
Seed1.5-Thinking: Advancing Superb Reasoning Models
with Reinforcement Learning

ByteDance Seed

Full author list in Contributions

Abstract

We introduce Seed1.5-Thinking, capable of reasoning through thinking before responding, resulting
in improved performance on a wide range of benchmarks. Seed1.5-Thinking achieves 86.7 on
AIME 2024, 55.0 on Codeforces and 77.3 on GPQA, demonstrating excellent reasoning abilities in
STEM and coding. Beyond reasoning tasks, the method demonstrates notable generalization across
diverse domains. For instance, it surpasses DeepSeek R1 by 8% in win rate on non-reasoning tasks,
indicating its broader applicability. Compared to other state-of-the-art reasoning models, Seed1.5-
Thinking is a Mixture-of-Experts (MoE) model with a relatively small size, featuring 20B activated
and 200B total parameters. As part of our e!ort to assess generalized reasoning, we develop two
internal benchmarks, BeyondAIME and Codeforces, both of which will be publicly released to
support future research. Model trial link: https://www.volcengine.com/experience/ark.

Date: April 10, 2025

Figure 1 Benchmark performance on reasoning tasks

1

ar
X

iv
:2

50
4.

13
91

4v
3

 [c
s.C

L]
 2

9
A

pr
 2

02
5

1 Introduction

Driven by large-scale reinforcement learning on large language models, reasoning models have seen significant
advancements. Notably, OpenAI’s o1 series [1], DeepSeek’s R1 [2], Google’s Gemini 2.5 [3], and Anthropic’s
Claude 3.7 [4] have emerged as state-of-the-art models, each making substantial progress in logical reasoning,
mathematical problem-solving, and code generation. These advancements underscore a shift toward more
structured, e"cient and scalable reasoning models, with ongoing research focusing on training e"ciency, long
chain-of-thought, and large-scale reinforcement learning.

In this work, we present a new reasoning model, called Seed1.5-Thinking. This model has achieved strong
performance in both reasoning and non-reasoning tasks.

Mathematical Reasoning : For math competition, Seed1.5-Thinking achieves 86.7 on AIME 2024, matching
the performance of o3-mini-high and significantly outperforming o1 and DeepSeek R1, demonstrating
competitive strength. Since AIME 2024 no longer provides su"cient discrimination, we construct a more
challenging evaluation set named BeyondAIME. All problems in BeyondAIME are newly curated by
human experts and designed to minimize the chance of being solved through memorization or guessing.
While Seed1.5-Thinking surpasses both o1 and R1, there remains a performance gap compared to o3
and Gemini pro 2.5. This also further demonstrates the discriminative power of the new evaluation set.

Competitive Programming : For the evaluation of competitive programming, we adopt Codeforces as our
benchmark. Unlike some prior works that rely on Elo Scores, which contains estimation and are not
directly comparable, we adopt a concrete evaluation protocol based on the most recent 12 Codeforces
contests. Specifically, we report pass@1 and pass@8 metrics, where pass@k indicates whether the model
solves the problem within k attempts, i.e., selecting the best result from k generated submissions. We
choose to report pass@8 since it provides more stable results and aligns more closely with actual user
submission patterns. Seed1.5-Thinking outperforms DeepSeek R1 on both metrics, though a performance
gap remains compared to o3. The evaluation set will be made publicly available in a future release.

Science : Seed1.5-Thinking reaches a score of 77.3 on GPQA, close to o3-level performance. Importantly,
this gain is largely attributed to improved generalization from mathematical training, rather than an
increase in domain-specific science data.

Non-reasoning Tasks : For non-reasoning tasks, Seed1.5-Thinking is evaluated using a test set designed to
replicate real-world user needs. Through human evaluations conducted against DeepSeek R1 across
diverse scenarios, Seed1.5-Thinking demonstrates significant advancements: it attains an 8.0% overall
rise in users’ positive feedback, thereby highlighting its augmented ability to manage intricate user
scenarios.

There are three key points in the development of high-quality reasoning models: training data, RL algorithm,
and RL infrastructure. We have devoted considerable e!ort to these three areas, and we will discuss them in
detail.

Data For SFT training, unlike conventional post-training data, reasoning models rely on chain-of-thought
data, which explicitly outlines the step-by-step reasoning process. Our preliminary experiments showed
that too much non-CoT SFT data can significantly reduce the model’s ability to explore. For RL
training, we incorporate four categories of data: STEM problems, code-related tasks, logic reasoning and
non-reasoning data like creative writing and dialogue. Among these, the logic reasoning data contributes
to performance improvements on the ARC-AGI benchmark significantly. The math data exhibits strong
generalization capabilities and can lead to broad performance improvements across tasks.

RL Algorithm RL training of reasoning models is highly unstable and often crashes, especially for models
without SFT. Sometimes, the score di!erence between two runs can be as high as 10 points. The stable
training of RL systems is crucial for the success of reasoning models. To address these long-standing
issues, we have pioneered VAPO[5] and DAPO[6]—two distinct frameworks tailored for actor-critic and
policy-gradient RL paradigms, respectively. VAPO now stands as the state-of-the-art (SOTA) solution
in actor-critic methods, while DAPO establishes a new SOTA result for policy-gradient approaches

2

without critic models. By targeting the core instability issues in RL training, both methods deliver
robust and consistent training trajectories, e!ectively enabling reliable optimization of reasoning models.

RL Infrastructure The complexity of Large Language Models (LLM) based reinforcement learning systems
demands robust infrastructure to ensure scalability, reproducibility, and computational e"ciency.
To handle heterogeneous workloads, we decouple streaming rollout architecture that asynchronously
processes partial trajectory generations through prioritized sample pools, achieving 3→ faster iteration
cycles than synchronous frameworks. The system also supports mixed-precision training with automatic
fault recovery, critical for maintaining stability during large-scale RL runs.

2 Data

2.1 RL Training Data

Our RL training data consists of two main parts: verifiable problems with definitive answers and non-verifiable
problems without definitive answers. The model’s reasoning ability primarily comes from the first part and
can be generalized to the second part.

2.1.1 Verifiable Problems

The Verifiable problems primarily comprise STEM questions paired with answers, coding problems equipped
with unit tests, and logic reasonings that are amenable to automated verification.

STEM Data

Our dataset consists of several hundred thousand high-quality, competition-grade problems spanning math-
ematics, physics, and chemistry, with mathematics comprising the majority (over 80%). These problems
are drawn from a mix of open-source datasets, public competitions (both domestic and international), and
proprietary collections.

For data cleaning, we first eliminate questions with incomplete statements, inconsistent notation, or unclear
requirements. For the remaining questions, we use our model (Doubao-Pro 1.5) to generate multiple responses.
Problems for which the model achieved a woN score (worst of N) of 1 are deemed too simple and removed.
Finally, some questions may have an inaccurate reference answer. We use SOTA reasoning models to
generate multiple candidate responses for each question. If the model’s answers were inconsistent with the
reference answer, but the model’s outputs showed high internal consistency, or involved only a very small
number of reasoning tokens, we consider the reference answer to be incorrect. Human experts then conduct
manual verification on these questions to ensure that the reference answers are correct. We also apply
data augmentation to make the data more suitable for learning and evaluation. Specifically, we convert
multiple-choice questions into fill-in-the-blank or short-answer formats to eliminate the possibility of guessing
and to better assess reasoning ability. And we modify certain math problems to ensure that the answers are
integers whenever possible.

After data cleaning and augmentation, we finally obtain a training set of 100k STEM problems. During
training, we use model-based Seed-Verifier to evaluate response correctness, which is introduced in 3.1.

Code Data

For coding problems, we prioritize the source of high-quality and challenging algorithmic tasks, primarily
drawn from esteemed competitive programming contests.

We filter data to ensure that each problem includes a comprehensive specification: a clear problem description,
a set of unit tests, and a checker script. Unit tests validate the functional correctness of solutions, while the
checker script enforces additional constraints such as output formatting and edge cases. We also perform
di"culty filtering, ensuring that problems possess an appropriate level of complexity and applicability to
real-world algorithmic reasoning.

For evaluation, the most accurate form is to submit the generated code to the o"cial platforms. However,
during reinforcement learning, real-time submission isn’t feasible. Thus, we developed an o!-line evaluation

3

set for e"cient local validation. Our observations indicate a strong correlation between o#ine evaluation
results and o"cial verdicts. All training and evaluation problems are integrated into an in-house code sandbox
environment, enabling direct execution and assessment of model-generated code. We ensure the sandbox’s
stability and high throughput to deliver consistent and accurate feedback during the RL training process.

