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Abstract

Mathematical reasoning poses a significant challenge for language models due to its complex
and structured nature. In this paper, we introduce DeepSeekMath 7B, which continues pre-
training DeepSeek-Coder-Base-v1.5 7B with 120B math-related tokens sourced from Common
Crawl, together with natural language and code data. DeepSeekMath 7B has achieved an
impressive score of 51.7% on the competition-level MATH benchmark without relying on
external toolkits and voting techniques, approaching the performance level of Gemini-Ultra
and GPT-4. Self-consistency over 64 samples from DeepSeekMath 7B achieves 60.9% on MATH.
The mathematical reasoning capability of DeepSeekMath is attributed to two key factors: First,
we harness the significant potential of publicly available web data through a meticulously
engineered data selection pipeline. Second, we introduce Group Relative Policy Optimization
(GRPO), a variant of Proximal Policy Optimization (PPO), that enhances mathematical reasoning
abilities while concurrently optimizing the memory usage of PPO.

Figure 1 | Top1 accuracy of open-source models on the competition-level MATH benchmark
(Hendrycks et al., 2021) without the use of external toolkits and voting techniques.

→ Core contributors.
† Work done during internship at DeepSeek-AI.
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1. Introduction

Large language models (LLM) have revolutionized the approach to mathematical reasoning
in artificial intelligence, spurring significant advancements in both the quantitative reasoning
benchmark (Hendrycks et al., 2021) and the geometry reasoning benchmark (Trinh et al., 2024).
Moreover, these models have proven instrumental in assisting humans in solving complex
mathematical problems (Tao, 2023). However, cutting-edge models such as GPT-4 (OpenAI,
2023) and Gemini-Ultra (Anil et al., 2023) are not publicly available, and the currently accessible
open-source models considerably trail behind in performance.

In this study, we introduce DeepSeekMath, a domain-specific language model that signifi-
cantly outperforms the mathematical capabilities of open-source models and approaches the
performance level of GPT-4 on academic benchmarks. To achieve this, we create the DeepSeek-
Math Corpus, a large-scale high-quality pre-training corpus comprising 120B math tokens. This
dataset is extracted from the Common Crawl (CC) using a fastText-based classifier (Joulin et al.,
2016). In the initial iteration, the classifier is trained using instances from OpenWebMath (Paster
et al., 2023) as positive examples, while incorporating a diverse selection of other web pages to
serve as negative examples. Subsequently, we employ the classifier to mine additional positive
instances from the CC, which are further refined through human annotation. The classifier is
then updated with this enhanced dataset to improve its performance. The evaluation results
indicate that the large-scale corpus is of high quality, as our base model DeepSeekMath-Base
7B achieves 64.2% on GSM8K (Cobbe et al., 2021) and 36.2% on the competition-level MATH
dataset (Hendrycks et al., 2021), outperforming Minerva 540B (Lewkowycz et al., 2022a). In
addition, the DeepSeekMath Corpus is multilingual, so we notice an improvement in Chinese
mathematical benchmarks (Wei et al., 2023; Zhong et al., 2023). We believe that our experience
in mathematical data processing is a starting point for the research community, and there is
significant room for improvement in the future.

DeepSeekMath-Base is initialized with DeepSeek-Coder-Base-v1.5 7B (Guo et al., 2024), as
we notice that starting from a code training model is a better choice compared to a general
LLM. Furthermore, we observe the math training also improves model capability on MMLU
(Hendrycks et al., 2020) and BBH benchmarks (Suzgun et al., 2022), indicating it does not only
enhance the model’s mathematical abilities but also amplifies general reasoning capabilities.

After pre-training, we apply mathematical instruction tuning to DeepSeekMath-Base with
chain-of-thought (Wei et al., 2022), program-of-thought (Chen et al., 2022; Gao et al., 2023), and
tool-integrated reasoning (Gou et al., 2023) data. The resulting model DeepSeekMath-Instruct
7B beats all 7B counterparts and is comparable with 70B open-source instruction-tuned models.

Furthermore, we introduce the Group Relative Policy Optimization (GRPO), a variant rein-
forcement learning (RL) algorithm of Proximal Policy Optimization (PPO) (Schulman et al., 2017).
GRPO foregoes the critic model, instead estimating the baseline from group scores, significantly
reducing training resources. By solely using a subset of English instruction tuning data, GRPO
obtains a substantial improvement over the strong DeepSeekMath-Instruct, including both
in-domain (GSM8K: 82.9% ↑ 88.2%, MATH: 46.8% ↑ 51.7%) and out-of-domain mathematical
tasks (e.g., CMATH: 84.6% ↑ 88.8%) during the reinforcement learning phase. We also provide
a unified paradigm to understand different methods, such as Rejection Sampling Fine-Tuning
(RFT) (Yuan et al., 2023a), Direct Preference Optimization (DPO) (Rafailov et al., 2023), PPO and
GRPO. Based on such a unified paradigm, we find that all these methods are conceptualized as
either direct or simplified RL techniques. We also conduct extensive experiments, e.g., online
v.s. offline training, outcome v.s. process supervision, single-turn v.s. iterative RL and so on,

2



to deeply investigate the essential elements of this paradigm. At last, we explain why our RL
boosts the performance of instruction-tuned models, and further summarize potential directions
to achieve more effective RL based on this unified paradigm.

1.1. Contributions

Our contribution includes scalable math pre-training, along with the exploration and analysis of
reinforcement learning.

Math Pre-Training at Scale

• Our research provides compelling evidence that the publicly accessible Common Crawl
data contains valuable information for mathematical purposes. By implementing a metic-
ulously designed data selection pipeline, we successfully construct the DeepSeekMath
Corpus, a high-quality dataset of 120B tokens from web pages filtered for mathemati-
cal content, which is almost 7 times the size of the math web pages used by Minerva
(Lewkowycz et al., 2022a) and 9 times the size of the recently released OpenWebMath
(Paster et al., 2023).

• Our pre-trained base model DeepSeekMath-Base 7B achieves comparable performance
with Minerva 540B (Lewkowycz et al., 2022a), indicating the number of parameters is not
the only key factor in mathematical reasoning capability. A smaller model pre-trained on
high-quality data could achieve strong performance as well.

• We share our findings from math training experiments. Code training prior to math
training improves models’ ability to solve mathematical problems both with and without
tool use. This offers a partial answer to the long-standing question: does code training
improve reasoning abilities? We believe it does, at least for mathematical reasoning.

• Although training on arXiv papers is common, especially in many math-related papers, it
brings no notable improvements on all mathematical benchmarks adopted in this paper.

Exploration and Analysis of Reinforcement Learning

• We introduce Group Relative Policy Optimization (GRPO), an efficient and effective
reinforcement learning algorithm. GRPO foregoes the critic model, instead estimating
the baseline from group scores, significantly reducing training resources compared to
Proximal Policy Optimization (PPO).

• We demonstrate that GRPO significantly enhances the performance of our instruction-
tuned model DeepSeekMath-Instruct, by solely using the instruction-tuning data. Further-
more, we observe enhancements in the out-of-domain performance during the reinforce-
ment learning process.

• We provide a unified paradigm to understand different methods, such as RFT, DPO,
PPO, and GRPO. We also conduct extensive experiments, e.g., online v.s. offline training,
outcome v.s. process supervision, single-turn v.s. iterative reinforcement learning, and so
on to deeply investigate the essential elements of this paradigm.

• Based on our unified paradigm, we explore the reasons behind the effectiveness of rein-
forcement learning, and summarize several potential directions to achieve more effective
reinforcement learning of LLMs.

1.2. Summary of Evaluations and Metrics

• English and Chinese Mathematical Reasoning: We conduct comprehensive assessments
of our models on English and Chinese benchmarks, covering mathematical problems
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from grade-school level to college level. English benchmarks include GSM8K (Cobbe
et al., 2021), MATH (Hendrycks et al., 2021), SAT (Azerbayev et al., 2023), OCW Courses
(Lewkowycz et al., 2022a), MMLU-STEM (Hendrycks et al., 2020). Chinese benchmarks
include MGSM-zh (Shi et al., 2023), CMATH (Wei et al., 2023), Gaokao-MathCloze (Zhong
et al., 2023), and Gaokao-MathQA (Zhong et al., 2023). We evaluate models’ ability
to generate self-contained text solutions without tool use, and also the ability to solve
problems using Python.
On English benchmarks, DeepSeekMath-Base is competitive with the closed-source Min-
erva 540B (Lewkowycz et al., 2022a), and surpasses all open-source base models (e.g., Mis-
tral 7B (Jiang et al., 2023) and Llemma-34B (Azerbayev et al., 2023)), regardless of whether
they’ve undergone math pre-training or not, often by a significant margin. Notably,
DeepSeekMath-Base is superior on Chinese benchmarks, likely because we don’t follow
previous works (Azerbayev et al., 2023; Lewkowycz et al., 2022a) to collect English-only
math pre-training data, and also include high-quality non-English ones. With mathemati-
cal instruction tuning and reinforcement learning, the resulting DeepSeekMath-Instruct
and DeepSeekMath-RL demonstrate strong performance, obtaining an accuracy of over
50% on the competition-level MATH dataset for the first time within the open-source
community.

• Formal Mathematics: We evaluate DeepSeekMath-Base using the informal-to-formal
theorem proving task from (Jiang et al., 2022) on miniF2F (Zheng et al., 2021) with Isabelle
(Wenzel et al., 2008) chosen to be the proof assistant. DeepSeekMath-Base demonstrates
strong few-shot autoformalization performance.

