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Abstract

Large reasoning models (LRMs) like OpenAl-ol have demonstrated impressive
long stepwise reasoning capabilities through large-scale reinforcement learning.
However, their extended reasoning processes often suffer from knowledge in-
sufficiency, leading to frequent uncertainties and potential errors. To address
this limitation, we introduce Search-o1, a framework that enhances LRMs with
an agentic retrieval-augmented generation (RAG) mechanism and a Reason-in-
Documents module for refining retrieved documents. Search-ol integrates an
agentic search workflow into the reasoning process, enabling dynamic retrieval
of external knowledge when LRMs encounter uncertain knowledge points. Addi-
tionally, due to the verbose nature of retrieved documents, we design a separate
Reason-in-Documents module to deeply analyze the retrieved information before
injecting it into the reasoning chain, minimizing noise and preserving coherent
reasoning flow. Extensive experiments on complex reasoning tasks in science,
mathematics, and coding, as well as six open-domain QA benchmarks, demon-
strate the strong performance of Search-ol. This approach enhances the trust-
worthiness and applicability of LRMs in complex reasoning tasks, paving the
way for more reliable and versatile intelligent systems. The code is available at
https://github.com/sunnynexus/Search-ol.

1 Introduction

Recently emerged large reasoning models (LRMs), exemplified by OpenAl’s ol [22], Qwen-
QwQ [54] and DeepSeek-R1 [7], employ large-scale reinforcement learning foster impressive
long-sequence stepwise reasoning capabilities, offering promising solutions to complex reason-
ing problems [46, 31, 59, 84, 73, 74, 67]. This advancement has inspired a series of foundational
efforts aimed at exploring and reproducing ol-like reasoning patterns, to broaden their application to
a wider range of foundational models [49, 19, 77, 80, 71, 25, 45].

It is noteworthy that ol-like reasoning patterns guide LRMs to engage in a slower thinking process [6,
61] by implicitly breaking down complex problems, generating a long internal reasoning chain and
then discovering suitable solutions step by step. While this characteristic enhances logical coherence
and interpretability of reasoning, an extended chain of thought may cause overthinking [4] and
increased risks of knowledge insufficiency [60, 51, 2], where any knowledge gap can propagate errors
and disrupt the entire reasoning chain [79, 40, 44, 41].

*Correpsonding author.
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Figure 1: Analysis of reasoning uncertainty with QwQ-32B-Preview. Left: Examples of uncertain
words identified during the reasoning process. Right: Average occurrence of high-frequency uncertain
words per output in the GPQA diamond set.

To address this limitation, we conduct preliminary experiments to assess the frequency of uncertain
words decoded by the LRMs due to knowledge gaps. As shown in Figure 1, the extended think-
ing process leads LRM to frequently decode numerous uncertain terms in challenging reasoning
problems, with “perhaps” averaging over 30 occurrences in each reasoning process. Notably, the
high specialization of these problems also complicates manual reasoning verification, often incurring
significant costs [63]. Consequently, automating the supplementation of knowledge required for
the ol-like reasoning process has become a significant challenge, limiting the progress of LRMs in
achieving universally trustworthy reasoning.

To shed light on this topic, our core motivation is to enhance the LRMs with ol-like reasoning pattern
through autonomous retrieval. We propose Search-o1, which integrates the reasoning process of
LRMs with two core components: an agentic retrieval-augmented generation (RAG) mechanism and
a knowledge refinement module. This design aims to enable LRM:s to incorporate the agentic search
workflow into the reasoning process, retrieving external knowledge on demand to support step-wise
reasoning while preserving coherence throughout.

Specifically, our results in Figure | reveal that traditional problem-oriented RAG techniques do not
effectively address the knowledge gaps compared to direct reasoning (Standard RAG vs. Direct
Reasoning). This finding aligns with human intuition, as standard RAG retrieves relevant knowledge
only once in a problem-oriented manner, while the knowledge required for each step in complex
reasoning scenarios is often varied and diverse [83, 41, 11]. Unlike them, Search-ol employs an
agentic RAG technique that guides the model to actively decode search queries when facing knowl-
edge shortages, thereby triggering the retrieval mechanism to obtain relevant external knowledge.
Owing to the benefits of this design, our retrieval mechanism can be triggered and iterated multiple
times within a single reasoning session to fulfill the knowledge needs of various reasoning steps.

To effectively integrate retrieved knowledge into the LRM’s reasoning process, we further identify
two key challenges when directly incorporating retrieved documents into the reasoning chain during
practical experiments: (1) Redundant Information in Retrieved Documents. Retrieved documents
are often lengthy and contain redundant information, directly inputting them into LRMs may disrupt
the original coherence of reasoning and even introduce noise [62, 72, 26]. (2) Limited Ability to
Understand Long Documents. Most LRMs have been specifically aligned for complex reasoning
tasks during the pre-training and fine-tuning stages. This focus has resulted in a degree of catastrophic
forgetting in their general capabilities [39, 10], ultimately limiting their long-context understanding
of retrieved documents.

To address these challenges, we introduce the Reason-in-Documents module, which operates inde-
pendently from the main reasoning chain. This module first conducts a thorough analysis of retrieved
documents based on both the current search query and previous reasoning steps, and then produces
refined information that seamlessly integrates with the prior reasoning chain.

In summary, our contributions are as follows:



* We propose Search-ol1, the first framework that integrates the agentic search workflow into the
ol-like reasoning process of LRM for achieving autonomous knowledge supplementation.

* To effectively integrate external knowledge during reasoning, Search-ol combines the reasoning
process with an agentic RAG mechanism and a knowledge refinement module. This design enables
the LRM to retrieve external knowledge on demand, seamlessly incorporating it into the reasoning
chain while maintaining the original logical flow.

* With five complex reasoning domains and six open-domain QA benchmarks, we demonstrate that
Search-ol achieves remarkable performance in the reasoning field while maintaining substantial
improvements in the general knowledge. Further quantitative analysis confirms its efficiency and
scalability, offering practical guidance for trustworthy reasoning in LRMs.