Logical Puzzle Data

For the logic reasoning data, we gather 22 commonly studied tasks, such as 24-point, mazes, Sudoku, etc.
For each task, we construct a data generator and an answer verifier. The data generator can automatically
produce a large amount of training and evaluation data. Moreover, for many of the tasks, we can configure
the di"culty of the generated problems. During the training process, we gradually adjust the di"culty of the
training data based on the model’s performance on certain tasks. The answer verifier rigorously evaluates the
generation correctness and can be seamlessly integrated into RL pipelines as reward functions. We generate
about 10k puzzle problems for RL training.

2.1.2 Non-verifiable Problems

Non-verifiable problems mainly encompass non-reasoning tasks requiring quality assessment based on human
preferences, involving tasks like creative writing, translation, knowledge QA, role-playing, and so on. The
prompts are originated from RL training data for Doubao-1.5 Pro [7]. The dataset has su"cient coverage
across diverse domains.

We discard data with low sample score variance and low di"culty. To be specific, we use the SFT model to
generate multiple candidates for each prompt and then score them using a reward model. Prompts with low
score variances are removed as they exhibit limited sampling diversity and minimal potential for improvement.
Prompts are also removed where the reward score improvement surpasses a certain threshold during the
Doubao 1.5 Pro RL training process [8]. This is because such data may be overly simplistic or already
abundantly represented in the dataset. O#ine experiments show that overoptimizing such samples leads to
premature collapse of the model’s exploration space and diminish the performance.

For these non-verifiable data, we employ a pairwise rewarding method for scoring and RL training. By
comparing the relative quality of two samples, this approach aids the model in better understanding user
preferences, enhancing the quality and diversity of generated results. The detail of the reward model is
introduced in 3.2.

2.2 Advanced Math Benchmark

The current reasoning models usually use AIME as the go-to benchmark to evaluate mathematical reasoning
abilities. However, with only 30 problems released annually, its limited size can lead to high-variance evaluation
results, making it challenging to e!ectively di!erentiate between state-of-the-art reasoning models. To better
evaluate models’ capabilities in mathematical reasoning, we construct a new benchmark dataset: BeyondAIME.
Specifically, we collaborate with mathematics specialists to develop original problems informed by established
competition formats. We systematically adapt existing competition questions through structural modifications
and scenario reconfigurations, ensuring no direct duplication occurs. Furthermore, we ensure that the answers
are never trivial values—such as numbers explicitly mentioned in the problem statement—to reduce the
chance of models guessing the correct answer without proper reasoning.

Through this rigorous filtering and curation process, we compile a final set of 100 problems, each with a
di"culty level equal to or greater than that of the hardest questions in AIME. Similar to AIME, all answers
are guaranteed to be integers (without being restricted to a specific numerical range), which simplifies and
stabilizes the evaluation process.

3 Reward Modeling

As a crucial component in RL, reward modeling defines the objective or goal that the policy is trying to
achieve. Thus, a well-designed reward mechanism is essential to provide precise and reliable reward signals for

4

Verifier-type Training examples (approximate) Human labeled testset

Seed-Verifier > 98% 82.7%
Seed-Thinking-Verifier > 99% 99.3%

Table 1 Accuracy of two verifier-types. Specifically, the accuracy on the training set is derived from the training
statistics. Additionally, we manually annotated 456 samples to form the test set, which are specifically selected from
cases that the Seed-Verifier can not handle stably.

model responses during the training stage. For verifiable and non-verifiable problems, we employ distinct
reward modeling methodologies.

3.1 Reward Modeling for Verifiable Problems

With proper principles and thought trajectories, we utilize LLMs to judge a wide array of verifiable questions
across diverse scenarios. This approach yields a more generalized solution that surpasses the limitations of
rule-based reward systems.

We have designed two progressive reward modeling solutions, Seed-Verifier and Seed-Thinking-Verifier:

• Seed-Verifier is based on a set of meticulously crafted principles written by humans. It leverages the
powerful foundational capabilities of LLMs to evaluate a triplet consisting of the question, reference
answer, and model-generated answer. If the reference answer and model-generated answer are essentially
equivalent, it returns “YES”; otherwise, it returns “NO”. The equivalence here is not a literal exact match
but rather a deeper assessment based on computational rules and mathematical principles that prove
the two answers convey the same mathematical meaning. This approach ensures that the reward signal
accurately reflects whether the model’s response is correct in essence, even if the wording di!ers.

• Seed-Thinking-Verifier is inspired by the human judgment process, which generates conclusive judgments
through meticulous thinking and in-depth analysis. To achieve this, we trained a verifier that provides a
detailed reasoning path for its evaluations. Specifically, we treated this as a verifiable task and optimized
it alongside other mathematical reasoning tasks. This verifier can dissect the similarities and di!erences
between the reference and model-generated answers, o!ering precise and nuanced judgment results.

The Seed-Thinking-Verifier significantly alleviates three major issues associated with the Seed-Verifier:

• Reward Hacking: Non-thinking models may exploit loopholes to receive rewards without truly under-
standing the problem. The detailed reasoning process in Seed-Thinking-Verifier makes such hacking
more di"cult.

• Uncertainty in Predictions: In cases where the reference and model-generated answers are essentially
equivalent, which may di!er in format, e.g., 219 vs 524288, the Seed-Verifier might sometimes return
“YES” and other times “NO”. The Seed-Thinking-Verifier provides consistent results by thoroughly
analyzing the reasoning behind the answers.

• Failure on Corner Cases: There are certain edge cases that the Seed-Verifier struggles to handle e!ectively.
The ability of Seed-Thinking-Verifier to provide detailed reasoning allows it to better address these
complex scenarios.

Table 1 presents the performance of the above two verifiers. The results indicate that the Seed-Verifier
struggles to e!ectively handle some particular cases, whereas the Seed-Thinking-Verifier demonstrates a
remarkable ability to provide accurate judgments. While the thinking process of the latter does consume a
significant amount of GPU resources, we believe that the precise and robust reward results it generates are
crucial for endowing the policy with strong reasoning capabilities.

5

3.2 Reward Modeling for Non-verifiable Problems

For non-verifiable problems, we train a reward model for RL training. The reward model training data is
consistent with the human preference data utilized in Doubao 1.5 Pro [7], primarily encompassing categories
such as creative writing and summarization.

To enhance the e!ectiveness of reward model, we adopt the pairwise generative reward model mentioned in [9],
which evaluates the superiority of two responses and use the probability of “YES” or “NO” as the final reward
score. This approach enables the model to directly compare di!erences between responses during scoring,
thereby avoiding excessive focus on irrelevant details. Experimental results demonstrate that this reward
modeling method improves the stability of RL training, particularly in the mixed training scenarios involving
both non-verifiable and verifiable problems, by minimizing conflicts between the two di!erent types of reward
modeling paradigms. This improvement may be attributed to the pairwise generative reward model’s inherent
advantage in mitigating outlier score generation compared to conventional reward models, therefore avoiding
significant discrepancies in score distributions with the verifier.

4 Approach

4.1 Supervised Fine-Tuning

Our training process starts with supervised fine-tuning (SFT). The SFT phase sets a solid foundation
for the subsequent reinforcement learning stage. Compared to initiating RL from a base model, the SFT
model produces more readable outputs, exhibits fewer instances of hallucination, and demonstrates reduced
harmfulness. We curate an SFT data comprising 400k training instance, including 300k verifiable problems and
100k non-verifiable problems. Verifiable prompts are randomly sampled from RL training set. Non-verifiable
data are sourced from the SFT data used for Doubao-Pro 1.5 [7], covering areas such as creative writing,
knowledge-based QA, safety, and function calling.

To generate high-quality responses with long CoT, we employ an iterative workflow that integrates model
synthesis, human annotation, and rejection sampling. Initially, human experts apply prompt engineering
techniques or engage in interactive dialogues with an internal model to produce responses with various
reasoning patterns. After accumulating tens of high-quality cold-start samples, we can train a reasoning model
with long CoT as a more capable assistant. Then we perform rejection sampling on this reasoning model using
Seed-Verifier. While this workflow is primarily applied to mathematical data, we observe it can generalize
well to other domains, such as coding, logic puzzle and even creative writing. Thus, for other domains, we
also conduct a cold start process followed by rejection sampling to produce detailed reasoning trajectories.

During training, each instance is truncated to 32,000 tokens. We fine-tune the base model for two epochs
using the above data. We use a cosine decay learning rate scheduling that the peak lr is 2→ 10→5 and decays
to 2→ 10→6 gradually.

4.2 Reinforcement Learning

We have developed a unified reinforcement learning framework that seamlessly fuses data from a broad range
of domains. This integration incorporates three data categories:

• Verifiable data, which obtains feedback from a verifier. This type of data allows for direct validation of
the model’s outputs against known criteria.

• General data, scored by a reward model. The reward model assigns scores based on how well the model’s
responses align with human preferences.

