.7 71.4 74.5 66.7 40.2 64.6
Qwen3-1.7B 52.6 56.2 54.8 64.8 60.0 28.7 52.8
Qwen3-0.6B 36.1 48.8 47.6 48.4 6.7 14.0 33.6

Non-thinking

GPT-4o-2024-1120 67.8 56.2 85.7 81.8 10.0 15.3 52.8
Gemma-3-27b-IT 73.9 57.5 73.8 78.3 23.3 21.5 54.7
Qwen2.5-72B-Instruct 72.1 55.0 81.0 80.2 26.7 15.7 55.1
Qwen3-235B-A22B 73.2 65.0 88.1 81.1 36.7 28.1 62.0
Qwen3-32B 75.8 60.0 73.8 79.5 30.0 23.0 57.0
Qwen3-30B-A3B 75.6 52.5 69.0 77.9 26.7 27.3 54.8
Qwen3-14B 78.4 63.7 73.8 75.1 33.3 24.4 58.1
Qwen3-8B 71.9 52.5 71.4 71.7 20.0 21.4 51.5
Qwen3-4B 64.2 47.5 61.9 67.6 20.0 19.2 46.7
Qwen3-1.7B 46.1 43.8 64.3 53.2 3.3 11.6 37.0
Qwen3-0.6B 32.8 35.0 38.1 39.4 6.7 4.6 26.1
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Table 26: Benchmark scores for language: Portuguese (pt). The highest and second-best scores are
shown in bold and underlined, respectively.

Model Multi-IF MLogiQA INCLUDE MMMLU MT-AIME24 PolyMath Average

Thinking

Gemini2.5-Pro 80.5 73.8 83.9 88.9 73.3 52.2 75.4
QwQ-32B 70.5 70.0 80.4 84.0 80.0 48.7 72.3
Qwen3-235B-A22B 73.6 78.8 78.6 86.2 86.7 58.3 77.0
Qwen3-32B 74.1 76.2 76.8 82.6 80.0 52.4 73.7
Qwen3-30B-A3B 76.1 71.2 71.4 81.0 76.7 49.3 71.0
Qwen3-14B 77.3 68.8 75.0 81.6 83.3 46.7 72.1
Qwen3-8B 73.9 67.5 75.0 78.6 56.7 44.8 66.1
Qwen3-4B 70.6 62.5 71.4 75.1 73.3 44.2 66.2
Qwen3-1.7B 55.6 60.0 53.6 64.6 46.7 28.2 51.4
Qwen3-0.6B 38.7 33.8 42.9 47.5 10.0 12.7 30.9

Non-thinking

GPT-4o-2024-1120 66.8 57.5 78.6 80.7 10.0 15.0 51.4
Gemma-3-27b-IT 72.9 55.0 75.0 77.1 33.3 20.9 55.7
Qwen2.5-72B-Instruct 68.8 55.0 71.4 82.2 23.3 11.3 52.0
Qwen3-235B-A22B 72.5 67.5 82.1 83.5 33.3 28.3 61.2
Qwen3-32B 71.1 61.3 73.2 80.6 30.0 23.9 56.7
Qwen3-30B-A3B 72.3 47.5 67.9 77.8 26.7 24.0 52.7
Qwen3-14B 75.5 58.8 75.0 76.5 26.7 25.8 56.4
Qwen3-8B 71.9 56.2 71.4 72.9 20.0 19.7 52.0
Qwen3-4B 66.1 50.0 73.2 66.7 10.0 18.1 47.4
Qwen3-1.7B 49.5 33.8 39.3 52.9 6.7 12.8 32.5
Qwen3-0.6B 36.6 37.5 42.9 37.5 3.3 5.7 27.2

Table 27: Benchmark scores for language: Italian (it). The highest and second-best scores are shown in
bold and underlined, respectively.