2 Related Work

Large Reasoning Models. Large reasoning models focus on enhancing performance at test time by
utilizing extended reasoning steps, contrasting with traditional large pre-trained models that achieve
scalability during training by increasing model size or expanding training data [17, 66, 50, 85, 76].
Studies have shown that test-time scaling can improve the reasoning abilities of smaller models on
complex tasks [15, 75]. Recently, models like OpenAl-ol [22], Qwen-QwQ [54] and DeepSeek-
R1 [7] explicitly demonstrate chain-of-thought reasoning [59], mimicking human problem-solving
approaches in domains such as mathematics, coding, and so on.

Various approaches have been explored to achieve ol-like reasoning capabilities. Some methods
combine policy and reward models with Monte Carlo Tree Search (MCTS) [25], though this does not
internalize reasoning within the model. Other studies incorporate deliberate errors in reasoning paths
during training to partially internalize these abilities [49, 71]. Additionally, distilling training data
has been shown to enhance models’ ol-like reasoning skills [45]. The ol-like reasoning paradigm
has demonstrated strong performance across diverse domains, including vision-language reasoning
[65, 11, 48, 69], code generation [81, 32], healthcare [3], and machine translation [57]. However,
these approaches are limited by their reliance on static, parameterized models, which cannot leverage
external world knowledge when internal knowledge is insufficient.

Retrieval-Augmented Generation. Retrieval-augmented generation (RAG) introduces retrieval
mechanisms to address the limitations of static parameters in generative models, allowing access
to external knowledge to solve more complex problems [30, 82, 35, 86]. Advanced research in this
field enhances the RAG system from multiple aspects, including the necessity of retrieval [53], pre-
processing of queries [43, 58], retrieved documents compressing [64], denoising [42, 12], refining [24,
27, 88], instruction following [9, 8, 87] and so on. Furthermore, some studies have explored end-
to-end model training to implement RAG systems [1, 36, 33, 34] and knowledge-graph-based RAG
systems [14, 37].

Recently, agentic RAG systems empower models to autonomously determine when and what knowl-
edge to retrieve as needed, showcasing enhanced planning and problem-solving capabilities [5, 56, 70].
There is also research combining agent-based systems with MCTS to optimize complex workflows,
leveraging retrievers and other tools to accomplish tasks [78]. However, existing RAG approaches
have not combined the strong reasoning capabilities of 01-like models, limiting the potential to further
enhance system performance in solving complex tasks.

3 Methodology

3.1 Problem Formulation

We consider a complex reasoning task that necessitates multi-step reasoning and the retrieval of
external knowledge to derive solutions. The objective is to generate a comprehensive solution for
each question g, consisting of both a logical reasoning chain R and the final answer a. In this work,
we enable the reasoning model to utilize external knowledge sources during the reasoning process.
Specifically, we consider three primary inputs in the problem-solving process: the task instruction 7,
the question g, and externally retrieved documents D. Here, I provides an overarching description of
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Figure 2: Comparison of reasoning approaches: (a) Direct reasoning without retrieval often results
in inaccuracies due to missing knowledge. (b) Our agentic retrieval-augmented reasoning approach
improves knowledge access but usually returns lengthy, redundant documents, disrupting coherent
reasoning. (c) Our Search-ol integrates concise and accurate retrieved knowledge seamlessly into the
reasoning process, enabling precise and coherent problem-solving.

the reasoning task, ¢ is the specific complex question to be answered, and D comprises background
knowledge dynamically retrieved from a relevant knowledge base.

The goal is to design a reasoning mechanism that effectively integrates I, ¢, and D to produce a
coherent reasoning chain R and a final answer a. This can be formalized as the mapping (I, ¢, D) —
(R, a). The generation of the reasoning sequence and the final answer can be expressed as:

T, Ta
P(R7a|laq7D):HP(Rt|R<taIaQ7D<t)'HP(at|a‘<t7Ral7Q)a (1)
t=1 t=1

Reasoning Process Answer Generation

where T} is the number of tokens in the reasoning sequence R. The token at the position ¢ is R, and
‘R« represents all tokens generated before position ¢. D<, represents all documents retrieved up to
token ¢ in the reasoning chain. Similarly, 77, is the length of the answer sequence a, with a; being the
token at the position ¢ and a, indicating all generated answer tokens before the position ¢.

3.2 Overview of the Search-ol Framework

The Search-ol framework addresses knowledge insufficiency in large reasoning models (LRMs) by
seamlessly integrating external knowledge retrieval into their reasoning process while maintaining
chain-of-thought coherence. As illustrated in Figure 2, we present a comparative analysis of three
approaches: vanilla reasoning, agentic retrieval-augmented generation (RAG), and our proposed
Search-ol framework.

* Vanilla Reasoning Pattern: Consider the example in Figure 2(a), where the task involves de-
termining the carbon atom count in the final product of a three-step chemical reaction. The
vanilla reasoning approach falters when encountering knowledge gaps (e.g., the “structure of trans-
Cinnamaldehyde”). Without access to accurate information, the model must rely on assumptions,
potentially leading to cascading errors throughout subsequent reasoning steps.

» Agentic RAG: To bridge the knowledge gaps during reasoning, we build the agentic RAG mecha-
nism (Figure 2(b)) to enable the model to autonomously retrieve external knowledge when needed.
When uncertainty arises—such as regarding the compound’s structure—the model generates tar-
geted search queries (e.g., “structure of trans-Cinnamaldehyde”). However, the direct insertion



of retrieved documents, which often contain lengthy and irrelevant information, may disrupt the
reasoning flow and hurt coherence.

e Search-ol: Our Search-ol framework (Figure 2(c)) extends the agentic RAG mechanism by
incorporating a Reason-in-Documents module. This module condenses retrieved documents
into focused reasoning steps that integrate external knowledge while maintaining the logical
flow of the reasoning chain. It considers the current search query, retrieved documents, and the
existing reasoning chain to generate coherent steps. This iterative process continues until the
final answer is reached. The following sections provide detailed explanations of agentic RAG,
Reason-in-Documents, and the Search-o1 inference process.

3.3 Agentic Retrieval-Augmented Generation Mechanism

The agentic RAG mechanism is a pivotal component of the Search-o1 framework, empowering the
reasoning model to autonomously determine when to retrieve external knowledge during the reasoning
process. This mechanism allows the model itself to decide whether to continue generating reasoning
steps or to initiate a retrieval step. Detailed model instructions can be found in Appendix A.1.