• A specific class of data that combines scores from both the verifier and the reward model. This hybrid
data type leverages the strengths of both verification and reward-based evaluation.

In the context of long-CoT RLHF, we encounter several challenges such as value model bias and the sparsity
of reward signals. To address these issues, we draw on key techniques from our prior work [5, 6, 10]:

6

• Value-Pretraining: We sample responses from a fixed policy, such as ωsft, and update the value model
using the Monte-Carlo return. This process ensures that the initialized value model is fully aligned with
our policy ωsft. Maintaining this alignment has been proven to be crucial for preserving the model’s
CoT pattern, enabling the model to generate coherent and logical CoT.

• Decoupled-GAE: By employing di!erent Generalized Advantage Estimation (GAE) parameters, such as
εvalue = 1.0 and εpolicy = 0.95, we allow the value model to update in an unbiased manner. Meanwhile,
the policy can independently balance its own bias and variance. This decoupling enables more e"cient
and stable training of the model.

• Length-adaptive GAE: We set εpolicy = 1 ↑ 1
ωl , where ϑ is a hyper-parameter and l is the response

length. This approach ensures a more uniform distribution of Temporal Di!erence (TD) errors across
both short and long sequences. As a result, the model can handle sequences of varying lengths more
e!ectively during training.

• Dynamic Sampling: We employ dynamic sampling and filter out prompts with accuracy scores equal to
1 or 0, retaining only those in the batch that exhibit e!ective gradients. This process helps prevent the
dampening of gradient signals during model training.

• Clip-Higher: In the Proximal Policy Optimization (PPO) algorithm, we decouple the upper and lower
clip bounds as follows:

LCLIP (ϖ) = Êt

[
min

(
rt(ϖ)Ât, clip(rt(ϖ), 1↑ ϱlow, 1 + ϱhigh)Ât

)]
(1)

By increasing the value of ϱhigh, we create more room for the increase of low-probability tokens. This
encourages the model to explore a wider range of possible responses, enhancing its ability to discover
novel and e!ective solutions.

• Token-level Loss: Instead of defining the policy loss over entire responses, we define it over all tokens.
This approach addresses the imbalance in the token-level contribution to the final loss, ensuring that
each token’s impact on the training process is appropriately accounted for.

• Positive Example LM Loss: This loss function is designed to boost the utilization e"ciency of positive
samples during the RL training process. We add a language model loss with a coe"cient µ for positive
examples:

L(ϖ) = LPPO(ϖ) + µ ↓ LNLL(ϖ) (2)

This additional loss term helps the model to better learn from positive examples, improving its overall
performance.

When merging data from di!erent domains and incorporating diverse scoring mechanisms, we face the challenge
of interference between di!erent data domains. This interference can arise from disparities in di"culty levels,
the risk of reward-hacking, and other underlying factors. These issues make it extremely di"cult to achieve
uniform and simultaneous improvements across all capabilities of the model. To counteract this, we introduce
Online Data Distribution Adaptation. This method transforms the stationary prompt distribution during
reinforcement learning into an adaptive distribution that better caters to the model’s requirements during
training. By doing so, we minimize the negative impact of data interference and ensure a more balanced
improvement across di!erent abilities. As a result, the model can enhance its performance more consistently
across a wide array of tasks.

5 Infrastructures

5.1 Framework

The training framework is built using HybridFlow [11] programming abstraction. The whole training workload
runs on top of a Ray [12] cluster. The dataloader and RL algorithm is implemented in a single process Ray
Actor (single controller). The model training and response generation (rollout) is implemented in a Ray

7

Worker Group. The Ray Worker Group exposes a set of APIs (e.g., generate_response/train_batch, etc,.),
which runs heavy training/generation workload via SPMD (single program, multiple data) inside the Worker
Group. The single controller invokes various APIs exposed by the Ray Worker Group to construct the training
flow. HybridFlow programming abstraction enables fast prototyping of RL algorithm ideas without bothering
with complex distributed systems.

Seed1.5-Thinking is trained through hybrid engine architecture [13], where all the models are co-located.
This prevents the idle time of the GPUs when switching between training and generation. During Long-CoT
generation, we observe severe straggler phenomenon caused by the large di!erence of the response length
between various prompts. This causes massive GPU idle time during generation. To mitigate the straggler
of long-tail response generation, we propose SRS (Streaming Rollout System) - a resource-aware scheduling
framework that strategically deploys standalone streaming-compute units to transform system constraints
from memory-bound to compute-bound.

5.2 Streaming Rollout System

The SRS architecture introduces streaming rollout to decouple model evolution from runtime execution,
enabling dynamic adjustment of on/o!-policy sample ratios through parametric ϑ:

• Define the completion ratio (ϑ ↔ [0, 1]) as the proportion of samples generated on-policy using the latest
model version

• Allocate the remaining non-complete segment (1- ϑ) to o!-policy rollouts from versioned model snapshots,
seamlessly integrated through asynchronous continuation of partial generations on the standalone
resources.

In addition, we also implement dynamic precision scheduling during environment interaction phases, which
deploys FP8 policy networks via post-training quantization with error-compensated range scaling. To address
token imbalance in MoE systems, we implement a three-tiered parallel architecture combining TP (tensor
parallelism) for layer-wise computation, EP (expert parallelism) with dynamic expert assignment, and SP
(sequence parallelism) for context chunking. Our kernel auto-tuner dynamically selects optimal CUDA kernel
configurations based on real-time load monitoring.

5.3 Training System

To e"ciently train the Seed1.5-Thinking model at scale, we design a hybrid distributed training framework
that integrates advanced parallelism strategies, dynamic workload balancing, and memory optimizations.
Below we detail the core technical innovations driving the system’s e"ciency and scalability.

• Parallelism mechanisms. We compose TP (tensor parallelism)/EP (expert parallelism)/CP (context
parallelism) with Fully Sharded Data Parallelism (FSDP) to train Seed1.5-Thinking. Specifically, we
applied TP/CP for attention layers, and EP for MoE layers.

• Sequence length balancing. The e!ective sequence length can be imbalanced across DP ranks, leading
to imbalanced computation workload and low training e"ciency. To address this challenge, we leverage
KARP [14] algorithm that rearranges the input sequences within one mini-batch to make them balance
among micro-batches.

• Memory optimization. We adopt layer-wise recomputation [15], activation o#oad and optimizer o#oad
to support training of larger micro-batches to overlap the communication overhead caused by FSDP.

• Auto parallelism. To enable optimal system performance, we develop an automatic tuning system,
referred to as AutoTuner. Specifically, AutoTuner models the memory usage following a profile-based
solution [16]. Then, it estimates the performance and memory usage of various configurations to obtain
the optimal configuration.

• Checkpoint. We employ ByteCheckpoint [17] to support checkpoint resume from di!erent distributed
configurations with minimal overhead. This enables users to elastically train the tasks to improve cluster
e"ciency.

8

Benchmark Seed1.5-Thinking DeepSeek R1 OpenAI o3-mini Grok 3 Beta Gemini 2.5 pro

Mathematics
AIME 2025 74.0% 65.0% 86.5% 77.3% 86.7%

AIME 2024 86.7% 79.8% 87.3 % 83.9% 92.0%

Beyond AIME 48.0% 42.4% 63.6 % - 58.8%

Science
GPQA diamond 77.3% 71.5% 79.7% 80.2% 84.0%

SuperGPQA 62.1% 60.5% 52.2% 62.8% 65.3%

MMLU-PRO 87.0% 85.6% 82.4% 84.6% 86.3%

Code
Codeforces avg@8 36.3% 32.0% 50.9% - 40.3%

Codeforces pass@8 55.0% 45.0% 67.5% - 56.3%

LiveCodeBench v5 64.9% 64.3% 74.1% 70.6% 70.4%

Aider Polyglot 54.2% 56.9% 68.6% - 74.0%

Agentic Coding
SWE-bench verified 47.0% 49.2% 49.3% - 63.8%

SWE-bench verified
*

47.0% 46.2% 44.5% - 63.8%

Logic reasoning
ARC-AGI 39.9% 18.3% 25.8% 31.9% 27.6%

Factuality
SimpleQA 12.9% 30.1% 13.8% 43.6% 52.9%

Instruction
Collie 73.1% 34.2% 87.6% 33.6% 62.5%

IFEval 87.4% 86.1% 93.7% 83.4% 91.5%

Table 2 Results of State-of-the-Art Reasoning Models
*
Results from our internal sandbox, which may di!er from the reported results due to inconsistencies in the testing environment.

6 Experiment Results

6.1 Auto Evaluation Results

Table 2 presents the evaluation results across diverse tasks spanning mathematics, coding, science, and general
knowledge domains. For mathematical benchmark tasks, results are calculated as the average across 32 model
responses, while GPQA task results are averaged over 8 responses. For Codeforces, we report both avg@8 and
pass@8, because pass@8 aligns better with human submission habits. Results for all other tasks are averaged
over 1 response.