• Natural Language Understanding, Reasoning, and Code: To build a comprehensive
profile of models’ general understanding, reasoning, and coding capabilities, we eval-
uate DeepSeekMath-Base on the Massive Multitask Language Understanding (MMLU)
benchmark (Hendrycks et al., 2020) which encompasses 57 multiple-choice tasks covering
diverse subjects, BIG-Bench Hard (BBH) (Suzgun et al., 2022) which consists of 23 chal-
lenging tasks that mostly require multi-step reasoning to solve, as well as HumanEval
(Chen et al., 2021) and MBPP (Austin et al., 2021) which are widely used to evaluate code
language models. Math pre-training benefits both language understanding and reasoning
performance.

2. Math Pre-Training

2.1. Data Collection and Decontamination

In this section, we will outline the process of constructing the DeepSeekMath Corpus from
Common Crawl. As depicted in Figure 2, we present an iterative pipeline that demonstrates
how to systematically gather a large-scale mathematical corpus from Common Crawl, starting
with a seed corpus (e.g., a small but high-quality collection of math-related dataset). It’s worth
noting that this approach is also applicable to other domains, such as coding.

First, we choose OpenWebMath (Paster et al., 2023), a collection of high-quality mathematical
web texts, as our initial seed corpus. Using this corpus, we train a fastText model (Joulin et al.,
2016) to recall more OpenWebMath-like mathematical web pages. Specifically, we randomly
select 500,000 data points from the seed corpus as positive training examples and another
500,000 web pages from Common Crawl as negative ones. We employ an open-source library1

for training, configuring the vector dimension to 256, learning rate to 0.1, the maximum length

1https://fasttext.cc
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Math Seed
Math Corpus

1. Train a FastText Model 2. Recall Math-Related Webpages 
From Common Crawl

3. Discover Math-Related Domains4. Annotate Math-Related 
URL Path From Labelers

Deduplicated Common Crawl
40B HTML pages

Figure 2 | An iterative pipeline that collects mathematical web pages from Common Crawl.

of word n-gram to 3, the minimum number of word occurrences to 3, and the number of
training epochs to 3. To reduce the size of the original Common Crawl, we employ URL-based
deduplication and near-deduplication techniques, resulting in 40B HTML web pages. We then
recall mathematical web pages from deduplicated Common Crawl with the fastText model.
To filter out low-quality mathematical content, we rank the collected pages according to their
scores predicted by the fastText model, and only preserve the top-ranking ones. The volume
of data preserved is assessed through pre-training experiments on the top 40B, 80B, 120B, and
160B tokens. In the first iteration, we choose to keep the top 40B tokens.

After the first iteration of data collection, numerous mathematical web pages remain un-
collected, mainly because the fastText model is trained on a set of positive examples that lacks
sufficient diversity. We therefore identify additional mathematical web sources to enrich the seed
corpus, so that we can optimize the fastText model. Specifically, we first organize the entire Com-
mon Crawl into disjoint domains; a domain is defined as web pages sharing the same base URL.
For each domain, we calculate the percentage of web pages that are collected in the first iteration.
Domains where over 10% of the web pages have been collected are classified as math-related
(e.g., mathoverflow.net). Subsequently, we manually annotate the URLs associated with
mathematical content within these identified domains (e.g., mathoverflow.net/questions).
Web pages linked to these URLs, yet uncollected, will be added to the seed corpus. This ap-
proach enables us to gather more positive examples, thereby training an improved fastText
model capable of recalling more mathematical data in the subsequent iteration. After four
iterations of data collection, we end up with 35.5M mathematical web pages, totaling 120B
tokens. In the fourth iteration, we notice that nearly 98% of the data has already been collected
in the third iteration, so we decide to cease data collection.

To avoid benchmark contamination, we follow Guo et al. (2024) to filter out web pages
containing questions or answers from English mathematical benchmarks such as GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021) and Chinese benchmarks such as CMATH
(Wei et al., 2023) and AGIEval (Zhong et al., 2023). The filtering criteria are as follows: any
text segment containing a 10-gram string that matches exactly with any sub-string from the
evaluation benchmarks is removed from our math training corpus. For benchmark texts that
are shorter than 10 grams but have at least 3 grams, we employ exact matching to filter out
contaminated web pages.
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2.2. Validating the Quality of the DeepSeekMath Corpus

We run pre-training experiments to investigate how the DeepSeekMath Corpus is compared
with the recently released math-training corpora:

• MathPile (Wang et al., 2023c): a multi-source corpus (8.9B tokens) aggregated from
textbooks, Wikipedia, ProofWiki, CommonCrawl, StackExchange, and arXiv, with the
majority (over 85%) sourced from arXiv;

• OpenWebMath (Paster et al., 2023): CommonCrawl data filtered for mathematical content,
totaling 13.6B tokens;

• Proof-Pile-2 (Azerbayev et al., 2023): a mathematical corpus consisting of OpenWeb-
Math, AlgebraicStack (10.3B tokens of mathematical code), and arXiv papers (28.0B to-
kens). When experimenting on Proof-Pile-2, we follow Azerbayev et al. (2023) to use an
arXiv:Web:Code ratio of 2:4:1.

2.2.1. Training Setting

We apply math training to a general pre-trained language model with 1.3B parameters, which
shares the same framework as the DeepSeek LLMs (DeepSeek-AI, 2024), denoted as DeepSeek-
LLM 1.3B. We separately train a model on each mathematical corpus for 150B tokens. All
experiments are conducted using the efficient and light-weight HAI-LLM (High-flyer, 2023)
training framework. Following the training practice of DeepSeek LLMs, we use the AdamW
optimizer (Loshchilov and Hutter, 2017) with 𝐿1 = 0.9, 𝐿2 = 0.95, and weight_decay = 0.1, along
with a multi-step learning rate schedule where the learning rate reaches the peak after 2,000
warmup steps, decreases to its 31.6% after 80% of the training process, and further decreases to
10.0% of the peak after 90% of the training process. We set the maximum value of learning rate
to 5.3e-4, and use a batch size of 4M tokens with a 4K context length.

Math Corpus Size
English Benchmarks Chinese Benchmarks

GSM8K MATH OCW SAT MMLU
STEM CMATH Gaokao

MathCloze
Gaokao

MathQA

No Math Training N/A 2.9% 3.0% 2.9% 15.6% 19.5% 12.3% 0.8% 17.9%

MathPile 8.9B 2.7% 3.3% 2.2% 12.5% 15.7% 1.2% 0.0% 2.8%
OpenWebMath 13.6B 11.5% 8.9% 3.7% 31.3% 29.6% 16.8% 0.0% 14.2%
Proof-Pile-2 51.9B 14.3% 11.2% 3.7% 43.8% 29.2% 19.9% 5.1% 11.7%

DeepSeekMath Corpus 120.2B 23.8% 13.6% 4.8% 56.3% 33.1% 41.5% 5.9% 23.6%

Table 1 | Performance of DeepSeek-LLM 1.3B trained on different mathematical corpora, evalu-
ated using few-shot chain-of-thought prompting. Corpus sizes are calculated using our tokenizer
with a vocabulary size of 100K.

2.2.2. Evaluation Results

The DeepSeekMath Corpus is of high quality, covers multilingual mathematical content, and
is the largest in size.

• High-quality: We evaluate downstream performance on 8 mathematical benchmarks using
few-shot chain-of-thought prompting Wei et al. (2022). As shown in Table 1, there is a clear
performance lead of the model trained on the DeepSeekMath Corpus. Figure 3 shows that
the model trained on the DeepSeekMath Corpus demonstrates better performance than
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Figure 3 | Benchmark curves of DeepSeek-LLM 1.3B trained on different mathematical corpora.

Proof-Pile-2 at 50B tokens (1 full epoch of Proof-Pile-2), indicating the average quality of
DeepSeekMath Corpus is higher.

• Multilingual: The DeepSeekMath Corpus encompasses data in multiple languages, pre-
dominantly featuring English and Chinese as the two most represented languages. As
shown in Table 1, training on the DeepSeekMath Corpus enhances mathematical reasoning
performance in both English and Chinese. In contrast, existing mathematical corpora,
which are primarily English-centric, show limited improvement and may even hinder
performance in Chinese mathematical reasoning.

• Large-scale: The DeepSeekMath Corpus is several times larger than existing mathematical
corpora. As depicted in Figure 3, DeepSeek-LLM 1.3B, when trained on the DeepSeek-
Math Corpus, shows a steeper learning curve along with more lasting improvements. In
contrast, the baseline corpora are much smaller, and have already been repeated multiple
rounds during training, with the resulting model performance quickly reaching a plateau.

2.3. Training and Evaluating DeepSeekMath-Base 7B

In this section, we introduce DeepSeekMath-Base 7B, a base model with strong reasoning
abilities, especially in mathematics. Our model is initialized with DeepSeek-Coder-Base-v1.5 7B
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(Guo et al., 2024) and trained for 500B tokens. The distribution of the data is as follows: 56%
is from the DeepSeekMath Corpus, 4% from AlgebraicStack, 10% from arXiv, 20% is Github
code, and the remaining 10% is natural language data from Common Crawl in both English and
Chinese. We mainly adopt the training setting specified in Section 2.2.1, except that we set the
maximum value of the learning rate to 4.2e-4 and use a batch size of 10M tokens.

We conduct a comprehensive assessment of the mathematical capabilities of DeepSeekMath-
Base 7B, focusing on its ability to produce self-contained mathematical solutions without relying
on external tools, solve mathematical problems using tools, and conduct formal theorem proving.
Beyond mathematics, we also provide a more general profile of the base model, including its
performance of natural language understanding, reasoning, and programming skills.