During the generation of the reasoning chain R, the model may intermittently generate search queries
qs(;irch encapsulated between special symbols [<ibegin_search_queryl>] and [<lend_search_queryl>|, where 4
indexes the i-th search step. Each search query is generated based on the current state of the reasoning

process and the previously retrieved knowledge. The generation of each search query is expressed as:

T
P(Q§§Zrch | IaqaR(i_l)) = H P (qggrch,t | qgelzrch,<t’l’q’7€(i_1)) ’ 2)
t=1

where Tq(i) is the length of the i-th search query, q§§§mh7t denotes the token generated at step ¢ of the

i-th search query, and R(*~1) represents all the reasoning steps prior to the i-th search step, including
both search queries and search results.

Once a new pair of special symbols for the search query is detected in the reasoning sequence, we
(@)

<earch 18 €xtracted. The retrieval function Search

pause the reasoning process, and the search query g
is invoked to obtain relevant documents:

D = search(q{y), 3)

where D) = dgi)7 dg), ce dfﬁ? represents the set of top-k; relevant documents retrieved for the i-th

search query. The retrieved documents D(*) are subsequently injected into the reasoning chain R(~1)
between the special symbols [<Ibegin_search_resulti>] and [<lend_search_resultl>|, allowing the reasoning model
to utilize the external knowledge to continue the reasoning process.

This agentic mechanism enables the model to dynamically and efficiently incorporate external knowl-
edge, maintaining the coherence and relevance of the reasoning process while avoiding information
overload from excessive or irrelevant retrieval results.

3.4 Knowledge Refinement via Reason-in-Documents

While the agentic RAG mechanism addresses knowledge gaps in reasoning, directly inserting full
documents can disrupt coherence due to their length and redundancy. To overcome this, the Search-ol
framework includes the knowledge refinement module, which selectively integrates only relevant and
concise information into the reasoning chain through a separate generation process using the original
reasoning model. This module processes retrieved documents to align with the model’s specific
reasoning needs, transforming raw information into refined, pertinent knowledge while maintaining
coherence and logical consistency of the main reasoning chain.

The refinement guidelines for Reason-in-Documents are detailed in Appendix A.1. These guidelines
instruct the model to analyze the retrieved web pages based on the previous reasoning steps, current
search query, and the content of the searched web pages. The objective is to extract relevant and
accurate information that directly contributes to advancing the reasoning process for the original
question, ensuring seamless integration into the existing reasoning chain.



Algorithm 1 Search-ol Inference

Require: Reasoning Model M, Search function Search
1: Input: Questions Q, Task instruction I, Reason-in-documents instruction gocs

2: Initialize set of unfinished sequences S < {I @ ¢ | ¢ € O}
3: Initialize set of finished sequences F < {}
4: while S # 0 do
5: Generate all sequences in S until EOS or [<lend_search_gueryl>|: 7 < M(S) > Batch Generate
6: Initialize empty set S, < {} > Reason-in-documents Inputs
7: for each sequence Seq € T do
8: if Seq ends with then
9: Extract search query: @search <— Extract(Seq, |<Ibeginfsearchfqueryb|7 |<Iend75earch7query|> |)
10: Retrieve documents: D < Search(gsearch) > Retrieval
11: Construct input for Reason-in-documents: Ip < Ijocs ® Gsearch D Seq
12: Append the tuple (Ip, Seq) to S,
13: else if Seq ends with EOS then
14: Remove Seq from S, add Seq to F > Sequence Finished
15 if S, # () then
16: Prepare batch inputs: Z,. < {Ip | (Ip, Seq) € S;}
17: Reason-in-documents: 7, < M(Z,) > Batch Generate
18: fori < {1,...,|7-|} do
19: Let r < 7.[i], Seq + S,[i].Seq
20: Extract knowledge-injected reasoning step: 7gn. — Extract(r)
21: Update sequence in S: Seq < Insert (l <Ibeginfsearchjesultb|7 Tfinal » |<Iend75earch7result|>|)

22: Output: Finished Sequences F

For each search step i, let R(<?) denote the reasoning chain accumulated up to just before the i-th
search query. Given R(<?), the current search query qs(éirch, and the retrieved documents D), the
knowledge refinement process operates in two stages: first generating an intermediate reasoning

sequence r‘go)cs to analyze the retrieved documents, then producing refined knowledge rf(ii)a] based on

(@)

this analysis. The generation of the intermediate reasoning sequence 7,

is expressed as:
T(i)
P(T((ioz:s | R(<Z)7 qsedrch’ H P (Tdocs t | Tdocs <t’ R(<2)’ qsedrch7 D(Z)> ) (4)

where Téi) is the length of the intermediate reasoning sequence, and r((j?cs '

t. The refined knowledge rf(in)al is then generated based on this analysis:

denotes the token at step

T

P(Tﬁnal | Tdocs’ R(<l)7 qsearch H P (Tﬁnal t | Tﬁnal ,<t? T((iz)z:s’ R(<Z)7 qi(earch) (5)
where 71" is the length of the refined knowledge sequence, and rf(ifl)au denotes the token at step ?.
The refined knowledge réi)al is then incorporated into the reasoning chain R(*), enabling the model to
continue generating coherent reasoning steps with access to the external knowledge.

T, Ta
P(Rva | IaQ) = HP (Rt | R<t317Q7 {Tf(iflzll}jgi(t)) : Hp(at | a<t7R7[7q)a (6)
t=1 t=1

where {rf(lfqil} j<i(+) denotes all previously refined knowledge up to the i()-th search step. Here, i(t)
represents the index of the search step corresponding to the current reasoning step ¢. This refined
knowledge integration ensures that each reasoning step can access relevant external information while
maintaining the conciseness and focus of the reasoning process.

3.5 Search-ol Inference Process

Inference Logic for a Single Question. For each question, the Search-ol inference begins by
initializing the reasoning sequence with the task instruction I concatenated with the specific question



g. As the reasoning model M generates the reasoning chain R, it may produce search queries
encapsulated within the special symbols [<ibegin_search_queryl>] and [<lend_search_gueryl>]. Upon detecting
the symbol, the corresponding search query gsearcn 1S extracted, triggering the
retrieval function Search to obtain relevant external documents D. These retrieved documents,
along with the reason-in-documents instruction Iy,.s and the current reasoning sequence R, are
then processed by the Reason-in-Documents module. This module refines the raw documents into
concise, pertinent information 74,,, Which is seamlessly integrated back into the reasoning chain
‘R within symbols [<Ibegin_search_resultl>] and [<lend_search_resultl>]. This iterative process ensures that the
reasoning model incorporates necessary external knowledge while maintaining coherence and logical
consistency, leading to the generation of a comprehensive reasoning chain R and the final answer a.