Model Multi-IF INCLUDE MMMLU MT-AIME24 PolyMath Average

Thinking

Gemini2.5-Pro 80.9 100.0 87.2 90.0 54.1 82.4
QwQ-32B 71.2 96.4 84.9 76.7 49.3 75.7
Qwen3-235B-A22B 73.7 96.4 85.7 80.0 57.4 78.6
Qwen3-32B 76.6 90.9 81.6 80.0 49.7 75.8
Qwen3-30B-A3B 75.9 94.5 81.9 80.0 48.1 76.1
Qwen3-14B 79.0 94.5 80.2 70.0 47.0 74.1
Qwen3-8B 74.6 89.1 77.5 76.7 46.1 72.8
Qwen3-4B 69.8 83.6 74.4 76.7 44.5 69.8
Qwen3-1.7B 54.6 74.5 64.2 53.3 29.6 55.2
Qwen3-0.6B 37.8 45.5 45.9 6.7 13.3 29.8

Non-thinking

GPT-4o-2024-1120 67.6 98.2 80.7 13.3 15.2 55.0
Gemma-3-27b-IT 74.6 90.9 78.4 23.3 20.5 57.5
Qwen2.5-72B-Instruct 67.2 94.5 80.7 16.7 16.7 55.2
Qwen3-235B-A22B 72.9 92.7 82.6 33.3 28.6 62.0
Qwen3-32B 71.4 92.7 79.5 30.0 23.0 59.3
Qwen3-30B-A3B 73.9 87.3 77.7 33.3 24.8 59.4
Qwen3-14B 75.8 89.1 75.7 26.7 27.6 59.0
Qwen3-8B 72.1 85.5 72.9 13.3 23.8 53.5
Qwen3-4B 63.0 78.2 67.8 23.3 19.3 50.3
Qwen3-1.7B 46.1 70.9 53.4 6.7 11.9 37.8
Qwen3-0.6B 35.1 43.6 39.0 0.0 4.5 24.4
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Table 28: Benchmark scores for language: Arabic (ar). The highest and second-best scores are shown in
bold and underlined, respectively.

Model MLogiQA INCLUDE MMMLU MT-AIME24 PolyMath Average

Thinking

Gemini2.5-Pro 75.0 89.3 87.8 76.7 52.6 76.3
QwQ-32B 75.0 67.9 81.8 80.0 41.3 69.2
Qwen3-235B-A22B 80.0 71.4 83.6 76.7 53.7 73.1
Qwen3-32B 66.2 73.2 80.1 86.7 47.0 70.6
Qwen3-30B-A3B 66.2 66.1 77.2 83.3 47.3 68.0
Qwen3-14B 71.2 67.9 77.4 83.3 46.6 69.3
Qwen3-8B 65.0 67.9 74.4 76.7 44.9 65.8
Qwen3-4B 62.5 55.4 67.7 66.7 41.2 58.7
Qwen3-1.7B 55.0 44.6 53.2 36.7 25.8 43.1
Qwen3-0.6B 40.0 41.1 38.9 10.0 11.7 28.3

Non-thinking

GPT-4o-2024-1120 51.2 78.6 80.9 13.3 12.9 47.4
Gemma-3-27b-IT 56.2 62.5 74.4 26.7 22.8 48.5
Qwen2.5-72B-Instruct 56.2 66.1 77.2 6.7 14.7 44.2
Qwen3-235B-A22B 66.2 67.9 79.5 40.0 28.2 56.4
Qwen3-32B 55.0 69.6 75.7 23.3 25.4 49.8
Qwen3-30B-A3B 48.8 64.3 71.6 30.0 22.6 47.5
Qwen3-14B 52.5 60.7 69.5 23.3 23.5 45.9
Qwen3-8B 45.0 58.9 64.6 13.3 16.4 39.6
Qwen3-4B 52.5 42.9 56.7 13.3 15.3 36.1
Qwen3-1.7B 31.2 37.5 43.6 3.3 9.4 25.0
Qwen3-0.6B 40.0 39.3 35.4 0.0 3.8 23.7

Table 29: Benchmark scores for language: Japanese (ja). The highest and second-best scores are shown
in bold and underlined, respectively.