Mathematical Problem Solving with Step-by-Step Reasoning We evaluate DeepSeekMath-
Base’s performance of solving mathematical problems using few-shot chain-of-thought prompt-
ing (Wei et al., 2022), across eight benchmarks in English and Chinese. These benchmarks encom-
pass quantitative reasoning (e.g., GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021),
and CMATH (Wei et al., 2023)) and multiple-choice problems (e.g., MMLU-STEM (Hendrycks
et al., 2020) and Gaokao-MathQA (Zhong et al., 2023)), covering diverse fields of mathematics
from elementary to college-level complexity.

As shown in Table 2, DeepSeekMath-Base 7B leads in performance across all eight bench-
marks among the open-source base models (including the widely-used general model Mistral
7B (Jiang et al., 2023) and the recently released Llemma 34B (Azerbayev et al., 2023) which
underwent math training on Proof-Pile-2 (Azerbayev et al., 2023)). Notably, on the competition-
level MATH dataset, DeepSeekMath-Base surpasses existing open-source base models by over
10% absolute, and outperforms Minerva 540B (Lewkowycz et al., 2022a), a closed-source base
model 77 times larger which builds on PaLM (Lewkowycz et al., 2022b) and is further trained
on mathematical texts.

Model Size
English Benchmarks Chinese Benchmarks

GSM8K MATH OCW SAT MMLU
STEM CMATH Gaokao

MathCloze
Gaokao

MathQA

Closed-Source Base Model

Minerva 7B 16.2% 14.1% 7.7% - 35.6% - - -
Minerva 62B 52.4% 27.6% 12.0% - 53.9% - - -
Minerva 540B 58.8% 33.6% 17.6% - 63.9% - - -

Open-Source Base Model

Mistral 7B 40.3% 14.3% 9.2% 71.9% 51.1% 44.9% 5.1% 23.4%

Llemma 7B 37.4% 18.1% 6.3% 59.4% 43.1% 43.4% 11.9% 23.6%
Llemma 34B 54.0% 25.3% 10.3% 71.9% 52.9% 56.1% 11.9% 26.2%

DeepSeekMath-Base 7B 64.2% 36.2% 15.4% 84.4% 56.5% 71.7% 20.3% 35.3%

Table 2 | Comparisons between DeepSeekMath-Base 7B and strong base models on English and
Chinese mathematical benchmarks. Models are evaluated with chain-of-thought prompting.
Minerva results are quoted from Lewkowycz et al. (2022a).
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Mathematical Problem Solving with Tool Use We evaluate program-aided mathematical
reasoning on GSM8K and MATH using few-shot program-of-thought prompting (Chen et al.,
2022; Gao et al., 2023). Models are prompted to solve each problem by writing a Python program
where libraries such as math and sympy can be utilized for intricate computations. The execution
result of the program is evaluated as the answer. As shown in Table 3, DeepSeekMath-Base 7B
outperforms the prior state-of-the-art Llemma 34B.

Model Size Problem Solving w/ Tools Informal-to-Formal Proving

GSM8K+Python MATH+Python miniF2F-valid miniF2F-test

Mistral 7B 48.5% 18.2% 18.9% 18.0%

CodeLlama 7B 27.1% 17.2% 16.3% 17.6%
CodeLlama 34B 52.7% 23.5% 18.5% 18.0%

Llemma 7B 41.0% 18.6% 20.6% 22.1%
Llemma 34B 64.6% 26.3% 21.0% 21.3%

DeepSeekMath-Base 7B 66.9% 31.4% 25.8% 24.6%

Table 3 | Few-shot evaluation of base models’ ability to solve mathematical problems using tools
and the ability to conduct informal-to-formal theorem proving in Isabelle.

Formal Mathematics Formal proof automation is beneficial to ensure the accuracy and relia-
bility of mathematical proofs and enhance efficiency, with increasing attention in recent years.
We evaluate DeepSeekMath-Base 7B on the task of informal-to-formal proving from (Jiang et al.,
2022) which is to generate a formal proof based on an informal statement, a formal counterpart
of the statement, and an informal proof. We evaluate on miniF2F (Zheng et al., 2021), a bench-
mark for formal Olympiad-level mathematics, and generate a formal proof in Isabelle for each
problem with few-shot prompting. Following Jiang et al. (2022), we leverage models to generate
proof sketches, and execute the off-the-shelf automated prover Sledgehammer (Paulson, 2010)
to fill in the missing details. As shown in Table 3, DeepSeekMath-Base 7B demonstrates strong
performance in proof autoformalization.

Model Size MMLU BBH HumanEval (Pass@1) MBPP (Pass@1)

Mistral 7B 62.4% 55.7% 28.0% 41.4%

DeepSeek-Coder-Base-v1.5† 7B 42.9% 42.9% 40.2% 52.6%
DeepSeek-Coder-Base-v1.5 7B 49.1% 55.2% 43.2% 60.4%

DeepSeekMath-Base 7B 54.9% 59.5% 40.9% 52.6%

Table 4 | Evaluation on natural language understanding, reasoning, and code benchmarks.
DeepSeek-Coder-Base-v1.5† is the checkpoint right before learning rate decay, which is used to
train DeepSeekMath-Base. On MMLU and BBH, we use few-shot chain-of-thought prompting.
On HumanEval and MBPP, we evaluate model performance under the zero-shot setting and a
few-shot setting, respectively.

Natural Language Understanding, Reasoning, and Code We evaluate model performance of
natural language understanding on MMLU (Hendrycks et al., 2020), reasoning on BBH (Suzgun
et al., 2022), and coding capabilities on HumanEval (Chen et al., 2021) and MBPP (Austin et al.,
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2021). As shown in Table 4, DeepSeekMath-Base 7B exhibits significant enhancements in per-
formance on MMLU and BBH over its precursor, DeepSeek-Coder-Base-v1.5 (Guo et al., 2024),
illustrating the positive impact of math training on language understanding and reasoning.
Additionally, by including code tokens for continual training, DeepSeekMath-Base 7B effectively
maintains the performance of DeepSeek-Coder-Base-v1.5 on the two coding benchmarks. Over-
all, DeepSeekMath-Base 7B significantly outperforms the general model Mistral 7B (Jiang et al.,
2023) on the three reasoning and coding benchmarks.

3. Supervised Fine-Tuning

3.1. SFT Data Curation

We construct a mathematical instruction-tuning dataset covering English and Chinese problems
from different mathematical fields and of varying complexity levels: problems are paired with
solutions in chain-of-thought (CoT) (Wei et al., 2022), program-of-thought (PoT) (Chen et al.,
2022; Gao et al., 2023), and tool-integrated reasoning format (Gou et al., 2023). The total number
of training examples is 776K.

• English mathematical datasets: We annotate GSM8K and MATH problems with tool-
integrated solutions, and adopt a subset of MathInstruct (Yue et al., 2023) along with the
training set of Lila-OOD (Mishra et al., 2022) where problems are solved with CoT or
PoT. Our English collection covers diverse fields of mathematics, e.g., algebra, probability,
number theory, calculus, and geometry.

• Chinese mathematical datasets: We collect Chinese K-12 mathematical problems spanning
76 sub-topics such as linear equations, with solutions annotated in both CoT and tool-
integrated reasoning format.

3.2. Training and Evaluating DeepSeekMath-Instruct 7B

In this section, we introduce DeepSeekMath-Instruct 7B which undergoes mathematical instruc-
tion tuning based on DeepSeekMath-Base. Training examples are randomly concatenated until
reaching a maximum context length of 4K tokens. We train the model for 500 steps with a batch
size of 256 and a constant learning rate of 5e-5.

We evaluate models’ mathematical performance both without and with tool use, on 4
quantitative reasoning benchmarks in English and Chinese. We benchmark our model against
the leading models of the time:

• Closed-source models include: (1) the GPT family among which GPT-4 (OpenAI, 2023)
and GPT-4 Code Interpreter 2 are the most capable ones, (2) Gemini Ultra and Pro (Anil
et al., 2023), (3) Inflection-2 (Inflection AI, 2023), (4) Grok-1 3, as well as models recently
released by Chinese companies including (5) Baichuan-3 4, (6) the latest GLM-4 5 from the
GLM family (Du et al., 2022). These models are for general purposes, most of which have
undergone a series of alignment procedures.

• Open-source models include: general models like (1) DeepSeek-LLM-Chat 67B (DeepSeek-
AI, 2024), (2) Qwen 72B (Bai et al., 2023), (3) SeaLLM-v2 7B (Nguyen et al., 2023), and (4)

2https://openai.com/blog/chatgpt-plugins#code-interpreter
3https://x.ai/model-card
4https://www.baichuan-ai.com
5https://open.bigmodel.cn/dev/api#glm-4
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ChatGLM3 6B (ChatGLM3 Team, 2023), as well as models with enhancements in mathemat-
ics including (5) InternLM2-Math 20B 6 which builds on InternLM2 and underwent math
training followed by instruction tuning, (6) Math-Shepherd-Mistral 7B which applys PPO
training (Schulman et al., 2017) to Mistral 7B (Jiang et al., 2023) with a process-supervised
reward model, (7) the WizardMath series (Luo et al., 2023) which improves mathematical
reasoning in Mistral 7B and Llama-2 70B (Touvron et al., 2023) using evolve-instruct (i.e.,
a version of instruction tuning that uses AI-evolved instructions) and PPO training with
training problems primarily sourced from GSM8K and MATH, (8) MetaMath 70B (Yu et al.,
2023) which is Llama-2 70B fine-tuned on an augmented version of GSM8K and MATH,
(9) ToRA 34B Gou et al. (2023) which is CodeLlama 34B fine-tuned to do tool-integrated
mathematical reasoning, (10) MAmmoTH 70B (Yue et al., 2023) which is Llama-2 70B
instruction-tuned on MathInstruct.