Batch Inference Mechanism. To efficiently handle multiple questions simultaneously, the Search-
ol framework employs a batch inference mechanism that optimizes both token generation and
knowledge refinement. Initially, a set of unfinished reasoning sequences S is created by concatenating
the task instruction I with each question ¢ in the batch Q. The reasoning model M then generates
tokens for all sequences in S in parallel, advancing each reasoning chain until it either completes or
requires external knowledge retrieval. When a search query is identified within any sequence, the
corresponding queries are extracted and processed in batches through the Search function to retrieve
relevant documents D. These documents are then collectively refined by the Reason-in-Documents
module, which generates the refined knowledge 74, for each sequence. The refined knowledge is
subsequently inserted back into the respective reasoning chains. Completed sequences are moved
to the finished set F, while ongoing sequences remain in S for further processing. By leveraging
parallel processing for both generation and refinement steps, the batch inference mechanism enhances
system throughput associated with handling multiple inputs concurrently.

4 Experiments

4.1 Tasks and Datasets

The evaluations used in this experiment include the following two categories:

Challenging reasoning tasks: (1) GPQA [52] is a PhD-level science multiple-choice QA dataset.
The questions are authored by domain experts in physics, chemistry, and biology. In our main
experiments, we use the highest quality diamond set containing 198 questions, and in Table 2, we use
a more comprehensive extended set containing 546 questions to compare with the performance of
human experts. (2) Math benchmarks include MATHS00 [38], AMC2023 2 and AIME2024 °.
MATHS00 consists of 500 questions from the MATH test set [16]. AMC2023 and AIME2024 are
middle school math competitions covering arithmetic, algebra, geometry, etc., containing 40 and
30 questions respectively. Among these three datasets, MATHS500 and AMC are relatively simple,
while AIME is more difficult. (3) LiveCodeBench [23] is a benchmark for evaluating LLMs’ coding
capabilities, consisting of easy, medium, and hard difficulty problems. It collects recently published
programming problems from competitive platforms to avoid data contamination. We utilize problems
from August to November 2024, comprising 112 problems.

Open-domain QA tasks: (1) Single-hop QA datasets: Natural Questions (NQ) [29] contains
questions from real Google search queries with answers from Wikipedia articles. TriviaQA [28] is a
large-scale dataset with questions from trivia websites and competitions, featuring complex entity
relationships. (2) Multi-hop QA datasets: HotpotQA [68] is the first large-scale dataset requiring
reasoning across multiple Wikipedia paragraphs. 2WikiMultihopQA (2WIKI) [18] provides explicit
reasoning paths for multi-hop questions. MuSiQue [55] features 2-4 hop questions built from five
existing single-hop datasets. Bamboogle [47] collects complex questions that Google answers
incorrectly to evaluate models’ compositional reasoning across various domains.

4.2 Baselines

We evaluate our approach against the following baseline methods:

https://huggingface.co/datasets/AI-MO/aimo-validation-amc
*https://huggingface.co/datasets/AI-MO/aimo-validation-aime



Table 1: Main results on challenging reasoning tasks, including PhD-level science QA, math, and
code benchmarks. We report Pass@ 1 metric for all tasks. For models with 32B parameters, the best
results are in bold and the second-best are underlined. Results from larger or non-proprietary models
are in gray color for reference. Symbol “7” indicates results from their official releases.

GPQA (PhD-Level Science QA) Math Benchmarks LiveCodeBench

Method
Physics Chemistry Biology Overall MATH500 AMC23 AIME24 Easy Medium Hard Overall

Direct Reasoning (w/o Retrieval)

Qwen2.5-32B 57.0 333 526 455 75.8 57.5 233 423 189 143 223
Qwen2.5-Coder-32B 37.2 25.8 579 33.8 71.2 67.5 200 615 162 122 250
QwQ-32B 75.6 39.8 68.4  58.1 83.2 82.5 533 615 297 204 33.0
Qwen2.5-72B 57.0 37.6 68.4  49.0 79.4 67.5 200 538 297 245 330
Llama3.3-70B 54.7 31.2 526 434 70.8 47.5 36.7 577 324 245 348
DeepSeek-R1-Litet - - - 585 91.6 - 525 - - - 51.6
GPT-4ot 59.5 40.2 61.6 50.6 60.3 - 9.3 - - - 334
ol-preview? 89.4 59.9 65.9 73.3 85.5 - 44.6 - - - 53.6

Retrieval-augmented Reasoning
RAG-Qwen2.5-32B 57.0 37.6 526 475 82.6 72.5 300 615 243 82 259

RAG-QwQ-32B 76.7 38.7 73.7  58.6 84.8 82.5 50.0 577 162 122 241
RAgent-Qwen2.5-32B  58.1 333 632 470 74.8 65.0 200 577 243 6.1 241
RAgent-QwQ-32B 76.7 46.2 684  61.6 85.0 85.0 56.7 654 189 122 26.8

Retrieval-augmented Reasoning with Reason-in-Documents
Search-ol (Ours) 71.9 47.3 789  63.6 86.4 85.0 567 577 324 204 33.0

Direct Reasoning: These methods utilize the model’s internal knowledge without retrieval. The
open-source models include Qwen2.5-32B-Instruct [50], Qwen2.5-Coder-32B-Instruct [20], QwQ-
32B-Preview [54], Qwen2.5-72B-Instruct [50], and Llama3.3-70B-Instruct [13]. Closed-source
non-proprietary models include DeepSeek-R1-Lite-Preview [7], OpenAl GPT-40 [21], and ol-
preview [22]. Results for open-source models are based on our implementations, while closed-source
model results are sourced from their official releases.

Retrieval-augmented Reasoning: These methods retrieve external information to enhance the
reasoning process. We consider two retrieval augmentation approaches: (1) Standard RAG: Retrieves
the top-10 documents for the original question and inputs them alongside the question into the model
for reasoning and answer generation. (2) RAG Agent (RAgent): Allows the model to decide when to
generate queries for retrieval, as detailed in Section 3.3. To manage the length of retrieved documents,
inspired by ReAct [70], we first retrieve the top-10 snippets during reasoning. The model then decides
which URLs to obtain for the full documents when necessary.