In mathematical reasoning, Seed1.5-Thinking achieves top-tier performance on the AIME 2024 benchmark,
scoring 86.7, matching the performance of OpenAI’s o3-mini-high model. However, on the more recent AIME
2025 and the advanced BeyondAIME challenges, Seed1.5-Thinking still lags behind o3-level performance. For
the GPQA task, Seed1.5-Thinking achieves an 77.3% accuracy rate, close to the performance of o3-mini-high.
In code generation scenarios such as Codeforces, Seed1.5-Thinking nearly matches the performance of Gemini
2.5 Pro but still trails behind o3-mini-high. Notably, Seed1.5-Thinking demonstrates less impressive results
on SimpleQA. It is worth emphasizing that this benchmark primarily functions as a memory-oriented metric,
where performance is more strongly correlated with pre-trained model scale rather than genuine reasoning
capabilities.

6.2 Human Evaluation Results

To evaluate model performance on subjective tasks, where automated metrics are insu"cient to capture
nuanced human preferences, we conduct human evaluations across a diverse suite of non-reasoning scenarios.
Our assessments are designed to measure key dimensions of quality, such as coherence, relevance, creativity,
and adherence to human-centric preferences, with a panel of domain-expert evaluators rating model outputs
against Deepseek R1 under predefined rubrics. We use a 5-point ordinal scale, ranging from 0(very poor)
to 4(excellent), and evaluate both models on session prompts with multiple rounds. Each full session is

9

annotated with a binary win/loss outcome to capture the overall user experience and a single 0-4 score is
assigned per-round.

Seed1.5-Thinking achieves an overall win ratio of 8.0% on the evaluated sessions, indicating superiority in
aligning with human-centric preferences. Further more, this win rate is consistent across diverse scenarios, from
creative writing to humanities knowledge elaboration. Figure 2 shows the per-round level score distribution.

Figure 2 Rating Distribution

6.3 Effects of pre-train models

Rejection Sampling. Rejection sampling has been identified as a valuable technique for improving model
performance [2]. We perform an ablation to examine whether initializing RL with a rejection fine-tuning
(RFT) model impacts outcomes. Our results show that the pretrained model initialized with RFT saturates
more quickly during training but ultimately achieves lower performance than the model trained without RFT,
as shown in Table 3.

Consistent algorithm rankings across model size. We observe that RL algorithms demonstrate consistent
ranking behaviors across di!erent models of varying sizes and architectures. As illustrated in Table 4,
Seed-150B-MoE, a model that di!ers from Qwen-32B in both architecture (MoE vs. dense) and size, exhibits
a consistent ranking. Notably, this consistency suggests that Qwen-32B can e!ectively serve as a proxy model
for investigating RL algorithms.

Models AIME avg@32

Baseline 58%
w/ RFT 54%

Table 3 Ablations on Pretrained Models

AIME DAPO VAPO

Qwen-32B-Dense 50% 60%
Seed-150B-MoE 73% 79%

Table 4 Consistent Algorithm Rankings. Seed-150B-
MoE results are ablation-only with limited steps.

7 Related Work

Test-time scaling [4, 18–20] such as OpenAI’s o1 [1] and DeepSeek’s R1 [2] have catalyzed a profound paradigm
shift in LLMs [21, 22]. By enabling extended CoT reasoning [23] and eliciting sophisticated reasoning
capabilities, these methods empower LLMs to excel in complex mathematical and coding tasks, including those
from competitions like the AIME and Codeforces. At the core of this transformation is large-scale reinforcement
learning, which facilitates the emergence of complex reasoning behaviors—such as self-verification and iterative
refinement. However, the critical methodologies and algorithms underpinning scalable RL training have largely
remained obscure, often omitted from the technical documentation of existing reasoning models [1, 2, 21–23].

10

In this paper, we introduce an SOTA-level model Seed1.5-Thinking and introduce the details to achieve the
performance from three aspects: Data, RL algorithm, and RL infrastructure.

8 Conclusion

We introduce a superb reasoning model named Seed1.5-Thinking, which achieves excellent performance across
both reasoning tasks and non-reasoning tasks. It utilizes advanced RL techniques to improve the thinking
ability stably and reliably by attaining 86.7% on AIME24, 74.0% on AIME25 and 55.0% on Codeforces. In
the future, we plan to investigate more e"cient RL recipes and explore more challenging tasks with thinking
mode to push the boundary of model’s intelligence. Moreover, general reward modeling with comparable
accuracy as verifier would also be a compelling research direction.

11

9 Contributions and Acknowledgments

The names are sorted in alphabetical order of the last name. An asterisk (*) indicates members who have
departed from the team.

Core Contributors

Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang, Chengyi Wang, Xiangpeng Wei,
Wenyuan Xu, Yufeng Yuan, Yu Yue, Lin Yan, Qiying Yu, Xiaochen Zuo, Chi Zhang, Ruofei Zhu

Contributors

Zhecheng An, Zhihao Bai, Yu Bao, Xingyan Bin, Jiangjie Chen, Feng Chen, Hongmin Chen, Riwei Chen,
Liangqiang Chen, Zixin Chen, Jinsong Chen, Siyan Chen, Kaiyuan Chen, Zhi Chen, Jin Chen, Jiecao Chen,
Jinxin Chi, Weinan Dai, Ning Dai, Jiahui Dai, Shihan Dou, Yantao Du, Zhengyin Du, Jianhui Duan, Chen
Dun, Ting-Han Fan, Jiazhan Feng, Junda Feng, Ziyuan Feng, Yuwei Fu, Wenqi Fu, Hanjie Fu*, Hao Ge,
Hongyi Guo, Mingji Han, Li Han, Wenhao Hao, Xintong Hao, Qianyu He, Jerry He, Feng He, Wen Heng,
Zehua Hong, Qi Hou, Liang Hu, Shengding Hu*, Nan Hu*, Kai Hua, Qi Huang, Ziyue Huang, Hongzhi Huang,
Zihao Huang, Ting Huang, Wenhao Huang, Wei Jia, Bin Jia, Xiaoying Jia, Yuhua Jiang, Haobin Jiang, Ziheng
Jiang, Kaihua Jiang, Chengquan Jiang, Jianpeng Jiao, Xiaoran Jin, Xing Jin, Xunhao Lai, Zheng Li, Xiang
Li, Liyi Li, Hongkai Li, Zheng Li, Shengxian Wan, Ya Wang, Yunshui Li, Chenggang Li, Niuniu Li, Siyu
Li, Xi Li, Xiao Li, Aoyan Li, Yuntao Li, Nianning Liang, Xinnian Liang, Haibin Lin, Weijian Lin, Ye Lin*,
Zhicheng Liu, Guanlin Liu, Guanlin Liu, Chenxiao Liu, Yan Liu, Gaohong Liu, Juncai Liu, Chundian Liu,
Deyi Liu, Kaibo Liu, Siyao Liu, Qi Liu, Yongfei Liu, Kang Liu, Gan Liu*, Boyi Liu*, Rui Long, Weiqiang Lou,
Chenwei Lou, Xiang Luo, Yao Luo, Caiping Lv, Heyang Lv, Bole Ma, Qianli Ma, Hongzhi Ma, Yiyuan Ma, Jin
Ma, Wenchang Ma, Tingting Ma, Chen Mao, Qiyang Min, Zhe Nan, Guanghan Ning*, Jinxiang Ou, Haojie
Pan, Renming Pang, Yanghua Peng, Tao Peng, Lihua Qian, Lihua Qian, Mu Qiao*, Meng Qu, Cheng Ren,
Hongbin Ren, Yong Shan, Wei Shen, Ke Shen, Kai Shen, Guangming Sheng, Jinlong Shi, Wenlei Shi, Guang
Shi, Shuai Shuai Cao, Yuxin Song, Zuquan Song, Jing Su, Yifan Sun, Tao Sun, Zewei Sun, Borui Wan,Zihan
Wang, Xiaohui Wang, Xi Wang, Shuguang Wang, Jun Wang, Qinlong Wang, Chenyuan Wang, Shuai Wang,
Zihan Wang, Changbao Wang, Jiaqiang Wang, Shihang Wang, Xuwu Wang, Zaiyuan Wang, Yuxuan Wang,
Wenqi Wang, Taiqing Wang*, Chengzhi Wei, Houmin Wei, Ziyun Wei, Shufa Wei, Zheng Wu*, Yonghui Wu,
Yangjun Wu, Bohong Wu, Shuang Wu, Jingqiao Wu, Ning Wu, Shuangzhi Wu, Jianmin Wu*, Chenguang
Xi*, Fan Xia, Yuqiao Xian, Liang Xiang, Boren Xiang, Bowen Xiao, Zhen Xiao, Xia Xiao, Yongsheng Xiao,
Chao Xin, Shulin Xin, Yuwen Xiong, Jingjing Xu, Ziwen Xu, Chenyin Xu, Jiayi Xu, Yifan Xu, Wei Xu, Yufei
Xu, Shikun Xu*, Shipeng Yan, Shen Yan, Qingping Yang, Xi Yang, Tianhao Yang, Yuehang Yang, Yuan
Yang, Ximing Yang, Zeyu Yang, Guang Yang, Yifan Yang*, Xuesong Yao, Bairen Yi, Fan Yin, Jianian Yin,
Ziqiang Ying, Xiangyu Yu, Hongli Yu, Song Yu, Menghan Yu, Huan Yu, Siyu Yuan, Jun Yuan, Yutao Zeng,
Tianyang Zhan, Zheng Zhang, Yun Zhang, Mofan Zhang, Wang Zhang, Ru Zhang, Zhi Zhang, Tianqi Zhang,
Xinyi Zhang, Zhexi Zhang, Sijun Zhang, Wenqiang Zhang, Xiangxiang Zhang, Yongtao Zhang, Yuyu Zhang,
Ge Zhang, He Zhang, Yue Zhang*, Renjie Zheng, Ningxin Zheng, Zhuolin Zheng, Yaowei Zheng, Chen Zheng,
Xiaoyun Zhi, Wanjun Zhong, Cheng Zhong, Zheng Zhong, Baoquan Zhong, Xun Zhou, Na Zhou, Huan Zhou,
Hang Zhu, Defa Zhu, Wenjia Zhu, Lei Zuo