Model MLogiQA INCLUDE MMMLU MT-AIME24 PolyMath Average

Thinking

Gemini2.5-Pro 72.5 74.5 83.8 83.3 55.4 73.9
QwQ-32B 73.8 86.3 82.3 53.3 39.9 67.1
Qwen3-235B-A22B 75.0 94.1 84.8 73.3 52.7 76.0
Qwen3-32B 70.0 90.2 80.2 76.7 47.7 73.0
Qwen3-30B-A3B 66.2 88.2 79.9 73.3 47.4 71.0
Qwen3-14B 68.8 88.2 79.4 66.7 45.7 69.8
Qwen3-8B 71.2 86.3 74.9 73.3 44.7 70.1
Qwen3-4B 63.7 80.4 72.5 53.3 40.7 62.1
Qwen3-1.7B 53.8 74.5 61.8 36.7 28.5 51.1
Qwen3-0.6B 47.5 47.1 45.1 13.3 14.5 33.5

Non-thinking

GPT-4o-2024-1120 60.0 92.2 81.9 10.0 12.5 51.3
Gemma-3-27b-IT 66.2 86.3 76.5 20.0 17.3 53.3
Qwen2.5-72B-Instruct 55.0 94.1 77.7 16.7 17.7 52.2
Qwen3-235B-A22B 67.5 92.2 80.9 26.7 26.9 58.8
Qwen3-32B 58.8 92.2 78.0 20.0 20.5 53.9
Qwen3-30B-A3B 51.2 82.4 74.9 30.0 20.6 51.8
Qwen3-14B 55.0 84.3 73.8 33.3 19.8 53.2
Qwen3-8B 47.5 82.4 69.9 20.0 18.5 47.7
Qwen3-4B 46.2 76.5 64.8 13.3 15.1 43.2
Qwen3-1.7B 40.0 68.6 46.3 3.3 11.6 34.0
Qwen3-0.6B 37.5 37.3 37.9 3.3 3.7 23.9
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Table 30: Benchmark scores for language: Korean (ko). The highest and second-best scores are shown in
bold and underlined, respectively.

Model MLogiQA INCLUDE MMMLU MT-AIME24 PolyMath Average

Thinking

Gemini2.5-Pro 75.0 88.0 85.9 76.7 50.0 75.1
QwQ-32B 76.2 72.0 81.8 60.0 40.0 66.0
Qwen3-235B-A22B 71.2 80.0 84.7 80.0 55.7 74.3
Qwen3-32B 71.2 74.0 79.2 80.0 48.5 70.6
Qwen3-30B-A3B 68.8 72.0 78.6 76.7 46.6 68.5
Qwen3-14B 67.5 74.0 79.6 76.7 46.0 68.8
Qwen3-8B 60.0 80.0 74.7 76.7 42.3 66.7
Qwen3-4B 66.2 74.0 68.8 70.0 40.6 63.9
Qwen3-1.7B 53.8 66.0 57.8 43.3 25.2 49.2
Qwen3-0.6B 33.8 52.0 41.5 13.3 11.8 30.5

Non-thinking

GPT-4o-2024-1120 63.7 80.0 80.5 13.3 12.9 50.1
Gemma-3-27b-IT 58.8 76.0 75.9 20.0 18.3 49.8
Qwen2.5-72B-Instruct 58.8 68.0 76.7 6.7 17.7 45.6
Qwen3-235B-A22B 63.7 76.0 79.8 33.3 27.9 56.1
Qwen3-32B 60.0 74.0 77.2 26.7 21.2 51.8
Qwen3-30B-A3B 52.5 72.0 72.5 16.7 20.7 46.9
Qwen3-14B 52.5 68.0 73.3 20.0 18.7 46.5
Qwen3-8B 52.5 76.0 66.5 23.3 16.3 46.9
Qwen3-4B 46.2 74.0 59.9 13.3 16.6 42.0
Qwen3-1.7B 48.8 58.0 46.0 6.7 9.0 33.7
Qwen3-0.6B 40.0 52.0 36.9 0.0 5.5 26.9

Table 31: Benchmark scores for language: Indonesian (id). The highest and second-best scores are
shown in bold and underlined, respectively.