As shown in Table 5, under the evaluation setting where tool use is disallowed, DeepSeekMath-
Instruct 7B demonstrates strong performance of step-by-step reasoning. Notably, on the
competition-level MATH dataset, our model surpasses all open-source models and the ma-
jority of proprietary models (e.g., Inflection-2 and Gemini Pro) by at least 9% absolute. This
is true even for models that are substantially larger (e.g., Qwen 72B) or have been specifi-
cally enhanced through math-focused reinforcement learning (e.g., WizardMath-v1.1 7B). While
DeepSeekMath-Instruct rivals the Chinese proprietary models GLM-4 and Baichuan-3 on MATH,
it still underperforms GPT-4 and Gemini Ultra.

Under the evaluation setting where models are allowed to integrate natural language rea-
soning and program-based tool use for problem solving, DeepSeekMath-Instruct 7B approaches
an accuracy of 60% on MATH, surpassing all existing open-source models. On the other bench-
marks, our model is competitive with DeepSeek-LLM-Chat 67B, the prior state-of-the-art that is
10 times larger.

4. Reinforcement Learning

4.1. Group Relative Policy Optimization

Reinforcement learning (RL) has been proven to be effective in further improving the mathe-
matical reasoning ability of LLMs after the Supervised Fine-Tuning (SFT) stage (Luo et al., 2023;
Wang et al., 2023b). In this section, we introduce our efficient and effective RL algorithm, Group
Relative Policy Optimization (GRPO).

4.1.1. From PPO to GRPO

Proximal Policy Optimization (PPO) (Schulman et al., 2017) is an actor-critic RL algorithm that is
widely used in the RL fine-tuning stage of LLMs (Ouyang et al., 2022). In particular, it optimizes
LLMs by maximizing the following surrogate objective:

J𝑀𝑀𝑁 (𝑂) = E[𝑃 ↓ 𝑀(𝑄), 𝑅 ↓ 𝑆𝑂𝑅𝑇𝑈 (𝑁|𝑃)]
1
|𝑅|

|𝑅 |∑
𝑉=1

min
[

𝑆𝑂 (𝑅𝑉 |𝑃, 𝑅<𝑉)
𝑆𝑂𝑅𝑇𝑈 (𝑅𝑉 |𝑃, 𝑅<𝑉)

𝑊𝑉 , clip
(

𝑆𝑂 (𝑅𝑉 |𝑃, 𝑅<𝑉)
𝑆𝑂𝑅𝑇𝑈 (𝑅𝑉 |𝑃, 𝑅<𝑉)

, 1 ↔ 𝑋, 1 + 𝑋

)
𝑊𝑉

]
, (1)

where 𝑆𝑂 and 𝑆𝑂𝑅𝑇𝑈 are the current and old policy models, and 𝑃, 𝑅 are questions and outputs
sampled from the question dataset and the old policy 𝑆𝑂𝑅𝑇𝑈 , respectively. 𝑋 is a clipping-related
hyper-parameter introduced in PPO for stabilizing training. 𝑊𝑉 is the advantage, which is
computed by applying Generalized Advantage Estimation (GAE) (Schulman et al., 2015), based

6https://github.com/InternLM/InternLM-Math
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Model Size English Benchmarks Chinese Benchmarks

GSM8K MATH MGSM-zh CMATH

Chain-of-Thought Reasoning

Closed-Source Model

Gemini Ultra - 94.4% 53.2% - -
GPT-4 - 92.0% 52.9% - 86.0%
Inflection-2 - 81.4% 34.8% - -
GPT-3.5 - 80.8% 34.1% - 73.8%
Gemini Pro - 86.5% 32.6% - -
Grok-1 - 62.9% 23.9% - -

Baichuan-3 - 88.2% 49.2% - -
GLM-4 - 87.6% 47.9% - -

Open-Source Model

InternLM2-Math 20B 82.6% 37.7% - -
Qwen 72B 78.9% 35.2% - -
Math-Shepherd-Mistral 7B 84.1% 33.0% - -
WizardMath-v1.1 7B 83.2% 33.0% - -
DeepSeek-LLM-Chat 67B 84.1% 32.6% 74.0% 80.3%
MetaMath 70B 82.3% 26.6% 66.4% 70.9%
SeaLLM-v2 7B 78.2% 27.5% 64.8% -
ChatGLM3 6B 72.3% 25.7% - -
WizardMath-v1.0 70B 81.6% 22.7% 64.8% 65.4%

DeepSeekMath-Instruct 7B 82.9% 46.8% 73.2% 84.6%
DeepSeekMath-RL 7B 88.2% 51.7% 79.6% 88.8%

Tool-Integrated Reasoning

Closed-Source Model

GPT-4 Code Interpreter - 97.0% 69.7% - -

Open-Source Model

InternLM2-Math 20B 80.7% 54.3% - -
DeepSeek-LLM-Chat 67B 86.7% 51.1% 76.4% 85.4%
ToRA 34B 80.7% 50.8% 41.2% 53.4%
MAmmoTH 70B 76.9% 41.8% - -

DeepSeekMath-Instruct 7B 83.7% 57.4% 72.0% 84.3%
DeepSeekMath-RL 7B 86.7% 58.8% 78.4% 87.6%

Table 5 | Performance of Open- and Closed-Source models with both Chain-of-Thought and
Tool-Integrated Reasoning on English and Chinese Benchmarks. Scores in gray denote majority
votes with 32 candidates; The others are Top1 scores. DeepSeekMath-RL 7B beats all open-
source models from 7B to 70B, as well as the majority of closed-source models. Although
DeepSeekMath-RL 7B is only further trained on chain-of-thought-format instruction tuning data
of GSM8K and MATH, it improves over DeepSeekMath-Instruct 7B on all benchmarks.
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Figure 4 | Demonstration of PPO and our GRPO. GRPO foregoes the value model, instead
estimating the baseline from group scores, significantly reducing training resources.

on the rewards {𝑌↗𝑉} and a learned value function 𝑍𝑎. Thus, in PPO, a value function needs to
be trained alongside the policy model and to mitigate over-optimization of the reward model,
the standard approach is to add a per-token KL penalty from a reference model in the reward at
each token (Ouyang et al., 2022), i.e.,

𝑌𝑉 = 𝑌𝑏 (𝑃, 𝑅↘𝑉) ↔ 𝐿 log
𝑆𝑂(𝑅𝑉 |𝑃, 𝑅<𝑉)
𝑆𝑌𝑐 𝑑 (𝑅𝑉 |𝑃, 𝑅<𝑉)

, (2)

where 𝑌𝑏 is the reward model, 𝑆𝑌𝑐 𝑑 is the reference model, which is usually the initial SFT model,
and 𝐿 is the coefficient of the KL penalty.

As the value function employed in PPO is typically another model of comparable size as
the policy model, it brings a substantial memory and computational burden. Additionally,
during RL training, the value function is treated as a baseline in the calculation of the advantage
for variance reduction. While in the LLM context, usually only the last token is assigned a
reward score by the reward model, which may complicate the training of a value function that is
accurate at each token. To address this, as shown in Figure 4, we propose Group Relative Policy
Optimization (GRPO), which obviates the need for additional value function approximation as
in PPO, and instead uses the average reward of multiple sampled outputs, produced in response
to the same question, as the baseline. More specifically, for each question 𝑃, GRPO samples a
group of outputs {𝑅1, 𝑅2, · · · , 𝑅𝑒} from the old policy 𝑆𝑂𝑅𝑇𝑈 and then optimizes the policy model
by maximizing the following objective:

J𝑒𝑓𝑀𝑁 (𝑂) = E[𝑃 ↓ 𝑀(𝑄), {𝑅𝑔}𝑒𝑔=1 ↓ 𝑆𝑂𝑅𝑇𝑈 (𝑁|𝑃)]

1
𝑒

𝑒∑
𝑔=1

1
|𝑅𝑔 |

|𝑅𝑔 |∑
𝑉=1

{
min

[
𝑆𝑂 (𝑅𝑔,𝑉 |𝑃, 𝑅𝑔,<𝑉)
𝑆𝑂𝑅𝑇𝑈 (𝑅𝑔,𝑉 |𝑃, 𝑅𝑔,<𝑉)

�̂�𝑔,𝑉 , clip
(

𝑆𝑂 (𝑅𝑔,𝑉 |𝑃, 𝑅𝑔,<𝑉)
𝑆𝑂𝑅𝑇𝑈 (𝑅𝑔,𝑉 |𝑃, 𝑅𝑔,<𝑉)

, 1 ↔ 𝑋, 1 + 𝑋

)
�̂�𝑔,𝑉

]
↔ 𝐿D𝑖𝑗

[
𝑆𝑂 | |𝑆𝑌𝑐 𝑑

]}
,

(3)

where 𝑋 and 𝐿 are hyper-parameters, and �̂�𝑔,𝑉 is the advantage calculated based on relative
rewards of the outputs inside each group only, which will be detailed in the following subsec-
tions. The group relative way that GRPO leverages to calculate the advantages, aligns well with
the comparative nature of rewards models, as reward models are typically trained on datasets
of comparisons between outputs on the same question. Also note that, instead of adding KL
penalty in the reward, GRPO regularizes by directly adding the KL divergence between the
trained policy and the reference policy to the loss, avoiding complicating the calculation of �̂�𝑔,𝑉.
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Algorithm 1 Iterative Group Relative Policy Optimization
Input initial policy model 𝑆𝑂init ; reward models 𝑌𝑏; task prompts D; hyperparameters 𝑋, 𝐿, 𝑘

1: policy model 𝑆𝑂 ≃ 𝑆𝑂init

2: for iteration = 1, . . . , I do
3: reference model 𝑆𝑌𝑐 𝑑 ≃ 𝑆𝑂

4: for step = 1, . . . , M do
5: Sample a batch D𝑙 from D
6: Update the old policy model 𝑆𝑂𝑅𝑇𝑈 ≃ 𝑆𝑂

7: Sample 𝑒 outputs {𝑅𝑔}𝑒𝑔=1 ↓ 𝑆𝑂𝑅𝑇𝑈 (· | 𝑃) for each question 𝑃 ⇐ D𝑙

8: Compute rewards {𝑌𝑔}𝑒𝑔=1 for each sampled output 𝑅𝑔 by running 𝑌𝑏
9: Compute �̂�𝑔,𝑉 for the 𝑉-th token of 𝑅𝑔 through group relative advantage estimation.