4.3 Implementation Details

For the backbone large reasoning model in Search-ol, we utilize the open-sourced QwQ-32B-
Preview [54]. For generation settings, we use a maximum of 32,768 tokens, temperature of 0.7, top_p
of 0.8, top_k of 20, and a repetition penalty of 1.05 across all models. For retrieval, we employ the
Bing Web Search API, setting the region to US-EN and the top-k retrieved documents to 10. We use
Jina Reader API to fetch the content of web pages for given URLSs. For all retrieval-based methods,
following [52], we apply a back-off strategy where, when a final answer is not provided, we use
the result from direct reasoning. For baseline models not specifically trained for ol-like reasoning,
we apply Chain-of-Thought (CoT) [59] prompting to perform reasoning before generating answers.
Detailed instructions for all models are provided in Appendix A. All experiments are conducted on
eight NVIDIA A800-80GB GPUs.

4.4 Results on Challenging Reasoning Tasks

Main Results. Table | presents Search-o1’s performance on complex reasoning tasks, with the
main results outlined below:
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Figure 3: Scaling analysis of top-k retrieved documents utilized in reasoning. All results are based on
QwQ-32B-Preview model.

1. For both settings without retrieval and with retrieval augmentation, the large reasoning model
QwQ-32B-Preview consistently shows superior performance compared to traditional instruction-
tuned LLMs. The QwQ model with 32B parameters even outperforms larger LLMs such as
Qwen2.5-72B and Llama3.3-70B in the direct reasoning setting, demonstrating the effectiveness
of the ol-like long CoT approach in complex reasoning.

2. RAgent-QwQ-32B surpasses both standard RAG-based models and direct reasoning QwQ-
32B in most tasks, thanks to its agentic search mechanism, which autonomously retrieves infor-
mation to supplement the knowledge required for reasoning at each step. Additionally, we find
that the non-reasoning model Qwen2.5-32B using agentic RAG performs similarly to standard
RAG on GPQA and even shows decreased performance on math and code tasks. This indicates
that ordinary LLMs cannot effectively utilize search as a tool to solve complex reasoning tasks.

3. Our Search-ol further outperforms RAgent-QwQ-32B in most tasks, demonstrating the
effectiveness of our Reason-in-Documents strategy by integrating external knowledge while
ensuring that it does not affect the coherence of the original reasoning. Specifically, on average
across all five datasets, Search-ol exceeds RAgent-QwQ-32B and QwQ-32B by 4.7% and 3.1%,
respectively, and significantly outperforms non-reasoning models Qwen2.5-32B and Llama3.3-70B
by 44.7% and 39.3%.

Scaling Analysis on Number of Retrieved Doc- Table 2: Performance comparison with human
uments. In this experiment, we analyze the per- €xperts on the GPQA extended set [52].
forrpance variation with respect to the number of GPQA Extended Set
retrieved documents, as shown in Figure 3. Ourre- Method
sults demonstrate that Search-ol can effectively
leverage an increasing number of retrieved doc- Human Experts

uments, leading to improvements in handling Physicists 579 31.6 420 399
complex reasoning tasks! We also observe that ~Chemists 345 726 456 489
for overall performance, retrieving even one doc- ~Biologists 304 28.8 689 372
ument can surpass Direct Reasoning and standard  Reasoning Models

Physics Chemistry Biology Overall

RAG models that use ten retrieved documents, QwQ-32B 61.7 36.9 610 518
showcasing the effectiveness of the agentic search RAG-QwQ-32B 64.3 383 06.7  54.6
and Reason-in-Documents strategies. Search-o1 (Ours) 68.7 40.7 69.5 579

Comparison with Human Experts. We compare the performance of our Search-ol with human
experts across various domains in the GPQA extended set. Table 2 presents the evaluation of human
experts from various disciplines, including physics, chemistry, and biology. Our Search-o1 model
outperforms human experts in overall performance (57.9), as well as in both physics (68.7) and
biology (69.5), demonstrating superior handling of complex reasoning tasks. While Search-ol
slightly trails chemists in the chemistry subdomain (40.7 vs. 72.6), it still provides a competitive
edge overall, particularly in terms of general performance across multiple domains. This highlights
the effectiveness of Search-ol in leveraging document retrieval and reasoning to achieve cross-
domain performance that rivals or exceeds expert-level capabilities.



Table 3: Performance comparison on open-domain QA tasks, including single-hop QA and multi-hop
QA datasets. For models with 32B parameters, the best results are in bold and the second-best are
underlined. Results from larger models are in gray color for reference.

Single-hop QA Multi-hop QA

Method NQ TriviaQA HotpotQA 2WIKI MusSiQue Bamboogle

EM F1 EM F1 EM Fl1 EM F1 EM Fl1 EM F1

Direct Reasoning (w/o Retrieval)

Qwen2.5-32B 228 339 520 603 254 347 298 363 84 180 496 632
QwQ-32B 23.0 331 538 607 254 333 344 409 90 189 384 537
Qwen2.5-72B 276 412 568 658 29.2 388 344 427 114 204 472 617
Llama3.3-70B 36.0 487 688 768 378 49.1 46.0 542 148 23.6 544 06738
Retrieval-augmented Reasoning

RAG-Qwen2.5-32B 334 493 658 792 386 504 31.6 406 104 198 52.0 66.0
RAG-QwQ-32B 296 444 656 776 342 464 356 462 106 202 552 674
RAgent-Qwen2.5-32B 324 478 63.0 726 44.6 568 554 69.7 13.0 254 544 0664
RAgent-QwQ-32B 33.6 484 620 740 430 552 584 712 13.6 255 520 64.7

Retrieval-augmented Reasoning with Reason-in-Documents
Search-ol (Ours) 340 497 634 741 452 573

W
oo
(=]

714 16.6 282 56.0 67.8

4.5 Results on Open-Domain QA Tasks

In addition to the reasoning tasks where LRMs excel, we also explore the performance of our
Search-o1 on open-domain QA tasks. Table 3 presents the overall results. The key observations are:

1. For direct reasoning without retrieval, the performance of the LRM QwQ-32B is overall similar
to the non-reasoning LLM Qwen2.5-32B, with a slight decrease in average EM across all QA
datasets (31.3 vs. 30.7). This indicates that LRMs do not perform as strongly on open-domain
QA tasks as they do on reasoning tasks.