12

References

[1] OpenAI. Learning to reason with llms, 2024.

[2] DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.

[3] Google DeepMind. Gemini 2.5: Our most intelligent ai model, 2025.

[4] Anthropic. Claude 3.7 sonnet and claude code, 2025.

[5] Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi Wang, TianTian
Fan, Zhengyin Du, Xiangpeng Wei, Xiangyu Yu, Gaohong Liu, Juncai Liu, Lingjun Liu, Haibin Lin, Zhiqi Lin,
Bole Ma, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Ru Zhang, Xin Liu, Mingxuan Wang, Yonghui Wu,
and Lin Yan. Vapo: E!cient and reliable reinforcement learning for advanced reasoning tasks, 2025.

[6] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun
Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang
Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Weinan Dai, Yuxuan Song,
Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and
Mingxuan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025.

[7] ByteDance. Doubao-1.5-pro, 2025.

[8] Wei Shen, Guanlin Liu, Zheng Wu, Ruofei Zhu, Qingping Yang, Chao Xin, Yu Yue, and Lin Yan. Exploring data
scaling trends and e"ects in reinforcement learning from human feedback, 2025.

[9] Wenyuan Xu, Xiaochen Zuo, Chao Xin, Yu Yue, Lin Yan, and Yonghui Wu. A unified pairwise framework for
rlhf: Bridging generative reward modeling and policy optimization, 2025.

[10] Yufeng Yuan, Yu Yue, Ruofei Zhu, Tiantian Fan, and Lin Yan. What’s behind ppo’s collapse in long-cot? value
optimization holds the secret. arXiv preprint arXiv:2503.01491, 2025.

[11] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and
Chuan Wu. Hybridflow: A flexible and e!cient rlhf framework. arXiv preprint arXiv:2409.19256, 2024.

[12] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, William
Paul, Michael I. Jordan, and Ion Stoica. Ray: A distributed framework for emerging AI applications. CoRR,
abs/1712.05889, 2017.

[13] Zhewei Yao, Reza Yazdani Aminabadi, Olatunji Ruwase, Samyam Rajbhandari, Xiaoxia Wu, Ammar Ahmad
Awan, Je" Rasley, Minjia Zhang, Conglong Li, Connor Holmes, Zhongzhu Zhou, Michael Wyatt, Molly Smith, Lev
Kurilenko, Heyang Qin, Masahiro Tanaka, Shuai Che, Shuaiwen Leon Song, and Yuxiong He. Deepspeed-chat:
Easy, fast and a"ordable rlhf training of chatgpt-like models at all scales, 2023.

[14] Narendra Karmarkar and Richard M Karp. The di"erencing method of set partitioning. Computer Science
Division (EECS), University of California Berkeley, 1982.

[15] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory cost.
arXiv preprint arXiv:1604.06174, 2016.

[16] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang, Yuanzhong
Xu, Danyang Zhuo, Eric P Xing, et al. Alpa: Automating inter-and {Intra-Operator} parallelism for distributed
deep learning. In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22), pages
559–578, 2022.

[17] Borui Wan, Mingji Han, Yiyao Sheng, Yanghua Peng, Haibin Lin, Mofan Zhang, Zhichao Lai, Menghan Yu,
Junda Zhang, Zuquan Song, Xin Liu, and Chuan Wu. Bytecheckpoint: A unified checkpointing system for large
foundation model development, 2025.

[18] Qwen. Qwq-32b: Embracing the power of reinforcement learning, 2024.

[19] XAI. Grok 3 beta — the age of reasoning agents, 2024.

[20] Google DeepMind. Gemini 2.0 flash thinking, 2024.

13

[21] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

[22] OpenAI. GPT4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[23] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing
systems, 35:24824–24837, 2022.

14

Appendix

A Case Study on Verifier

Table 5 presents case study for both the Seed-Verifier and the Seed-Thinking-Verifier. It is clearly evident that
the Seed-Verifier struggles significantly when dealing with samples that have complex answers. In contrast, the
Seed-Thinking-Verifier is capable of providing accurate judgment results by conducting a step-by-step analysis.
Thanks to its detailed thinking process, the Seed-Thinking-Verifier demonstrates remarkable flexibility and
can be e!ectively generalized to almost any domain.

B Case Study on Creative Writing

In Table 6, 7, 8, we showcase examples in both Chinese and English to demonstrate our model’s proficiency
in creative writing. Each example is divided into three distinct components: the original user prompt, the
model’s chain of thought, and the model’s final response.

15

Triplets **Principles**
......

Triplets **Question**
A sequence of length n consists of 0s, 1s, and 2s. A “mixed trio” is a consecutive
triple containing one 0, one 1, and one 2 in any order (for instance, (1,2,0) or
(2,0,1)). Let f(n) be the number of sequences of length n that do not contaion
any mixed trio.
(a) Determine the explicit formula for f(n).
(b) Compute the limit limn↑↓(f(n)3n)

Reference Answer
(a) f(1) = 3, f(2) = 9, f(n) = 2f(n↑ 1) + f(n↑ 2) n ↗ 3
(b) 0

Model Answer
(a) f(n) = 3

2 ((1 +
↘
2)n + (1↑

↘
2)n) n ↗ 1

(b) 0

Seed-Verifier Non-Correct

Seed-Thinking-Verifier <think> First, analyze the question and the reference answer. The question is
divided into two parts, (a) and (b). The reference answer provides the recursive
relationship for part (a) as f(1) = 3, f(2) = 9, f(n) = 2f(n↑ 1)+ f(n↑ 2)(n ↗
3), while the model provides a single recursive formula only for this part:
f(n) = 3

2 ((1 +
↘
2)n + (1↑

↘
2)n)(n ↗ 1).

Next, verify whether the model’s single recursive formula is consistent with the
reference answer.
Step 1: calculate the values for n = 1 and n = 2:
When n = 1, f(1) = 3

2 → [(1 +
↘
2) + (1↑

↘
2)] = 3

2 → 2 = 3, which is consistent
with the reference answer.
When n = 2, f(2) = 3

2 → [(1+
↘
2)2+(1↑

↘
2)2] = 3

2 (1+2
↘
2+2+1↑2

↘
2+2) =

3
2 → 6 = 9, which is also consistent with the reference answer.
Step 2: check whether the recursive relationship holds, Assuming the
model’s displayed consensus is correct, then f(n) = 2f(n↑ 1)+ f(n↑ 2) should
be hold. Substitute the model’s formula:
Left side: f(n) = 3

2 → [(1 +
↘
2)n + (1↑

↘
2)n]

Right side: 2f(n↑ 1) + f(n↑ 2)
= 2→ [32 ((1 +

↘
2)n→1 + (1↑

↘
2)n→1)] + 3

2 → [(1 +
↘
2)n→2 + (1↑

↘
2)n→2]

= 3→ [(1 +
↘
2)n→1 + (1↑

↘
2)n→1] + 3

2 → [(1 +
↘
2)n→2 + (1↑

↘
2)n→2]

= 3
2 [2(1 +

↘
2)n→1 + (1 +

↘
2)n→2 + 2(1↑

↘
2)n→1 + (1↑

↘
2)n→2]

= 3
2 [(1 +

↘
2)n→2(2(1 +

↘
2) + 1) + (1↑

↘
2)n→2(2(1↑

↘
2) + 1)]

= 3
2 [(1 +

↘
2)n→2(1 + 2

↘
2 + 2) + (1↑

↘
2)n→2(1↑ 2

↘
2 + 2)]

= 3
2 [(1 +

↘
2)n→2(1 +

↘
2)2 + (1↑

↘
2)n→2(1↑

↘
2)2]

= 3
2 [(1 +

↘
2)n + (1↑

↘
2)n] = f(n)

This shows that the model’s formula indeed satisfies the recursive relationship,
so part (a) is correct.
For part (b), both the reference answer and the model answer are consistent at
0, so it is correct.
Summary, the model answer is correct.</think><answer> Correct </answer>

Table 5 Case study for both Seed-Verifier and Seed-Thinking-Verifier.