10: for GRPO iteration = 1, . . . , 𝑘 do
11: Update the policy model 𝑆𝑂 by maximizing the GRPO objective (Equation 21)
12: Update 𝑌𝑏 through continuous training using a replay mechanism.

Output 𝑆𝑂

And different from the KL penalty term used in (2), we estimate the KL divergence with the
following unbiased estimator (Schulman, 2020):

D𝑖𝑗
[
𝑆𝑂 | |𝑆𝑌𝑐 𝑑

]
=

𝑆𝑌𝑐 𝑑 (𝑅𝑔,𝑉 |𝑃, 𝑅𝑔,<𝑉)
𝑆𝑂(𝑅𝑔,𝑉 |𝑃, 𝑅𝑔,<𝑉)

↔ log
𝑆𝑌𝑐 𝑑 (𝑅𝑔,𝑉 |𝑃, 𝑅𝑔,<𝑉)
𝑆𝑂(𝑅𝑔,𝑉 |𝑃, 𝑅𝑔,<𝑉)

↔ 1, (4)

which is guaranteed to be positive.

4.1.2. Outcome Supervision RL with GRPO

Formally, for each question 𝑃, a group of outputs {𝑅1, 𝑅2, · · · , 𝑅𝑒} are sampled from the old
policy model 𝑆𝑂𝑅𝑇𝑈 . A reward model is then used to score the outputs, yielding 𝑒 rewards
r = {𝑌1, 𝑌2, · · · , 𝑌𝑒} correspondingly. Subsequently, these rewards are normalized by subtracting
the group average and dividing by the group standard deviation. Outcome supervision provides
the normalized reward at the end of each output 𝑅𝑔 and sets the advantages �̂�𝑔,𝑉 of all tokens in
the output as the normalized reward, i.e., �̂�𝑔,𝑉 = �̃�𝑔 =

𝑌𝑔↔mean(r)
std(r) , and then optimizes the policy by

maximizing the objective defined in equation (3).

4.1.3. Process Supervision RL with GRPO

Outcome supervision only provides a reward at the end of each output, which may not be
sufficient and efficient to supervise the policy in complex mathematical tasks. Following Wang
et al. (2023b), we also explore process supervision, which provides a reward at the end of
each reasoning step. Formally, given the question 𝑃 and 𝑒 sampled outputs {𝑅1, 𝑅2, · · · , 𝑅𝑒}, a
process reward model is used to score each step of the outputs, yielding corresponding rewards:
R = {{𝑌𝑔𝑚𝑈𝑐𝑛 (1)1 , · · · , 𝑌𝑔𝑚𝑈𝑐𝑛 (𝑖1 )

1 }, · · · , {𝑌𝑔𝑚𝑈𝑐𝑛 (1)𝑒 , · · · , 𝑌𝑔𝑚𝑈𝑐𝑛 (𝑖𝑒 )
𝑒 }}, where 𝑔𝑚𝑈𝑐𝑛 ( 𝑜) is the end token index

of the 𝑜-th step, and 𝑖𝑔 is the total number of steps in the 𝑔-th output. We also normalize these

rewards with the average and the standard deviation, i.e., �̃�𝑔𝑚𝑈𝑐𝑛 ( 𝑜)𝑔 =
𝑌𝑔𝑚𝑈𝑐𝑛 ( 𝑜)𝑔 ↔mean(R)

std(R) . Subsequently,
the process supervision calculates the advantage of each token as the sum of the normalized
rewards from the following steps, i.e., �̂�𝑔,𝑉 =

∑
𝑔𝑚𝑈𝑐𝑛 ( 𝑜)↗𝑉 �̃�

𝑔𝑚𝑈𝑐𝑛 ( 𝑜)
𝑔 , and then optimizes the policy by

maximizing the objective defined in equation (3).
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4.1.4. Iterative RL with GRPO

As the reinforcement learning training process progresses, the old reward model may not be
sufficient to supervise the current policy model. Therefore, we also explore the iterative RL
with GRPO. As shown in Algorithm 1, in iterative GRPO, we generate new training sets for the
reward model based on the sampling results from the policy model and continually train the
old reward model using a replay mechanism that incorporates 10% of historical data. Then, we
set the reference model as the policy model, and continually train the policy model with the
new reward model.

4.2. Training and Evaluating DeepSeekMath-RL

We conduct RL based on DeepSeekMath-Instruct 7B. The training data of RL are chain-of-
thought-format questions related to GSM8K and MATH from the SFT data, which consists
of around 144K questions. We exclude other SFT questions to investigate the impact of RL
on benchmarks that lack data throughout the RL phase. We construct the training set of
reward models following (Wang et al., 2023b). We train our initial reward model based on the
DeepSeekMath-Base 7B with a learning rate of 2e-5. For GRPO, we set the learning rate of the
policy model as 1e-6. The KL coefficient is 0.04. For each question, we sample 64 outputs. The
max length is set to 1024, and the training batch size is 1024. The policy model only has a single
update following each exploration stage. We evaluate DeepSeekMath-RL 7B on benchmarks
following DeepSeekMath-Instruct 7B. For DeepSeekMath-RL 7B, GSM8K and MATH with
chain-of-thought reasoning can be regarded as in-domain tasks and all the other benchmarks
can be regarded as out-of-domain tasks.

Table 5 demonstrates the performance of open- and closed-source models with both chain-
of-thought and tool-integrated reasoning on English and Chinese benchmarks. We find that:
1) DeepSeekMath-RL 7B attains accuracies of 88.2% and 51.7% on GSM8K and MATH, respec-
tively, utilizing chain-of-thought reasoning. This performance surpasses that of all open-source
models in the 7B to 70B range, as well as the majority of closed-source models. 2) Crucially,
DeepSeekMath-RL 7B is only trained on chain-of-thought-format instruction tuning data of
GSM8K and MATH, starting from DeepSeekMath-Instruct 7B. Despite the constrained scope
of its training data, it outperforms DeepSeekMath-Instruct 7B across all evaluation metrics,
showcasing the effectiveness of reinforcement learning.

5. Discussion

In this section, we will share our findings in pre-training and RL experiments.

5.1. Lessons Learnt in Pre-Training

We first share our experience in pre-training. Unless otherwise specified, we will adhere to
the training settings outlined in Section 2.2.1. It is worth noting that, when referring to the
DeepSeekMath Corpus in this section, we use an 89B-token dataset from the second iteration of
the data collection process.

5.1.1. Code Training Benefits Mathematical Reasoning

A popular yet unverified hypothesis suggests that code training improves reasoning. We attempt
to offer a partial response to this, particularly within the mathematical domain: code training
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Training Setting Training Tokens w/o Tool Use w/ Tool Use

General Code Math GSM8K MATH CMATH GSM8K+Python MATH+Python

No Continual Training – – – 2.9% 3.0% 12.3% 2.7% 2.3%

Two-Stage Training

Stage 1: General Training 400B – – 2.9% 3.2% 14.8% 3.3% 2.3%
Stage 2: Math Training – – 150B 19.1% 14.4% 37.2% 14.3% 6.7%

Stage 1: Code Training – 400B – 5.9% 3.6% 19.9% 12.4% 10.0%
Stage 2: Math Training – – 150B 21.9% 15.3% 39.7% 17.4% 9.4%

One-Stage Training

Math Training – – 150B 20.5% 13.1% 37.6% 11.4% 6.5%

Code & Math Mixed Training – 400B 150B 17.6% 12.1% 36.3% 19.7% 13.5%

Table 6 | Investigation of how code affects mathematical reasoning under different training
settings. We experiment with DeepSeek-LLM 1.3B, and evaluate its mathematical reasoning
performance without and with tool use via few-shot chain-of-thought prompting and few-shot
program-of-thought prompting, respectively.

improves models’ ability to do mathematical reasoning both with and without tool use.

To study how code training affects mathematical reasoning, we experimented with the
following two-stage training and one-stage training settings:

Two-Stage Training

• Code Training for 400B Tokens ↑ Math Training for 150B Tokens: We train DeepSeek-
LLM 1.3B for 400B code tokens followed by 150B math tokens;

• General Training for 400B Tokens ↑ Math Training for 150B Tokens: As a control
experiment, we also experiment with general tokens (sampled from a large-scale general
corpus created by DeepSeek-AI) instead of code tokens in the first stage of training, in an
attempt to investigate the advantages of code tokens over general tokens in improving
mathematical reasoning.