Model INCLUDE MMMLU MT-AIME24 PolyMath Average

Thinking

Gemini2.5-Pro 80.0 86.3 83.3 51.3 75.2
QwQ-32B 76.4 83.7 73.3 47.3 70.2
Qwen3-235B-A22B 80.0 87.2 80.0 53.5 75.2
Qwen3-32B 80.0 82.0 76.7 45.6 71.1
Qwen3-30B-A3B 81.8 80.4 80.0 44.9 71.8
Qwen3-14B 78.2 79.6 70.0 45.3 68.3
Qwen3-8B 72.7 77.7 70.0 43.8 66.0
Qwen3-4B 70.9 72.3 66.7 41.2 62.8
Qwen3-1.7B 63.6 61.2 36.7 26.8 47.1
Qwen3-0.6B 36.4 46.6 10.0 12.6 26.4

Non-thinking

GPT-4o-2024-1120 80.0 81.1 10.0 14.7 46.4
Gemma-3-27b-IT 76.4 75.9 13.3 22.6 47.0
Qwen2.5-72B-Instruct 74.5 78.8 10.0 16.6 45.0
Qwen3-235B-A22B 81.8 81.9 33.3 27.5 56.1
Qwen3-32B 81.8 77.2 23.3 24.3 51.6
Qwen3-30B-A3B 70.9 76.4 30.0 25.9 50.8
Qwen3-14B 70.9 74.1 26.7 24.6 49.1
Qwen3-8B 78.2 69.6 20.0 21.6 47.4
Qwen3-4B 67.3 66.5 13.3 19.0 41.5
Qwen3-1.7B 52.7 49.0 3.3 10.8 29.0
Qwen3-0.6B 52.7 40.0 3.3 5.1 25.3
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Table 32: Benchmark scores for language: Russian (ru). The highest and second-best scores are shown
in bold and underlined, respectively.

Model Multi-IF INCLUDE MT-AIME24 PolyMath Average

Thinking

Gemini2.5-Pro 68.1 80.4 70.0 52.3 67.7
QwQ-32B 61.2 73.2 76.7 43.6 63.7
Qwen3-235B-A22B 62.2 80.4 80.0 53.1 68.9
Qwen3-32B 62.5 73.2 63.3 46.5 61.4
Qwen3-30B-A3B 60.7 76.8 73.3 45.4 64.0
Qwen3-14B 63.6 80.4 66.7 46.4 64.3
Qwen3-8B 62.9 69.6 63.3 37.7 58.4
Qwen3-4B 52.8 69.6 56.7 36.6 53.9
Qwen3-1.7B 37.8 46.4 20.0 22.8 31.8
Qwen3-0.6B 26.4 46.4 3.3 7.0 20.8

Non-thinking

GPT-4o-2024-1120 52.0 80.4 20.0 13.7 41.5
Gemma-3-27b-IT 57.3 71.4 23.3 21.6 43.4
Qwen2.5-72B-Instruct 54.1 67.9 20.0 13.3 38.8
Qwen3-235B-A22B 56.7 75.0 40.0 26.1 49.4
Qwen3-32B 58.6 71.4 30.0 23.3 45.8
Qwen3-30B-A3B 58.0 73.2 30.0 21.1 45.6
Qwen3-14B 60.3 71.4 26.7 24.2 45.6
Qwen3-8B 59.3 58.9 20.0 22.8 40.2
Qwen3-4B 46.1 58.9 13.3 17.8 34.0
Qwen3-1.7B 34.8 41.1 3.3 13.2 23.1
Qwen3-0.6B 25.5 46.4 0.0 5.8 19.4

Table 33: Benchmark scores for language: Vietnamese (vi). The highest and second-best scores are
shown in bold and underlined, respectively.

Model MLogiQA INCLUDE MT-AIME24 PolyMath Average

Thinking

Gemini2.5-Pro 72.5 89.1 70.0 52.1 70.9
QwQ-32B 71.2 69.1 70.0 49.2 64.9
Qwen3-235B-A22B 75.0 87.3 83.3 55.1 75.2
Qwen3-32B 67.5 81.8 83.3 44.0 69.2
Qwen3-30B-A3B 68.8 78.2 76.7 46.1 67.4
Qwen3-14B 72.5 72.7 73.3 45.8 66.1
Qwen3-8B 65.0 72.7 73.3 42.9 63.5
Qwen3-4B 68.8 63.6 60.0 42.2 58.6
Qwen3-1.7B 52.5 61.8 30.0 26.9 42.8
Qwen3-0.6B 33.8 38.2 6.7 9.8 22.1