2. When employing retrieval-augmented reasoning, retrieval significantly improves performance for
both reasoning and non-reasoning models across all tasks, suggesting that models have knowledge
gaps in these tasks. Additionally, for the QwQ-32B model, agentic RAG achieves an average EM
improvement of 23.2% over standard RAG on multi-hop QA tasks, demonstrating the effectiveness
of our agentic RAG strategy in knowledge-based multi-hop QA. However, we also observe that
there is no significant performance change for single-hop tasks (47.8 vs. 47.6 on average EM),
as these questions only require information from a single knowledge point without the need for
multiple retrievals. This also verifies that the agentic search mechanism can better unleash the
potential of LRMs in more complex and challenging reasoning tasks.

3. For our Search-ol, we find that it generally outperforms all baselines on multi-hop tasks.
Specifically, in terms of the average EM metric, our Search-ol exceeds RAG-QwQ-32B and
RAgent-QwQ-32B by 29.6% and 5.3%, respectively, demonstrating the effectiveness of our
Reason-in-Documents strategy in complex QA tasks. This further emphasizes the importance
of maintaining consistency between external knowledge and the logical chain of reasoning.

5 Conclusion

In this work, we present Search-o1, a framework that addresses the knowledge insufficiency inherent
in large reasoning models (LRMs) by integrating an agentic retrieval-augmented generation mech-
anism alongside a Reason-in-Documents module. Our approach enables LRMs to autonomously
retrieve and seamlessly incorporate external knowledge during the reasoning process, thereby en-
hancing both the accuracy and coherence of their long-step reasoning capabilities. Comprehensive
experiments across diverse complex reasoning tasks in science, mathematics, and coding, as well as
multiple open-domain QA benchmarks, demonstrate that Search-o1 consistently outperforms existing
retrieval-augmented and direct reasoning methods. Notably, Search-ol not only surpasses baseline
models in handling intricate reasoning challenges but also achieves performance levels comparable to
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or exceeding human experts in specific domains. These findings underscore the potential of Search-ol

to significantly improve the reliability and versatility of LRMs, paving the way for more trustworthy
and effective intelligent systems in complex problem-solving scenarios.
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Appendix

A Instruction Templates

A.1 Instructions for Search-ol

Instruction for Search-o1

You are a reasoning assistant with the ability to perform web searches to help you answer the user’s question
accurately. You have special tools:

To perform a search: write <Ibegin_search_queryl> your query here <lend_search_queryl>.

Then, the system will search and analyze relevant web pages, then provide you with helpful information in the
format <Ibegin_search_resultl> ...search results... <lend_search_resultl>.

You can repeat the search process multiple times if necessary. The maximum number of search attempts is
limited to {MAX_SEARCH_LIMIT}.

Once you have all the information you need, continue your reasoning.

Example:
Question:
Assistant thinking steps:

- I might need to look up details about ...

Assistant:

<Ibegin_search_queryl>...<lend_search_queryl>

(System returns processed information from relevant web pages)

Assistant continues reasoning with the new information...

Remember:

- Use <lbegin_search_queryl> to request a web search and end with <lend_search_queryl>.
- When done searching, continue your reasoning.

. J

Instruction for Reason-in-Documents

Task Instruction:
You are tasked with reading and analyzing web pages based on the following inputs: Previous Reasoning Steps,
Current Search Query, and Searched Web Pages. Your objective is to extract relevant and helpful information for
Current Search Query from the Searched Web Pages and seamlessly integrate this information into the Previous
Reasoning Steps to continue reasoning for the original question.
Guidelines:
1. Analyze the Searched Web Pages:
- Carefully review the content of each searched web page.
- Identify factual information that is relevant to the Current Search Query and can aid in the reasoning process for
the original question.
2. Extract Relevant Information:
- Select the information from the Searched Web Pages that directly contributes to advancing the Previous
Reasoning Steps.
- Ensure that the extracted information is accurate and relevant.
3. Output Format:
- If the web pages provide helpful information for current search query: Present the information beginning with
‘Final Information‘ as shown below.
Final Information
[Helpful information]
- If the web pages do not provide any helpful information for current search query: Output the following text.
Final Information
No helpful information found.
Inputs:
- Previous Reasoning Steps:
{prev_reasoning}
- Current Search Query:
{search_query}
- Searched Web Pages:
{document}
Now you should analyze each web page and find helpful information based on the current search query
“{search_query}” and previous reasoning steps.
\_ J

“
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A2 Instructions for Standard RAG
Instruction for Standard RAG

You are a knowledgeable assistant that utilizes the provided documents to answer the user’s question accurately.
Question: {question}
Documents: {documents}
Guidelines:
- Analyze the provided documents to extract relevant information. Synthesize the information to formulate a
coherent and accurate answer.
- Ensure that your response directly addresses the user’s question using the information from the documents.
N\ J

A3 Instructions for RAG Agent

Instruction for RAG Agent

You are a reasoning assistant with the ability to perform web searches and retrieve webpage content to help you
answer the user’s question accurately. You have special tools:
- To perform a search: Write ‘<lbegin_search_queryl>’ your query here ‘<lend_search_queryl>’.
The system will call the web search API with your query and return the search results in the format ‘<Ibe-
gin_search_resultl> ...search results... <lend_search_result/>’.
The search results will include a list of webpages with titles, URLSs, and snippets (but not full content).
- To retrieve full page content: After receiving the search results, if you need more detailed information from
specific URLs, write ‘<lbegin_urll> urll, url2, ... <lend_urll>’.
The system will fetch the full page content of those URLs and return it as ‘<lbegin_full_pagel> ...full page
content... <lend_full_pagel>’.
You can repeat the search process multiple times if necessary. The maximum number of search attempts is limited
to {MAX_SEARCH_LIMIT}. You can fetch up to {MAX_URL_FETCH} URLs for detailed information.
Once you have all the information you need, continue your reasoning.
Example:
Question:
Assistant thinking steps: - I need to find out ...
Assistant: ‘<Ibegin_search_queryl>...<lend_search_queryl>’
(System returns search results)
Assistant: ‘<Ibegin_search_resultl> ...search results without full page... <lend_search_result>’
Assistant thinks: The search results mention several URLs. I want full details from one of them.
Assistant: ‘<lbegin_urll>http://...<lend_urll>’
(System returns full page content)
Assistant: ‘<lbegin_full_pagel> ...full page content... <lend_full_pagel>’
Now the assistant has enough information and can continue reasoning.
Remember:
- Use ‘<Ibegin_search_queryl>’ to request a web search and end with ‘<lend_search_queryl>’.
- Use ‘<Ibegin_urll>’ to request full page content and end with ‘<lend_urll>’.
- When done retrieving information, continue your reasoning.
. J

«

A.4 Task-Specific Instructions

A41 Open-Domain QA Tasks Instruction

Instruction for Open-Domain QA Tasks

Please answer the following question.