One-Stage Training

• Math Training for 150B Tokens: We train DeepSeek-LLM 1.3B for 150B math tokens;
• Training on a mixture of 400B Code Tokens and 150B Math Tokens: Math training fol-

lowing code training degrades coding performance. We investigate whether code tokens,
when mixed with math tokens for one-stage training, would still improve mathematical
reasoning and also alleviate the problem of catastrophic forgetting.

Results Table 6 and Table 7 demonstrate the downstream performance under different training
settings.

Code training benefits program-aided mathematical reasoning, both under the two-stage
training and one-stage training settings. As shown in Table 6, under the two-stage training
setting, code training alone already significantly enhances the ability to solve GSM8K and
MATH problems using Python. Math training in the second stage yields further improvements.
Interestingly, under the one-stage training setting, mixing code tokens and math tokens effec-
tively mitigates the issue of catastrophic forgetting that arises from two-stage training, and also
synergizes coding (Table 7) and program-aided mathematical reasoning (Table 6).
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Training Setting Training Tokens MMLU BBH HumanEval (Pass@1) MBPP (Pass@1)
General Code Math

No Continual Training – – – 24.5% 28.1% 12.2% 13.0%

Two-Stage Training

Stage 1: General Training 400B – – 25.9% 27.7% 15.2% 13.6%
Stage 2: Math Training – – 150B 33.1% 32.7% 12.8% 13.2%

Stage 1: Code Training – 400B – 25.0% 31.5% 25.0% 40.0%
Stage 2: Math Training – – 150B 36.2% 35.3% 12.2% 17.0%

One-Stage Training

Math Training – – 150B 32.3% 32.5% 11.6% 13.2%

Code & Math Mixed Training – 400B 150B 33.5% 35.6% 29.3% 39.4%

Table 7 | Investigation of how different settings of code and math training affect model perfor-
mance of language understanding, reasoning, and coding. We experiment with DeepSeek-LLM
1.3B. We evaluate the models on MMLU and BBH using few-shot chain-of-thought prompting.
On HumanEval and MBPP, we conduct zero-shot and few-shot evaluations, respectively.

Model Size ArXiv Corpus
English Benchmarks Chinese Benchmarks

GSM8K MATH OCW SAT MMLU
STEM CMATH Gaokao

MathCloze
Gaokao

MathQA

DeepSeek-LLM 1.3B
No Math Training 2.9% 3.0% 2.9% 15.6% 19.5% 12.3% 0.8% 17.9%

MathPile 2.7% 3.3% 2.2% 12.5% 15.7% 1.2% 0.0% 2.8%
ArXiv-RedPajama 3.3% 3.4% 4.0% 9.4% 9.0% 7.4% 0.8% 2.3%

DeepSeek-Coder-Base-v1.5 7B
No Math Training 29.0% 12.5% 6.6% 40.6% 38.1% 45.9% 5.9% 21.1%

MathPile 23.6% 11.5% 7.0% 46.9% 35.8% 37.9% 4.2% 25.6%
ArXiv-RedPajama 28.1% 11.1% 7.7% 50.0% 35.2% 42.6% 7.6% 24.8%

Table 8 | Effect of math training on different arXiv datasets. Model performance is evaluated
with few-shot chain-of-thought prompting.

ArXiv Corpus miniF2F-valid miniF2F-test

No Math Training 20.1% 21.7%

MathPile 16.8% 16.4%
ArXiv-RedPajama 14.8% 11.9%

Table 9 | Effect of math training on different arXiv corpora, the base model being DeepSeek-
Coder-Base-v1.5 7B. We evaluate informal-to-formal proving in Isabelle.

Code training also improves mathematical reasoning without tool use. Under the two-stage
training setting, the initial stage of code training already results in moderate enhancements.
It also boosts the efficiency of the subsequent math training, eventually leading to the best
performance. However, combining code tokens and math tokens for one-stage training com-
promises mathematical reasoning without tool use. One conjecture is that DeepSeek-LLM 1.3B,
due to its limited scale, lacks the capacity to fully assimilate both code and mathematical data
simultaneously.

5.1.2. ArXiv Papers Seem Ineffective in Improving Mathematical Reasoning

ArXiv papers are commonly included as a component of math pre-training data (Azerbayev
et al., 2023; Lewkowycz et al., 2022a; Polu and Sutskever, 2020; Wang et al., 2023c). However,
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detailed analysis regarding their impact on mathematical reasoning has not been extensively
conducted. Perhaps counter-intuitively, according to our experiments, arXiv papers seem
ineffective in improving mathematical reasoning. We experiment with models of different sizes,
including DeepSeek-LLM 1.3B and DeepSeek-Coder-Base-v1.5 7B (Guo et al., 2024), using arXiv
corpora that underwent varied processing pipelines:

• MathPile (Wang et al., 2023c): an 8.9B-token corpus developed with cleaning and filtering
heuristic rules, over 85% of which are scientific arXiv papers;

• ArXiv-RedPajama (Computer, 2023): the entirety of arXiv LaTeX files with preambles,
comments, macros, and bibliographies removed, totaling 28.0B tokens.

In our experiments, we separately train DeepSeek-LLM 1.3B for 150B tokens and DeepSeek-
Coder-Base-v1.5 7B for 40B tokens on each arXiv corpus. It seems that arXiv papers are ineffective
in improving mathematical reasoning. When trained on a arXiv-only corpus, both models dis-
play no notable improvements or even deterioration across various mathematical benchmarks of
different complexities employed in this study. These benchmarks include quantitative reasoning
datasets like GSM8K and MATH (Table 8), multiple-choice challenges like MMLU-STEM (Table
8), and formal mathematics like miniF2F (Table 9).

However, this conclusion has its limitations and should be taken with a grain of salt. We
have not yet studied:

• The impact of arXiv tokens on specific math-related tasks not included in this research,
such as informalization of theorems which is to convert formal statements or proofs to
their informal versions;

• The effect of arXiv tokens when combined with other types of data;
• Whether the benefits of arXiv papers would manifest themselves at a larger model scale.

Thus, further exploration is required, which we leave for future studies.

5.2. Insights of Reinforcement Learning

5.2.1. Towards to a Unified Paradigm

In this section, we provide a unified paradigm to analyze different training methods, such as
SFT, RFT, DPO, PPO, GRPO, and further conduct experiments to explore the factors of the
unified paradigm. Generally, the gradient with respect to the parameter 𝑂 of a training method
can be written as:

⇒𝑂JA(𝑂) = E[(𝑃, 𝑅) ↓ D︸⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌︸
𝑝𝑞𝑉𝑞 𝑟𝑅𝑠𝑌𝑡𝑐

]



1
|𝑅|

|𝑅 |∑
𝑉=1

𝑒𝑢A(𝑃, 𝑅, 𝑉,𝑆𝑌 𝑑 )︸⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︷︷⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌︸
𝑒𝑌𝑞𝑈𝑔𝑐𝑚𝑉 𝑢𝑅𝑐 𝑑 𝑑 𝑔𝑡𝑔𝑐𝑚𝑉

⇒𝑂 log𝑆𝑂(𝑅𝑉 |𝑃, 𝑅<𝑉)



. (5)

There exist three key components: 1) Data Source D, which determines the training data; 2)
Reward Function 𝑆𝑌 𝑑 , which is the source of the training reward signal; 3) Algorithm A: which
processes the training data and the reward signal to the gradient coefficient 𝑒𝑢 that determines
the magnitude of the penalty or reinforcement for the data. We analyze several representative
methods based on such a unified paradigm:

• Supervised Fine-tuning (SFT): SFT fine-tunes pretrained model on human selected SFT
data.
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Methods Data Source Reward Function Gradient Coefficient

SFT 𝑃, 𝑅 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄,𝑁) - 1

RFT 𝑃 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄), 𝑅 ↓ 𝑆𝑣 𝑑 𝑉 (𝑁|𝑃) Rule Equation 10
DPO 𝑃 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄), 𝑅+, 𝑅↔ ↓ 𝑆𝑣 𝑑 𝑉 (𝑁|𝑃) Rule Equation 14

Online RFT 𝑃 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄), 𝑅 ↓ 𝑆𝑂(𝑁|𝑃) Rule Equation 10
PPO 𝑃 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄), 𝑅 ↓ 𝑆𝑂(𝑁|𝑃) Model Equation 18
GRPO 𝑃 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄), {𝑅𝑔}𝑒𝑔=1 ↓ 𝑆𝑂(𝑁|𝑃) Model Equation 21

Table 10 | The data source and gradient coefficient of different methods. 𝑀𝑣 𝑑 𝑉 denotes the data
distribution of supervised fine-tuning datasets. 𝑆𝑂𝑣 𝑑 𝑉 and 𝑆𝑂 denote the supervised fine-tuned
model and the real-time policy model during the online training process, respectively.

Figure 5 | Performance of the DeepSeekMath-Instruct 1.3B model, which was further trained
using various methods, on two benchmarks.

• Rejection Sampling Fine-tuning (RFT): RFT further fine-tunes the SFT model on the
filtered outputs sampled from the SFT model based on SFT questions. RFT filters the
outputs based on the correctness of their answers.

• Direct Preference Optimization (DPO): DPO further refines the SFT model by fine-tuning
it on augmented outputs sampled from the SFT model, using pair-wise DPO loss.

• Online Rejection Sampling Fine-tuning (Online RFT): Different from RFT, Online RFT
initiates the policy model using the SFT model and refines it by fine-tuning with the
augmented outputs sampled from the real-time policy model.