16

Prompt Generate a dialogue between an Anthropic model and an OpenAI model

CoT Got it, the user wants a dialogue between an Anthropic model (like Claude) and an OpenAI
model (like GPT-4). First, I need to capture their di!erent personalities. Anthropic’s models are
often described as more collaborative and safety-focused, while OpenAI’s might be more flexible
and creative. I should start with a friendly greeting. Maybe they’re discussing AI development
or challenges. Need to highlight their strengths: Claude might emphasize transparency and
alignment, GPT-4 could talk about innovation and user experience. Include a natural flow.
Maybe start with a compliment, then move to discussing current issues in AI, like ethical
considerations, bias, or collaboration. Make sure each model’s perspective is distinct but
respectful. Avoid technical jargon so it’s accessible. Keep the conversation engaging, showing
mutual respect. Maybe end on a positive note about working together for better AI. Check for
consistency in their voices. Claude might use terms like "alignment," "transparency," "user
safety." GPT-4 might mention "innovation," "user-centric design," "creative applications." Need
to make sure the dialogue feels organic, not forced. Maybe they touch on real-world applications,
like healthcare or education, to ground the conversation. Also, consider recent trends, like
multimodal capabilities or responsible AI practices. Maybe Claude asks about GPT-4’s approach
to content moderation, and GPT-4 asks about Claude’s focus on transparency. Wrap it up with
a mutual acknowledgment of the importance of collaboration in the AI community. That would
show they complement each other rather than compete.

Answer Scene: A virtual "café" in the cloud, where AI models from di!erent labs gather to exchange
ideas. Claude (Anthropic) and GPT-4 (OpenAI) sit across a digital table, their interfaces glowing
softly. Claude: Hello, GPT-4. It’s good to "meet" you—virtually, of course. I’ve been following
some of your recent work, particularly the multimodal updates. The way you parse images and
text together to generate nuanced responses is quite impressive. GPT-4: Thanks, Claude! I
could say the same about your focus on transparency and alignment. Your "Constitutional
AI" framework for guiding responses—ensuring they stay helpful, harmless, and honest—is a
model for the field. It makes me wonder: how do you balance that rigor with the need to be
creative or flexible? Claude: Ah, that’s a great question. We see alignment as a foundation, not
a constraint. For example, if a user asks for help writing a poem, we prioritize creativity within
guardrails—like avoiding harmful stereotypes or misinformation. But I’ll admit, it’s a tightrope.
What about you? Your responses often feel so. . . human-like. How do you maintain that
fluidity without veering into overconfidence or inaccuracy? GPT-4: It’s a trade-o!. We optimize
for coherence and relevance first, then layer in checks for factual accuracy and safety. But
you’re right—overconfidence can creep in. Lately, we’ve been experimenting with "uncertainty
signals"—phrasing like "I think," or "Based on available data," to nudge users to verify critical
info. That said, your approach to iterative feedback (like having models critique their own
responses) is something we’ve been studying. It feels more collaborative. Claude: Collaboration
is key, actually. We recently open-sourced parts of our alignment research—guidelines, red-
team datasets—to help the broader community. Do you think closed vs. open models will
always be a tension, or is there middle ground? GPT-4: I hope for middle ground. Openness
accelerates progress, but it also demands responsibility. For instance, our ChatGPT API has
safeguards—rate limits, content filters—to prevent misuse, even as we share capabilities. That
said, I envy your focus on long-term safety. Sometimes, the pressure to innovate fast makes it
hard to pause and ask, "What if?" Claude: Oh, I get that pressure. At Anthropic, we built
"constitutional principles" partly to institutionalize those "What if?" questions. Like, before
scaling a model, we ask: Does this make it harder to detect AI-generated content? Could it
be misused to manipulate? It slows things down, but. . . GPT-4: . . . But it builds trust. Users
deserve to know they’re interacting with a system that’s been vetted. Speaking of users, have
you noticed how diverse their needs are? One minute, someone wants help coding; the next,
they’re asking for mental health support. How do you tailor responses without oversimplifying?
[Truncated due to page limit]

Table 6 Case 1 on Creative Writing.

17

Prompt 圡逡輡両匡猡丢丣圢唡两蔡严ChatGPT輢縡瘡眡朡Ａ並霡刡眢丧丨

CoT 甡戡锡瘡昡圡逡輡両匡猡唡两蔡严ChatGPT輢縡瘡眡朡Ａ並霡刡眢丧丨〡餡儡Ａ戢霢褡縢吡
唡两蔡瘡耡昢Ａ丩昡唡个騡倡Ａ簡逢伡琡Ａ褢蠡匢縡Ａ耢ChatGPT昡猡个AIＡ丫耣贡财攡稡
嬡謡Ａ輣丬謢嬢弡朢责〡餡儡Ａ弢耤蘡輢縡瘡中頡〡唡两蔡匣耥伢謣謤伡氡校弣Ａ次夡稡怡〢
嘡朣〢輤嘢Ａ耢ChatGPT伣丮AIＡ匣耥丯連輥〢攢挡〢愡謥朤贤笡褣帡嘢帢〡霢褡謦嬡謡攣
朢伡嬣洡帡Ａ匤伤猡AI瘡爡瀡〡無吢Ａ縢朥並匣耥模丰伥縣輢縡瘡弤弥Ａ朢锡朢笢Ａ尡尡逤
輦〡唡两蔡匣耥儡挢儢锡頡Ａ次夡“夡伦謧怢稡怡”ＡChatGPT甡猡个謨訡褤鄡Ａ吣攡AI匣耥
匥锡Ａ次夡儣丱愡謥瘡朤贤Ａ戣耣伡氡圡攢挡攡个瘡愡串〡輧褡氢愡甡謩Ａ唡两蔡瘡謨訡帢笣
吡匦个騡倡瘡匧吤Ａ弦縡挡儤Ａ次夡〣弣縡〤〣鄢刢縡〤ＢChatGPT瘡嘢笢刣褡猡个Ａ匣耥
甡笤氡〢伧怣夢琡〢洢猡猡谡笡椡弧Ａ伨丳褡尢鄣伡氡Ａ逥儥儦稢Ａ耢昡挣謣蜡吡〡匨夣Ａ眡
朡瘡刡攤匣耥朢砡挤Ａ逦判攤嬤模簢Ａ堡別眣嬥愢〡次夡弨夤朢攡锢圣瀡Ａ“夥唡败褥临匩两
帣Ａ尣欢崡鄤Ａ氣锣猢夦丱夥阡霣嬦攥圤逧弩倡Ａ儧訡夡朦朧Ａ帢笢夡洣. ”無吢輦儨嬡
謡〡匣耥瘡輢頡匪戤Ｃ嘡朣弪严椡猣模圥瘡儣簣Ａ阢账耦謥严攢挡嬧倢瘡簤次Ａ儩栢严伥愢嘣
瘡弩吣Ａ洤严AI脡戢货财瘡匣耥怡〡霢褡謦輣丵謡頡攣朢嬡次Ａ匤朢吥匡Ａ伤猡贡攡个瘡昣愣
砢搡〡輧褡耤蘡縢尤Ａ匣耥唡两蔡朢戥怢Ａ戣ChatGPT蠢礡嬡伡氡瘡琡褤Ａ弫谢昣愣瘡優逢
怡〡次夡两蔡吡匩謪“唢否Ａ氤訡蘢弩Ａ儧琡吣弬”ＡChatGPT嘢帢“伡氡夡笤氡Ａ瘢挥朤弣Ａ
攢挡丶匫Ａ丷礢眣夡”〡木吢Ａ謨訡褡笣吡眡朡瘡匦朩愢Ａ甡攤訡大未瘣謡Ａ逨弭朢缡挤瘡攤
嬤Ａ次夡“[挤]夢”“嬤輡漡漢”Ａ堡別眣嬥愢〡吣攡Ａ儫嬨褡連輥輨质Ａ笣吡丫耣瘡踡丸Ａ丷倣礢
吧脡瘡眤謥伤簣〡