Non-thinking

GPT-4o-2024-1120 57.5 81.8 10.0 13.0 40.6
Gemma-3-27b-IT 52.5 74.5 33.3 20.6 45.2
Qwen2.5-72B-Instruct 61.3 72.7 26.7 18.6 44.8
Qwen3-235B-A22B 70.0 83.6 36.7 27.1 54.4
Qwen3-32B 60.0 81.8 23.3 21.8 46.7
Qwen3-30B-A3B 52.5 81.8 20.0 24.7 44.8
Qwen3-14B 63.7 67.3 20.0 21.6 43.2
Qwen3-8B 48.8 65.5 20.0 19.1 38.4
Qwen3-4B 48.8 65.5 20.0 19.0 38.3
Qwen3-1.7B 36.2 60.0 3.3 10.9 27.6
Qwen3-0.6B 30.0 36.4 3.3 3.9 18.4
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Table 34: Benchmark scores for language: German (de). The highest and second-best scores are shown
in bold and underlined, respectively.

Model INCLUDE MMMLU MT-AIME24 PolyMath Average

Thinking

Gemini2.5-Pro 50.0 85.6 86.7 53.8 69.0
QwQ-32B 57.1 83.8 76.7 51.0 67.2
Qwen3-235B-A22B 71.4 86.0 83.3 55.4 74.0
Qwen3-32B 64.3 81.9 86.7 48.1 70.2
Qwen3-30B-A3B 64.3 81.9 80.0 46.6 68.2
Qwen3-14B 57.1 80.9 70.0 48.1 64.0
Qwen3-8B 64.3 78.1 66.7 43.6 63.2
Qwen3-4B 57.1 74.0 73.3 43.1 61.9
Qwen3-1.7B 64.3 63.4 36.7 26.8 47.8
Qwen3-0.6B 57.1 47.6 10.0 13.7 32.1

Non-thinking

GPT-4o-2024-1120 57.1 80.4 10.0 13.5 40.2
Gemma-3-27b-IT 57.1 76.1 26.7 20.2 45.0
Qwen2.5-72B-Instruct 64.3 79.9 16.7 19.3 45.0
Qwen3-235B-A22B 71.4 81.7 40.0 25.9 54.8
Qwen3-32B 57.1 77.2 30.0 21.9 46.6
Qwen3-30B-A3B 57.1 77.7 23.3 25.2 45.8
Qwen3-14B 57.1 76.0 30.0 24.5 46.9
Qwen3-8B 64.3 70.8 20.0 19.9 43.8
Qwen3-4B 64.3 66.0 26.7 16.4 43.4
Qwen3-1.7B 42.9 53.2 10.0 10.6 29.2
Qwen3-0.6B 42.9 37.8 3.3 5.7 22.4

Table 35: Benchmark scores for language: Thai (th). The highest and second-best scores are shown in
bold and underlined, respectively.

Model MLogiQA MT-AIME24 PolyMath Average

Thinking

Gemini2.5-Pro 73.8 80.0 50.7 68.2
QwQ-32B 75.0 60.0 41.3 58.8
Qwen3-235B-A22B 73.8 86.7 53.6 71.4
Qwen3-32B 73.8 76.7 46.9 65.8
Qwen3-30B-A3B 63.7 80.0 45.2 63.0
Qwen3-14B 65.0 76.7 44.4 62.0
Qwen3-8B 68.8 70.0 41.3 60.0
Qwen3-4B 60.0 60.0 39.4 53.1
Qwen3-1.7B 48.8 33.3 23.7 35.3
Qwen3-0.6B 33.8 13.3 11.4 19.5

Non-thinking

GPT-4o-2024-1120 52.5 10.0 11.9 24.8
Gemma-3-27b-IT 50.0 16.7 19.0 28.6
Qwen2.5-72B-Instruct 58.8 6.7 17.4 27.6
Qwen3-235B-A22B 61.3 23.3 27.6 37.4
Qwen3-32B 61.3 13.3 22.2 32.3
Qwen3-30B-A3B 50.0 30.0 22.3 34.1
Qwen3-14B 47.5 23.3 22.1 31.0
Qwen3-8B 42.5 10.0 17.2 23.2
Qwen3-4B 43.8 13.3 16.1 24.4
Qwen3-1.7B 42.5 6.7 9.5 19.6
Qwen3-0.6B 37.5 0.0 3.6 13.7
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Table 36: Language families and language codes supported by Qwen3 in Belebele Benchmark