• PPO/GRPO: PPO/GRPO initializes the policy model using the SFT model and reinforces
it with the outputs sampled from the real-time policy model.

We summarize the components of these methods in Table 10. Please refer to Appendix A.1 for a
more detailed derivation process.

Observation about Data Source We divide the data source into two categories, online sam-
pling, and offline sampling. Online sampling denotes that the training data is from the explo-
ration results of the real-time training policy model, while offline sampling denotes that the
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Figure 6 | Performance of iterative reinforcement learning with DeepSeekMath-Instruct 7B on
two benchmarks.

training data is from the sampling results of the initial SFT model. RFT and DPO follow the
offline style, while Online RFT and GRPO follow the online style.

As shown in Figure 5, we find that the Online RFT significantly outperforms RFT on two
benchmarks. Specifically, Online RFT is comparable to RFT in the early stage of training but
gains an absolute advantage in the later stage, demonstrating the superiority of online training.
This is intuitive, as in the initial stage, the actor and the SFT model exhibit close resemblance,
with the sampled data revealing only minor differences. In the later stage, however, the data
sampled from the actor will exhibit more significant differences, and real-time data sampling
will offer greater advantages.

Observation about Gradient Coefficient The algorithm processes the reward signal to the
gradient coefficient to update the model parameter. We divide the reward function as ‘Rule’
and ‘Model’ in our experiments. Rule refers to judging the quality of a response based on
the correctness of the answer, and Model denotes that we train a reward model to score each
response. The training data of the reward model is based on the rule judgment. Equations 10
and 21 highlight a key difference between GRPO and Online RFT: GRPO uniquely adjusts its
gradient coefficient based on the reward value provided by the reward model. This allows for
differential reinforcement and penalization of responses according to their varying magnitudes.
In contrast, Online RFT lacks this feature; it does not penalize incorrect responses and uniformly
reinforces all responses with correct answers at the same level of intensity.

As demonstrated in Figure 5, GRPO surpasses online RFT, thereby highlighting the efficiency
of altering positive and negative gradient coefficients. In addition, GRPO+PS shows superior
performance compared to GRPO+OS, indicating the benefits of using fine-grained, step-aware
gradient coefficients. Furthermore, we explore the iterative RL, in our experiments, we conduct
two rounds of iteration. As shown in Figure 6, we notice that the iterative RL significantly
improves the performance, especially at the first iteration.
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Figure 7 | The Maj@K and Pass@K of SFT and RL DeepSeekMath 7B on GSM8K and MATH
(temperature 0.7). It was noted that RL enhances Maj@K but not Pass@K.

5.2.2. Why RL Works?

In this paper, we conduct reinforcement learning based on a subset of instruction tuning
data, and it achieves significant performance enhancement upon the instruction tuning model.
To further explain why reinforcement learning works. We evaluate the Pass@K and Maj@K
accuracy of the Instruct and RL models on two benchmarks. As shown in Figure 7, RL enhances
Maj@K’s performance but not Pass@K. These findings indicate that RL enhances the model’s
overall performance by rendering the output distribution more robust, in other words, it seems
that the improvement is attributed to boosting the correct response from TopK rather than
the enhancement of fundamental capabilities. Similarly, (Wang et al., 2023a) identified a
misalignment problem in reasoning tasks within the SFT model, showing that the reasoning
performance of SFT models can be improved through a series of preference alignment strategies
(Song et al., 2023; Wang et al., 2023a; Yuan et al., 2023b).

5.2.3. How to Achieve More Effective RL?

We demonstrate RL works pretty well in mathematical reasoning tasks. We also provide a unified
paradigm to understand different representative training methods. Within this paradigm, all
methods are conceptualized as either direct or simplified RL techniques. As summarized in
Equation 5, there exist three key components: Data Source, Algorithm, and Reward Function.
We provide some potential future directions about the three components.

Data Source Data source is the raw material of all training methods. In the context of RL, we
specifically refer to the data source as the unlabeled questions with the outputs sampled from
the policy model. In this paper, we only use the questions from the instruction tuning stage and
a naive nucleus sampling to sample outputs. We think this is a potential reason that our RL
pipeline only improves the Maj@K performance. In the future, we will explore our RL pipeline
on out-of-distribution question prompts, in conjunction with advanced sampling (decoding)
strategies, like those based on tree-search methods (Yao et al., 2023). Also, the efficient inference
techniques (Kwon et al., 2023; Leviathan et al., 2023; Xia et al., 2023, 2024), which determines
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the exploration efficiency of policy models, also play an exceedingly important role.

Algorithms Algorithms process the data and reward signal to the gradient coefficient to update
the model parameter. Based on Equation 5, to some extent, all methods now fully TRUST the
signal of the reward function to increase or decrease the conditional probability of a certain
token. However, it is impossible to ensure the reward signal is always reliable, especially in
extremely complex tasks. For example, even the PRM800K datasets (Lightman et al., 2023),
which have been carefully annotated by well-trained annotators, still contain approximately 20%
of incorrectly annotations7. To this end, we will explore the reinforcement learning algorithm
that is robust against noisy reward signals. We believe such WEAK-TO-STRONG (Burns et al.,
2023) alignment methods will bring a fundamental change to the learning algorithms.

Reward Function Reward function is the source of the training signal. In RL, the reward
function is usually the neural reward model. We think there exist three important directions for
reward models: 1) How to enhance the generalization ability of the reward model. The reward
model must be effectively generalized to handle out-of-distribution questions and advanced
decoding outputs; otherwise, reinforcement learning may merely stabilize the distribution of
LLMs rather than improve their fundamental capabilities; 2) How to reflect the uncertainty
of reward model. The uncertainty could potentially act as a linking bridge between the weak
reward model and the weak-to-strong learning algorithms; 3) How to efficiently build high-
quality process reward models that can provide fine-grained training signals for the reasoning
process (Lightman et al., 2023; Wang et al., 2023b).

6. Conclusion, Limitation, and Future Work

We present DeepSeekMath, which outperforms all open-source models on the competition-
level MATH benchmark and approaches the performance of closed models. DeepSeekMath is
initialized with DeepSeek-Coder-v1.5 7B and undergoes continual training for 500B tokens, with
a significant component of the training data being 120B math tokens sourced from Common
Crawl. Our extensive ablation study shows web pages offer significant potential for high-quality
mathematical data, while arXiv may not as beneficial as we expected. We introduce Group
Relative Policy Optimization (GRPO), a variant of Proximal Policy Optimization (PPO), which
can notably improve mathematical reasoning capabilities with less memory consumption. The
experiment results show that GRPO is effective even if DeepSeekMath-Instruct 7B has reached
a high score on benchmarks. We also provide a unified paradigm to understand a series of
methods and summarize several potential directions for more effective reinforcement learning.

Although DeepSeekMath achieves impressive scores on quantitative reasoning benchmarks,
its capability on geometry and theorem-proof are relatively weaker than closed models. For
instance, in our dry run, the model cannot handle problems related to triangles and ellipses,
which may indicate data selection bias in pre-training and fine-tuning. In addition, restricted
by the model scale, DeepSeekMath is worse than GPT-4 on few-shot capability. GPT-4 could
improve its performance with few-shot inputs, while DeepSeekMath shows similar performance
in zero-shot and few-shot evaluation. In the future, we will further improve our engineered
data selection pipeline to construct more high-quality pre-trained corpus. In addition, we will
explore the potential directions (Section 5.2.3) for more effective reinforcement learning of LLMs.

7https://github.com/openai/prm800k/issues/12#issuecomment-1728491852
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A. Appendix

A.1. Analysis of Reinforcement Learning

We provide the detailed derivation of the data source and gradient coefficient (algorithm and
reward function) across various methods, including SFT, RFT, Online RFT, DPO, PPO, and
GRPO.

A.1.1. Supervised Fine-tuning

The objective of Supervised Fine-tuning is maximizing the following objective:

J𝑟𝑤𝑥 (𝑂) = E[𝑃, 𝑅 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄,𝑁)]


1
|𝑅|

|𝑅 |∑
𝑉=1

log𝑆𝑂(𝑅𝑉 |𝑃, 𝑅<𝑉)


. (6)

The gradient of J𝑟𝑤𝑥 (𝑂) is:

⇒𝑂J𝑟𝑤𝑥 = E[𝑃, 𝑅 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄,𝑁)]


1
|𝑅|

|𝑅 |∑
𝑉=1

⇒𝑂 log𝑆𝑂(𝑅𝑉 |𝑃, 𝑅<𝑉)


. (7)

Data Source: The dataset employed for SFT. Reward Function: This can be regarded as human
selection. Gradient Coefficient: always set to 1.