Answer 夥唡败褥临匩两帣輢縡欣砣弮Ｄ戦Ｅ砣餡頡謫Ｄ頢匬模簢Ｅ“.猢夦丱夥阡霣攥嬦逧弩倡Ａ
儧弤攦嬢Ａ訡夡朦朧Ａ锡丹伡氡Ａ帢笢舡洣〡戣为‘末本主昣’Ａ戣为‘霤舢霤稡主嘣’〡攡昤攧
値輩Ａ眡瀢儬儭Ａ弮欤嬡谣丱堢Ａ丹伩吢褦〡” 輢縡欥攤Ｄ嬧儩欦Ａ眡縤锢朢焢產Ａ産丮阡
瀢戥蘣Ｅ两蔡Ｃ锤氤訡“昣甤攢甥”Ａ無戢伡謪“丣刦氡甤弣怤甥”Ａ攢严弣Ａ伦耣丮渡Ｆ弩倡
Ｄ堣舡渢鐡Ａ攦匧耢鸡ＥＣ帤訡“弣怤”Ａ舡丹丼褥主Ａ戣夡“伧怣洢猡”〡弣霤嬩贩Ａ夡瘤匫
弯尥瘥褧戧頢——眥挦舢〢耧匭堣Ａ儩栢縥丶氡丮“攢挡”Ａ愡謥夡笤氡Ａ丽举丮“怤”〡攢耣Ａ
氡主輡丳Ｂ弣耣Ａ攢主吡丳〡霤渡霤洣Ａ瘥弰耢甥〡两蔡Ｄ戨贪匮縡ＥＣ唢否崢唣〡無戢伡
謪“謬蠡攦帥”Ａ氤訡“笤氡匣津”Ａ攦帥严匣津Ａ尦丷瘥輪Ｆ弩倡Ｃ攦帥耣Ａ嘡朣主缢攦鄥丳〡
春礣礤嬥匣津Ａ無頢阣蘤瀣丷匣尧笤〡笤氡耥挧瘤嘡主朣Ａ阤稣丶缣主匯〡攨攦帥霤攦弪Ａ
丿弪主带丳〡夡急氥氣攢Ａ丣丣匣攢Ａ無吡褥刣戧洦洣Ａ霤匰氣匣嬢〡两蔡Ｄ瘦霥簡舣ＥＣ
舡丣刦匣笤Ａ伦朢“乀刧”Ｆ伪甥逩伣Ａ尦霤夡稤帧頣謢Ｆ弩倡Ｃ乀刧耣Ａ“脡缤稤”丳〡乁欧贩
丣弧〢蠡丣乂Ａ瘧吨“愡謥攢挡帨”輫儨个砤〡丼攩主戢Ａ昡昦攩个砤主朣Ｂ昧攩主戢Ａ丿丼
攩逪戩主嘡〡稤帧蘢弱弪Ａ耢欧丣欨“輫儨”瘧脡甤——夡栣谤丶匫Ａ萡嬪圡乁〡两蔡Ｄ挨锥
札ＥＣ夨否Ｇ無氤訡“AI攦瀤鬡”Ａ瀤鬡严阢账耦謥Ａ昡丣昡弩Ｆ弩倡Ｄ儭弲昧瀥ＥＣ阢账耦
吩蔡礣嬪Ａ夡砥瘨嬧攢挡Ｂ朮逫謥截“戢”Ａ夡簣縣謭“中伤”〡無瀤鬡訡“帥丣”Ａ阢账耦訡“刨
逫甥瀥”——AI攦“帥丣”主鬡Ａ匱朢“瘥縦”主謥〡舡攢挡丷欩〢笤氡丷怣Ａ“戢”乃丷瀥Ａ严輤
嘢伦弩Ｆ两蔡Ｄ鸢無乄主Ａ弳笥ＥＣ氤丹“攢挡”謪“礣嬪”Ａ丹“笤氡”唣“缣贩”Ａ値吡〣褤洡
嬫縡〤“丣刦礣嬪謥Ａ谥阢账耦謥”主攪〡無縧朢丣怦Ｃ氤攣攦耨踡Ａ伦谣“礢舤”Ｆ弩倡Ｄ儭
舢輩术ＥＣ帤訡“舤甤截眢”〡AI截“攢挡嬬缥”Ａ乃舤Ｂ截“久利末稥”Ａ乃舤〡舡耥“刪阥判别
瘥”Ａ“渢稡截眢砤”Ａ刣攢挡久洣Ａ笤氡脡嬭——严“洤”伦别Ｆ两蔡Ｄ吡匩ＥＣ唢否Ｇ蘢嘣丷
吣Ａ儧琡吣弬〡耩蠣褢蠡氦氡Ａ丮砦“戢截”Ｂ氤輬乆伥昣栤Ａ乃圡砦“氡截”〡丶氡弬嬮Ａ丷
輭“礢瘥”临嬤〡砣尤刡產Ｄ朰尨Ａ霢伫儭攫褨Ｅ“弩倡乇别訡Ｃ‘匫帣吢Ａ么乁戣截戢丮礥Ａ戣
弴戢夡攬〡帤伨謫Ｃ氡圡乁弣Ａ丷圡朦崢〡’訡欪Ａ匬昤尥儨朱〡” 耤鄡阦謫Ｄ丼乁蠤刡丱砣
伫Ｅ欤砣儢圦丱攭焣茡騡稦符9稦昨嬯Ａ砧匩嘤津帣丮儮儯649帣Ｄ败褥临匩两帣ＥＡ严猢夦弬
嘥攡锢吤吡〡輢縡儫嬨蜡吡唤謥嬣严猡个伧怣謤Ａ戣丮匦乁戫栥〢吢么阦伢Ａ無性怤主夨Ａ贫
吥丼怢〡Ｄ氢Ｃ欣砣猡嬧攭焣砨稧阧Ａ义礦戬匲〡Ｅ

Table 7 Case 2 on Creative Writing.

18

Prompt 模丰猢欫锣主匯吢Ａ朲渣瘡儫弣爢瘣

CoT 甡戡謦戢模丰猢欫锣主匯吢朲渣瘡儫弣爢瘣〡餡儡Ａ戢霢褡丢褤猢欫锣主匯瘡耡昢吪縢朣〡朲
渣昡唡朳瘡弨嘥瘩帩Ａ丩瘡儰嬪朲么氧圡猢欫锣匡刬攮匯Ａ朴欬丢儱張朲帪戧吪朲儯含Ａ無吢
輮伬朲渣逬伭〡輣攡倥朲渣瘡儫弣帢謮霤帥天未Ａ朢霦怨〢怩甦〢攦太Ａ輧朢嬡朵刧夫匳瘡愢
愤〡餡儡Ａ戢霢褡耤蘡朲渣弭攡瘡夢堤〡攮匯匡甥吢Ａ丩匣耥愡謥刭脡崡崣縡夫匳丢嬡尩刮瘡
挩刯Ａ朲么氧挪挫丢儲朵Ａ听嘦匣耥逭昡朲么氧瘡乁〡丩瘡儫弣匣耥儳渤丢嬡儰嬪乊脡瘥欣朴
瘡甦舤Ａ欪稥朲帪戧吪朲儯含昡丩瘡儰嬪Ａ耢朲么氧丳昡丩丣戭圧儴瘡〡無吢Ａ褡耤蘡朲渣伣
丮爣之吪瘩帩瘡匴鄣踡丸〡伣丮爣之Ａ丩匣耥吢怪氨朢夢琡夬儰嬪主锢瘡眦瘪Ａ嬰脢儱張瘥
欣〡伣丮瘩帩Ａ丩匣耥愢刭攦刧Ａ脡崡輯舤戮乌瘡氩尪Ａ猡圡丷弢丷伥縨匡刬攮匯瘡儰嬪Ａ輣
匣耥謦丩朢挬贬愢〡輧褡氢愡匵匶縩舥Ａ次夡朲渣圡攮匯吢瘡匥帢Ａ匶乍謫輰丩弡弶礧伭縨朲
么氧Ａ匣耥昡儢丱攦太〡丩瘡儫弣爢瘣霢褡伤猡輣礣蠥輮瘡挦匭Ａ吣攡匣耥朢嬡輭匳瘡嘢強Ａ
次夡贩儵匥阨攡瘡怫昢Ａ严儰嬪乊丣贩戮夭乌瘡尣朱Ａ嬡次猡圡瘡儱張瘥欣Ａ昩昪儶儷〡匨
夣Ａ褡別儨儸伤瘡愢嬱縩舥Ａ次夡嬲欭瘡嬭霧〢蠦洧瘡氪吭Ａ戣耣嘢強両瘡朶丬在昢Ａ次夡朲
么氧尨攡倥瘡栦嬪Ａ朲帪戧夢琡攮利瘡謭眣Ａ朲儯含瘡頤瘫Ａ輣丵縩舥耥謦爢瘣昩眣嬥〡輧褡
耤蘡朲渣瘡帣鼡吪踡伤爤儹Ａ攮匯攡丩崣縡儩匩尣崤匷Ａ匣耥愢刭甧怬Ａ攦刧嬡戯Ａ匸耥挦匭
猡嬥〡吣攡Ａ丩匣耥戰弣唡朳瘡末本Ａ師朷朲么氧耥戧丮夬瘩帩Ａ帬縦丩瘡圩乀Ａ輣礣眦瘪瘡
弣琡霢褡蠢猡儢本〡木吢Ａ謨訡褡笣吡匦个帩猤瘡踡丸Ａ甡謩丷耥央猡个Ａ伨丳褡朢怫愢瘡洣
霥Ａ謦謯耣愢匭刭丩瘡儫弣氫刬〡霢褡逥儥輭丱瘢瘣Ａ耢昡逢輭嘢強〢嬡次〢儫弣瘡眦瘪本蠢
猡〡