Language family # Langs Language code (ISO 639-3 ISO 15924)

Indo-European 40

por Latn, deu Latn, tgk Cyrl, ces Latn, nob Latn, dan Latn, snd Arab, spa Latn,
isl Latn, slv Latn, eng Latn, ory Orya, hrv Latn, ell Grek, ukr Cyrl, pan Guru,
srp Cyrl, npi Deva, mkd Cyrl, guj Gujr, nld Latn, swe Latn, hin Deva, rus Cyrl,
asm Beng, cat Latn, als Latn, sin Sinh, urd Arab, mar Deva, lit Latn, slk Latn,
ita Latn, pol Latn, bul Cyrl, afr Latn, ron Latn, fra Latn, ben Beng, hye Armn

Sino-Tibetan 3 zho Hans, mya Mymr, zho Hant
Afro-Asiatic 8 heb Hebr, apc Arab, acm Arab, ary Arab, ars Arab, arb Arab, mlt Latn, erz Arab
Austronesian 7 ilo Latn, ceb Latn, tgl Latn, sun Latn, jav Latn, war Latn, ind Latn
Dravidian 4 mal Mlym, kan Knda, tel Telu, tam Taml
Turkic 4 kaz Cyrl, azj Latn, tur Latn, uzn Latn
Tai-Kadai 2 tha Thai, lao Laoo
Uralic 3 fin Latn, hun Latn, est Latn
Austroasiatic 2 vie Latn, khm Khmr
Other 7 eus Latn, kor Hang, hat Latn, swh Latn, kea Latn, jpn Jpan, kat Geor

Table 37: Comparison of Belebele Benchmark performance between Qwen3 and other baseline models.
Scores are highlighted with the highest in bold and the second-best underlined.

Model Indo-
European

Sino-
Tibetan

Afro-
Asiatic Austronesian Dravidian Turkic Tai-

Kadai Uralic Austroasiatic Other

Gemma-3-27B-IT 89.2 86.3 85.9 84.1 83.5 86.8 81.0 91.0 86.5 87.0
Qwen2.5-32B-Instruct 85.5 82.3 80.4 70.6 67.8 80.8 74.5 87.0 79.0 72.6
QwQ-32B 86.1 83.7 81.9 71.3 69.3 80.3 77.0 88.0 83.0 74.0
Qwen3-32B (Thinking) 90.7 89.7 84.8 86.7 84.5 89.3 83.5 91.3 88.0 83.1
Qwen3-32B (Non-thinking) 89.1 88.0 82.3 83.7 84.0 85.0 85.0 88.7 88.0 81.3

Gemma-3-12B-IT 85.8 83.3 83.4 79.3 79.0 82.8 77.5 89.0 83.0 81.6
Qwen2.5-14B-Instruct 82.7 78.9 80.4 69.1 66.2 74.2 72.2 83.9 77.9 70.4
Qwen3-14B (Thinking) 88.6 87.3 82.4 82.4 81.0 83.8 83.5 91.0 82.5 81.7
Qwen3-14B (Non-thinking) 87.4 82.7 80.1 80.7 78.0 81.8 80.5 87.7 81.5 77.0

Gemma-3-4B-IT 71.8 72.0 63.5 61.7 64.8 64.0 61.5 70.7 71.0 62.6
Qwen2.5-3B-Instruct 58.0 62.3 57.2 47.9 36.9 45.1 49.8 50.6 56.8 48.4
Qwen3-4B (Thinking) 82.2 77.7 74.1 73.0 74.3 76.3 68.5 83.0 74.5 67.9
Qwen3-4B (Non-thinking) 76.0 77.0 65.6 65.6 65.5 64.0 60.5 74.0 74.0 61.0

Gemma-3-1B-IT 36.5 36.0 30.0 29.1 28.8 27.3 28.0 32.7 33.0 30.9
Qwen2.5-1.5B-Instruct 41.5 43.0 39.6 34.8 28.6 29.7 39.4 33.8 42.0 36.0
Qwen3-1.7B (Thinking) 69.7 66.0 59.4 58.6 52.8 57.8 53.5 70.3 63.5 53.4
Qwen3-1.7B (Non-thinking) 58.8 62.7 50.8 53.0 43.3 48.0 46.0 54.3 54.0 43.9
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