A.1.2. Rejection Sampling Fine-tuning

Rejection Sampling Fine-tuning first samples multiple outputs from the supervised fine-tuned
LLMs for each question, and then trains LLMs on the sampled outputs with the correct answer.
Formally, the objective of RFT is to maximize the following objectives:

J𝑓𝑤𝑥 (𝑂) = E[𝑃 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄), 𝑅 ↓ 𝑆𝑣 𝑑 𝑉 (𝑁|𝑃)]


1
|𝑅|

|𝑅 |∑
𝑉=1

I(𝑅) log𝑆𝑂(𝑅𝑉 |𝑃, 𝑅<𝑉)


. (8)

The gradient of J𝑓𝑤𝑥 (𝑂) is:

⇒𝑂J𝑓𝑤𝑥 (𝑂) = E[𝑃 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄), 𝑅 ↓ 𝑆𝑣 𝑑 𝑉 (𝑁|𝑃)]


1
|𝑅|

|𝑅 |∑
𝑉=1

I(𝑅)⇒𝑂 log𝑆𝑂(𝑅𝑉 |𝑃, 𝑅<𝑉)


. (9)

Data Source: question in SFT dataset with outputs sampled from SFT model. Reward Function:
Rule (whether the answer is correct or not). Gradient Coefficient:

𝑒𝑢𝑓𝑤𝑥 (𝑃, 𝑅, 𝑉) = I(𝑅) =


1 the answer of o is correct
0 the answer of o is incorrect

(10)

A.1.3. Online Rejection Sampling Fine-tuning

The only difference between RFT and Online RFT is that the outputs of Online RFT are sampled
from the real-time policy model 𝑆𝑂, rather than from the SFT model 𝑆𝑂𝑣 𝑑 𝑉 . Therefore, the gradient
of online RFT is:

⇒𝑂J𝑁𝑚𝑓𝑤𝑥 (𝑂) = E[𝑃 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄), 𝑅 ↓ 𝑆𝑂(𝑁|𝑃)]


1
|𝑅|

|𝑅 |∑
𝑉=1

I(𝑅)⇒𝑂 log𝑆𝑂(𝑅𝑉 |𝑃, 𝑅<𝑉)


. (11)
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A.1.4. Direct Preference Optimization (DPO)

The objective of DPO is:

J𝑝𝑀𝑁 (𝑂) = E[𝑃 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄), 𝑅+, 𝑅↔ ↓ 𝑆𝑣 𝑑 𝑉 (𝑁|𝑃)] log 𝑦


𝐿

1
|𝑅+|

|𝑅+ |∑
𝑉=1

log
𝑆𝑂 (𝑅+𝑉 |𝑃, 𝑅+<𝑉)
𝑆ref (𝑅+𝑉 |𝑃, 𝑅+<𝑉)

↔ 𝐿
1

|𝑅↔ |

|𝑅↔ |∑
𝑉=1

log
𝑆𝑂 (𝑅↔<𝑉 |𝑃, 𝑅↔<𝑉)
𝑆ref (𝑅↔<𝑉 |𝑃, 𝑅↔<𝑉)




(12)

The gradient of J𝑝𝑀𝑁(𝑂) is:

⇒𝑂J𝑝𝑀𝑁 (𝑂) = E[𝑃 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄), 𝑅+, 𝑅↔ ↓ 𝑆𝑣 𝑑 𝑉 (𝑁|𝑃)]



1
|𝑅+|

|𝑅+ |∑
𝑉=1

𝑒𝑢𝑝𝑀𝑁 (𝑃, 𝑅, 𝑉)⇒𝑂 log𝑆𝑂 (𝑅+𝑉 |𝑃, 𝑅+<𝑉)

↔ 1
|𝑅↔ |

|𝑅↔ |∑
𝑉=1

𝑒𝑢𝑝𝑀𝑁 (𝑃, 𝑅, 𝑉)⇒𝑂 log𝑆𝑂 (𝑅↔𝑉 |𝑃, 𝑅↔<𝑉)



(13)

Data Source: question in SFT dataset with outputs sampled from SFT model. Reward Function:
human preference in the general domain (can be ‘Rule’ in mathematical tasks). Gradient
Coefficient:

𝑒𝑢𝑝𝑀𝑁 (𝑃, 𝑅, 𝑉) = 𝑦

(
𝐿 log

𝑆𝑂 (𝑅↔𝑉 |𝑃, 𝑅↔<𝑉)
𝑆ref (𝑅↔𝑉 |𝑃, 𝑅↔<𝑉)

↔ 𝐿 log
𝑆𝑂 (𝑅+𝑉 |𝑃, 𝑅+<𝑉)
𝑆ref (𝑅+𝑉 |𝑃, 𝑅+<𝑉)

)
(14)

A.1.5. Proximal Policy Optimization (PPO)

The objective of PPO is:

J𝑀𝑀𝑁 (𝑂) = E[𝑃 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄), 𝑅 ↓ 𝑆𝑂𝑅𝑇𝑈 (𝑁|𝑃)]
1
|𝑅|

|𝑅 |∑
𝑉=1

min
[

𝑆𝑂 (𝑅𝑉 |𝑃, 𝑅<𝑉)
𝑆𝑂𝑅𝑇𝑈 (𝑅𝑉 |𝑃, 𝑅<𝑉)

𝑊𝑉 , clip
(

𝑆𝑂 (𝑅𝑉 |𝑃, 𝑅<𝑉)
𝑆𝑂𝑅𝑇𝑈 (𝑅𝑉 |𝑃, 𝑅<𝑉)

, 1 ↔ 𝑋, 1 + 𝑋

)
𝑊𝑉

]
. (15)

To simplify the analysis, it is assumed that the model only has a single update following each
exploration stage, thereby ensuring that 𝑆𝑂𝑅𝑇𝑈 = 𝑆𝑂. In this case, we can remove the min and clip
operation:

J𝑀𝑀𝑁 (𝑂) = E[𝑃 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄), 𝑅 ↓ 𝑆𝑂𝑅𝑇𝑈 (𝑁|𝑃)]
1
|𝑅|

|𝑅 |∑
𝑉=1

𝑆𝑂 (𝑅𝑉 |𝑃, 𝑅<𝑉)
𝑆𝑂𝑅𝑇𝑈 (𝑅𝑉 |𝑃, 𝑅<𝑉)

𝑊𝑉 . (16)

The gradient of J𝑀𝑀𝑁(𝑂) is:

⇒𝑂J𝑀𝑀𝑁 (𝑂) = E[𝑃 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄), 𝑅 ↓ 𝑆𝑂𝑅𝑇𝑈 (𝑁|𝑃)]
1
|𝑅|

|𝑅 |∑
𝑉=1

𝑊𝑉⇒𝑂 log𝑆𝑂 (𝑅𝑉 |𝑃, 𝑅<𝑉) (17)

Data Source: question in SFT dataset with outputs sampled from policy model. Reward Function:
reward model. Gradient Coefficient:

𝑒𝑢𝑀𝑀𝑁(𝑃, 𝑅, 𝑉,𝑆𝑂𝑌𝑧) = 𝑊𝑉, (18)

where 𝑊𝑉 is the advantage, which is computed by applying Generalized Advantage Estimation
(GAE) (Schulman et al., 2015), based on the rewards {𝑌↗𝑉} and a learned value function 𝑍𝑎.

A.1.6. Group Relative Policy Optimization (GRPO)

The objective of GRPO is (assume 𝑆𝑂𝑅𝑇𝑈 = 𝑆𝑂 for simplified analysis):

J𝑒𝑓𝑀𝑁 (𝑂) = E[𝑃 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄), {𝑅𝑔}𝑒𝑔=1 ↓ 𝑆𝑂𝑅𝑇𝑈 (𝑁|𝑃)]

1
𝑒

𝑒∑
𝑔=1

1
|𝑅𝑔 |

|𝑅𝑔 |∑
𝑉=1

[
𝑆𝑂 (𝑅𝑔,𝑉 |𝑃, 𝑅𝑔,<𝑉)
𝑆𝑂𝑅𝑇𝑈 (𝑅𝑔,𝑉 |𝑃, 𝑅𝑔,<𝑉)

�̂�𝑔,𝑉 ↔ 𝐿(
𝑆𝑌𝑐 𝑑 (𝑅𝑔,𝑉 |𝑃, 𝑅𝑔,<𝑉)
𝑆𝑂 (𝑅𝑔,𝑉 |𝑃, 𝑅𝑔,<𝑉)

↔ log
𝑆𝑌𝑐 𝑑 (𝑅𝑔,𝑉 |𝑃, 𝑅𝑔,<𝑉)
𝑆𝑂 (𝑅𝑔,𝑉 |𝑃, 𝑅𝑔,<𝑉)

↔ 1)
]

.
(19)
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The gradient of J𝑒𝑓𝑀𝑁(𝑂) is:

⇒𝑂J𝑒𝑓𝑀𝑁 (𝑂) = E[𝑃 ↓ 𝑀𝑣 𝑑 𝑉 (𝑄), {𝑅𝑔}𝑒𝑔=1 ↓ 𝑆𝑂𝑅𝑇𝑈 (𝑁|𝑃)]

1
𝑒

𝑒∑
𝑔=1

1
|𝑅𝑔 |

|𝑅𝑔 |∑
𝑉=1

[
�̂�𝑔,𝑉 + 𝐿

(
𝑆𝑌𝑐 𝑑 (𝑅𝑔,𝑉 |𝑅𝑔,<𝑉)
𝑆𝑂 (𝑅𝑔,𝑉 |𝑅𝑔,<𝑉)

↔ 1
)]

⇒𝑂 log𝑆𝑂 (𝑅𝑔,𝑉 |𝑃, 𝑅𝑔,<𝑉).
(20)

Data Source: question in SFT dataset with outputs sampled from policy model. Reward Function:
reward model. Gradient Coefficient:

𝑒𝑢𝑒𝑓𝑀𝑁 (𝑃, 𝑅, 𝑉,𝑆𝑂𝑌𝑧 ) = �̂�𝑔,𝑉 + 𝐿

(
𝑆𝑌𝑐 𝑑 (𝑅𝑔,𝑉 |𝑅𝑔,<𝑉)
𝑆𝑂 (𝑅𝑔,𝑉 |𝑅𝑔,<𝑉)

↔ 1
)

, (21)

where �̂�𝑔,𝑉 is computed based on the group reward scores.
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