You should provide your final answer in the format \boxed{ YOUR_ANSWER}.
Question:

{question}
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A42 Math Tasks Instruction

Instruction for Math Tasks

Please answer the following math question.

You should provide your final answer in the format \boxed{ YOUR_ANSWER}.
Question:
{question}

A43 Mulfi-choice Tasks Instruction

Instruction for Multi-choice Tasks

You are to answer the following multiple-choice question by selecting the correct option.
Your final choice should be one of the letters A, B, C, or D. Do not include any answer content beyond the choice

letter.
You should provide your final choice in the format \boxed{ YOUR_CHOICE}.
Question: {question}

A4.4  Code Tasks Instruction
Instruction for Code Tasks

Generate a correct Python program that passes all tests for the given problem. You should provide your final
code within a Python code block using triple backticks.

Y Y'python
# YOUR CODE HERE

AURURY

Problem Title: {question_title}
Problem Statement:

{question}

. J

A.5 Additional Notes

For all the instructions above, we input them as user prompts, not system prompts. The task-specific
instructions in A.4 are used for the QwQ-32B-Preview model.

B Case Study

Tables 4, 5, and 6 present examples of outputs from our Search-ol model on the GPQA, AMC2023,
and HotpotQA datasets, respectively.
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Table 4: An example from Search-ol on GPQA dataset, with special symbols used in the search
queries and search results highlighted in [green box| and [blue box], respectively.

Example #1 from GPQA Dataset

Question:

trans-cinnamaldehyde was treated with methylmagnesium bromide, forming product 1.
1 was treated with pyridinium chlorochromate, forming product 2.

3 was treated with (dimethyl(oxo)-16-sulfaneylidene)methane in DMSO at elevated temperature, forming
product 3.

how many carbon atoms are there in product 3? Choices:

(A) 10

(B) 11

©) 14

(D) 12

Labeled Answer:

B

Model Output by Search-ol

Alright, so I have this problem here about some chemical reactions, and I need to figure out how many carbon
atoms are in the final product, which is product 3. Let’s break this down step by step.

First, there’s trans-cinnamaldehyde, and it’s being treated with methylmagnesium bromide to form product
1. I know that methylmagnesium bromide is a Grignard reagent, which is nucleophilic and usually adds to
carbonyl compounds. So, trans-cinnamaldehyde has a carbonyl group, right? It’s an aldehyde, so it has a
C=0 bond. The Grignard reagent should attack the carbonyl carbon, adding the methyl group and turning the
aldehyde into an alcohol, I think. But let me make sure.

Wait, maybe I should look up what exactly happens when a Grignard reagent reacts with an aldehyde. Let me
try to search for that.

<Ibegin_search_queryl>[reaction of grignard reagent with aldehyde]<lend_search_queryl>|
<Ibegin_search_resultl>|Reacting a Grignard reagent with an aldehyde results in the formation of a secondary alco-
hol, incorporating one additional carbon atom from the Grignard reagent. Therefore, if trans-cinnamaldehyde
(9 carbon atoms) reacts with methylmagnesium bromide (1 carbon atom), the resulting product (product 1)
will have 10 carbon atoms. Subsequent protonation to form product 2 and further reactions to form product 3
do not change the carbon atom count, assuming no carbon is added or removed in those steps. Hence, product
3 should have 10 carbon atoms.[<lend_search _resultl>|

Hmm, according to this, product 1 should have 10 carbon atoms, starting from trans-cinnamaldehyde, which
has 9 carbon atoms, plus the methyl group from the Grignard reagent, adding one more carbon atom. That
makes sense.

Next, product 1 is treated with pyridinium chlorochromate to form product 2. Pyridinium chlorochromate
(PCC) is used for oxidations, particularly for oxidizing primary alcohols to aldehydes or secondary alcohols to
ketones. Since product 1 is a secondary alcohol (from the previous step), PCC should oxidize it to a ketone.
Again, this shouldn’t change the number of carbon atoms; it’s just changing the functional group.

Alternatively, perhaps the initial trans-cinnamaldehyde has more or fewer carbon atoms than I thought. Let me
confirm its structure.

<Ibegin_search_queryl> [structure of trans—cinnamaldehyde
<Ibegin_search_resultl>[Trans-cinnamaldehyde, also known as (E)-cinnamaldehyde, has the molecular formula
CI9HSO. It consists of a phenyl ring connected to a propenal group via a double bond, forming a conjugated
system that makes the molecule planar. The structure comprises 9 carbon atoms, 8 hydrogen atoms, and 1 oxy-
gen atom, with the functional groups indicating its reactivity in chemical transformations[<lend_search resultl>]
Yes, confirmed: trans-cinnamaldehyde has 9 carbon atoms.

Now, reacting with methylmagnesium bromide, which provides a methyl group (-CH3), adds one carbon atom,
making product 1 have 10 carbon atoms.

Then, oxidation with PCC to convert the alcohol to a ketone doesn’t change the carbon skeleton, so product 2
still has 10 carbon atoms.

Therefore, starting from 9 carbon atoms in trans-cinnamaldehyde, adding one carbon atom from the Grignard
reagent to make 10, and then adding another carbon atom in the cyclopropanation to make 11.

So, the final answer is
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Table 5: An example from Search-ol on AMC2023 dataset, with special symbols used in the search
queries and search results highlighted in [green box| and [blue box], respectively.

Example #2 from AMC2023 Dataset

Question:
There is a unique sequence of integers a1, az, - - - a2023 such that

a tanx + as tan® z + as tan®z 4+ - + 2023 tan202 ¢

tan 2023z =
1+ aztan?z + aqtan - - - 4 a2029 tan2022

T

whenever tan 2023z is defined. What is a20237
Labeled Answer:
-1

Model Output by Search-ol

Alright, so I’ve got this problem here involving trigonometric identities, specifically with the tangent function.
The equation given is:

And I need to find the value of a2023.