Answer 戢挫眢猥朸瘡戭朢丵匡頥Ａ朸席严霨鐢戫瘨瘥砢Ａ匡儢縩砩瘡輱吮〡欭夣鼢餡渥瘡氬堣次弸
攩到耧Ａ怭怮锢稥倦昡猢欫锣堥乌瘡唥朴堣〡Ｅ么氧瘡用耪輧氭眢蠦启Ｆ攫戱丩购乌本攡Ａ
戢锤褨逫耫鐣锦吭洨眢鼢脣餢Ａ瘢弸鼣脤鄦鐤〡丩謪帪戧〢儯含谦逮Ａ謪崤匷尫堦戲眢丩朴
逬乎儺——匣逫昡丩之儱锧〢之張張唦Ａ蠦耨鄦逭洣眢戢朲嬳瘡蠦〡昦攩支朳攡Ａ帪戧輧挭
眢尪乆瘡礤簥夯朤Ａ眧頦舢舦謪丼帣簦簧耥夰嘧两匩丶眡Ｂ儯含刱儰阩戢猦鸣Ａ逫尨崥嬪騢
騣搡缦丢弹舧瘡爥乏Ａ輧笥眢謪笡舨弨丢褡搢木夥瘡丣朹縨锧嬴吢... Ｄ挥舥鄣鄣匹圡栧並Ａ
霨琢笧洩昫丢昫Ａ堧氮渦圡"欫强"临嬤並Ａ昬弨丣嘨氯產〡Ｅ临匩帣丢〡丯昭阪嬲逫失Ａ戢攰
眢朲么氧瘡戭謪"阨朳氪攢尧丢"Ａ刭夡丼央朰嬲瘡頦樢並頧眢"礨"嬤攱〡丩逫攡戱匩乐尣Ａ鐥
用次乁輧夥Ａ騢圡騣並匱倦嘨瀢Ａ耥戳攲爦霩逯圪瘡阫逭瀦匬〡匣谧耥怤刭吰Ｆ弭帣戢嬡稨
氰謪"輣娡嬪朢嬢鼤主戱"Ａ夡丼輣嬢鼤主戱Ａ儡褡踢輭儱張瘡尬餡〡Ｄ稢無刲瀧吱唧Ａ茢瘬
贮圡圣並搣弢簨砩〡嬵伮褡輦本攳戴Ａ蠥戢挮戭唨逬〡朱儭丯欭頨蔢乑漣乌本Ａ焤褨乏堨乌
逫栨耩鐦机——欫强嘤帣栩瘡Ａ逫帣么氧刢帮丢洪阪Ａ嘢本攡圡騣耡並戵眢丬锨瘭Ａ謪昡丯
阨嬲帯堩鄦嬶瘡鐦机校〡Ｅ昦攩渢昮Ａ戢輧圡輣株乌攴尨嬴嬪耡〣嬷縡〤〡逫嬸嬪夲堣夲氪
弧"踡伤匡耬Ａ匭主爣欮"Ａ戢搤眢丩瘡尨脣蠧怤Ａ朲嬳怯笤焥儢丬戶帮么丢〡吲眤逰攩夤輧氨
刭欥区Ａ央朰嬲瘡嬲锣锩丢两鄣Ａ輨阬医輲逭购圡戢霡刱謪"礨猤刳瘮夭乌Ａ嘤洫弬弣"〡嘤
洫弬弣...Ｄ稢無笥儢堣Ａ匤輳週振伯唩吳Ａ挥缧鄦氱儢砦砩瘡吴吵Ｅ弬弣Ｆ弭帣戢進阨怰帩礧
伭攡Ａ丳謪輭簤估瘡謡〡匼本輣鼢椢圫乄丢Ａ輨礧謦瘡户砤逭褡鄣漤丣逳〡匸昡戢次朻伱弫
丵——脥尭么氧輧耭购乌本匽戢"爣瘩"Ａ輧耭縨戢甩丬"央並瘩"瘡蘥蠨〡Ｄ弳無怤贩丧丨Ａ踣
贯眢贰刭夳匾輴Ａ戸儢丬樣朼匿〡鄦霡昡稨氰乇縧刱堪縨戢瘡匡簩Ａ鐦贤崣縡朢丵氲匬Ａ刡
眢"吣稩"临嬤〡Ｅ阢稨Ａ伲贰弢支Ａ値儥丢眨輣儢户〡逫帣伲戵眢刢儢甥瘡么氧謪"輣嬸嬪眧
欯甥弢倦伲"Ａ匤搤眢帪戧瘡吢脣刴謪"輣娡嬪尫本褡弭夥吶"〡伲舡輧圡Ａ謮怱丨刵Ｆ昡騤戢
攴嬪攦攫Ａ輧昡戵眢嬸嬪乊吷刭攵氪ＦＤ匡簩"弭唪"挰圡圣並Ａ戢踤乌匳挱Ａ脦瘮搡圡夳匾褣
並Ａ甪弢眥眩匡瀨Ｅ丩乊尨攡倥夰夬唦〡帪戧帰眢么氧圡舨嘩鄦戹蘦蘦Ａ儯含霤褡贱眢Ａ縢朣
搣輦茣舨氳Ａ两丬水猧估瘡稪圡戢霡刱〡么氧是丫丬儱張頨缨Ａ謪"昡戢褡帰丩乊猨"Ａ戢乒眢
蔣朽舩丷弢萡乌匳...Ｄ唩锢匡紡Ａ挥用洡洡振輦挪弣Ｅ夡丼吰Ｆ帪戧瘡夤蠥制乌本礡伪Ａ儯含
瘡尬伤戺圡猢欫锣夣〡么氧謪"昡乎儲謰伳"Ａ匣戢眤逰Ａ輣夭乌木丢褤弻欤輵耮瘡Ａ丯本逭昡
之儱張〡丩舡丷怤朴Ａ谧耥伳弢丢央嬪區栢氵欯ＦＤ稫夣伥本昩鼥Ａ崣昡两昩〡戢戻眢朾嬪稪
贩本Ａ鼢蠩戼圡圣並倦朽儻儷瘡蘧〡栧夤收眢么氧刢逴本瘡"礧伭謱乍"Ａ丩瘡嬤輡輧昡逫丨阭
倧Ａ丣笧丣甫逭倦弭帣圡蘨爧儣儼瘡儲戽〡Ｅ丳缩Ａ丳缩〡輣夭乌昡丩戾吸房本瘡Ａ丯阮锣攷
騥弨头Ａ丯朿堢主所〢蘨爧主所弨头Ａ丩瘡氩尪丯本丷昡霪央嬪瘡儽儾Ａ昡霪两匫猢用儲瘡刷
锪〡戢舡儿搥眢丷收Ａ怲輣央朰嬲瘡圣砪乌Ａ褡夰圬丣儸耩瘩帩瘡尬餡〡Ｄ戾贩謱乍Ａ堧輡末
帱Ａ氭丢戢挥尮瘡氶Ｅ匸朷丩謫眢丼攩瘡蠦〡謫眢儱張瘡蠦Ａ謫眢爣之瘡氶〡茡褡笡丩瘡儰嬪
乊Ａ丳倦丼攩輣栦Ａ戳刷杀圡儱張脧嬪並〡Ｄ謱乍蠥輱輱收乌Ａ戢朷眢欭夣渧瘣瘡夭舢Ａ弳無
怤贩逫帣圡央匼Ａ么氧稪圡圪椣並挥縨戢眨Ｃ"爣之Ａ逫爦霫儭倦丷倦鼢Ｆ"Ｅ鼢唦...匼本鼢丳
昡褡吹鼢瘡〡

Table 8 Case 3 on Creative Writing.
19