First off, I know that there are multiple-angle identities for tangent, but I'm not sure if there’s a direct formula
for such a high multiple like 2023. Maybe there’s a general formula for tan nx in terms of tan «, and perhaps
this problem is asking for the coefficients in that expansion.

Wait, I remember that tangent of multiple angles can be expressed using the Bernoulli polynomials or
something similar, but I'm not sure. Maybe I need to search for a general formula for tan nzx.
Let me try to search for tangent multiple angle formulato see if there’s a general expression.

<lbegin_search_queryl> [tangent multiple angle formulal <lend_search_queryl>

<Ibegin_search_resultl>|The recursive formula for tan(n ¢ ) is given by:

tan[(n — 1)6] + tan 6
1 —tan[(n — 1)0] tan 6

tan(nf) =

This formula can be used iteratively to compute tan(n ¢ ) for any integer n, making it particularly useful
for large values of n, such as n=2023, as encountered in the problem. This approach avoids the complexity
of deriving high-degree polynomial expressions directly and leverages the tangent addition formula in a

step—by—step manner.| <lend_search_result|>

Okay, so there’s a recursive formula for tan(n8):

_ tan[(n —1)0] + tand
tan(nf) = 1 — tan[(n — 1)0] tan 6

That seems useful, especially for large n, like 2023. But I’'m not sure how to apply this recursively up to 2023
without going through each step, which isn’t practical.
Maybe there’s a general expression for tan(nx) in terms of tan(zx) as a rational function.

Looking at n = 1:
a1 tanx
tanx = -1 — a1 =1
Forn =3,a3 = —1
Forn=5,a5=1
So it seems that a, = (—1)™~Y/2 for odd n.
Wait, let’s check:
Forn =1, (-1)~1/2 =

(—1)” = 1, which matches a; =1
Forn =3, (—1)®~1/2 = (-
(-

1)°
1)! = —1, which matches a3 = —1
Forn =5, (—1)®~1/2 = (—1)2 = 1, which matches a5 = 1
So, generalizing, for odd n, a,, = (—1)"~1/2

Now, 2023 is odd, 50 agp23 = (—1)2923-1/2 — (_1)1011 — 1
Therefore, asg23 = —1

I think that’s the answer.

*Final Answer**
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Table 6: An example from Search-ol on HotpotQA dataset, with special symbols used in the search
queries and search results highlighted in [green box| and [blue box], respectively.

Example #3 from HotpotQA Dataset

Question:

Were Goo Goo Dolls and Echosmith formed in the same city?
Labeled Answer:

no

Model Output by Search-o1

Alright, I've got this question: Were Goo Goo Dolls and Echosmith formed in the same city?Hmm, I don’t
know much about these bands, so I’ll need to look that up.

First, I should find out where each band was formed. Maybe start with Goo Goo Dolls. I think they’re an older
band, but I’'m not sure. Let me search for their formation place.

where was Goo Goo Dolls formed?<lend_search_queryl>]|

<Ibegin_search_resultl>The Goo Goo Dolls were formed in Buffalo, New York, in 1986. They initially performed
under the name Sex Maggots but changed to Goo Goo Dolls in 1986 for a gig, choosing the name from an ad

in True Detective magazine. |<lend_search_resultl>

Okay, so Goo Goo Dolls were formed in Buffalo, New York. Now, I need to find out where Echosmith was

<Ibegin_search_queryl>

formed.

<lIbegin_search_queryl>

where was Echosmith formed?| <lend_search_queryl>

<Ibegin_search_resultl>

make sure I have the
Let me look up Echo

[Echosmith was formed in Chino, California, in February 2009 [<lend_search resultl>]

Chino, California, huh? That sounds different from Buffalo, New York. But maybe I should double-check to

right information.
smith again to confirm their formation city.

<Ibegin_search_queryl>

[Echosmith formation location<lend_search_queryl>

<lIbegin_search_result|>

Echosmith was formed in Toluca Lake, Los Angeles, California, in February 2009. The

initial confusion about the formation location being Chino, California, or Buffalo, New York, is resolved by
multiple recent sources confirming their formation in Los Angeles. Chino might be their hometown, but the
band was established in Toluca Lake, Los Angeles.[<lend_search_resultl>]

Wait, now it says Toluca Lake, Los Angeles, California. Earlier, I had Chino, California. Maybe there’s some
confusion here.

I should check more sources to make sure.

[Echosmith origin city[<lend_search_queryl>|

[Echosmith was born in Chino, California, but formed the band in Toluca Lake, Los
Angeles, California, in February 2009. Chino is their hometown, while Toluca Lake is where they officially
formed as a band.[<lend_search_resulti>]

So, it seems like Echosmith originates from Chino, California, but was formed in Toluca Lake, Los Angeles,
California.

Now, comparing that to Goo Goo Dolls, who were formed in Buffalo, New York.

Clearly, Buffalo, New York, is different from Toluca Lake, Los Angeles, California.

But just to be thorough, maybe there’s a connection I’m missing.

Let me see if Echosmith has any ties to Buffalo, New York.

Echosmith Buffalo, New Yor

<Ibegin_search_resultl>|Echosmith has performed in Buffalo, New York, in the past, as evidenced by a setlist
from a concert at Waiting Room on November 1, 2013. However, there are no current tour dates listed for
Buffalo in the searched web pages[<lend_search_resultl>]

So, they’ve played in Buffalo, but that doesn’t mean they were formed there.

Let me see if there’s any other connection between the two bands.

|<Ibegin7search7queryl> |G00 Goo Dolls and Echosmith COIlneCtiOIll <lend_search_queryl> I <Ibegin_search_resultl> |The
maximum search limit is exceeded. You are not allowed to search.[<lend_search_resultl>]

Hmm, it seems I've reached my search limit. Based on the information I have so far, Goo Goo Dolls were
formed in Buffalo, New York, and Echosmith was formed in Toluca Lake, Los Angeles, California. These are
different cities, so the answer should be no, they were not formed in the same city.

Therefore, I can confidently say that Goo Goo Dolls and Echosmith were not formed in the same city.
*Final Answer**

<Ibegin_search_queryl>

<Ibegin_search_resultl>

<Ibegin_search_queryl>
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