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Complex multi-step reasoning tasks, such as solving mathematical problems or generating code, remain
a significant hurdle for even the most advanced large language models (LLMs). Verifying LLM outputs
with an Outcome Reward Model (ORM) is a standard inference-time technique aimed at enhancing
the reasoning performance of LLMs. However, this still proves insu!cient for reasoning tasks with a
lengthy or multi-hop reasoning chain, where the intermediate outcomes are neither properly rewarded
nor penalized. Process supervision addresses this limitation by assigning intermediate rewards during
the reasoning process. To date, the methods used to collect process supervision data have relied on
either human annotation or per-step Monte Carlo estimation, both prohibitively expensive to scale,
thus hindering the broad application of this technique. In response to this challenge, we propose a
novel divide-and-conquer style Monte Carlo Tree Search (MCTS) algorithm named OmegaPRM for
the e!cient collection of high-quality process supervision data. This algorithm swiftly identifies the
first error in the Chain of Thought (CoT) with binary search and balances the positive and negative
examples, thereby ensuring both e!ciency and quality. As a result, we are able to collect over 1.5 million
process supervision annotations to train Process Reward Models (PRMs). This fully automated process
supervision alongside the weighted self-consistency algorithm is able to enhance LLMs’ math reasoning
performances. We improved the success rates of the instruction-tuned Gemini Pro model from 51%
to 69.4% on MATH500 and from 86.4% to 93.6% on GSM8K. Similarly, we boosted the success rates
of Gemma2 27B from 42.3% to 58.2% on MATH500 and from 74.0% to 92.2% on GSM8K. The entire
process operates without any human intervention or supervision, making our method both financially
and computationally cost-e"ective compared to existing methods.

1. Introduction

Despite the impressive advancements achieved by scaling Large Language Models (LLMs) on es-
tablished benchmarks (Wei et al., 2022a), cultivating more sophisticated reasoning capabilities,
particularly in domains like mathematical problem-solving and code generation, remains an active
research area. Chain-of-thought (CoT) generation is crucial for these reasoning tasks, as it decom-
poses complex problems into intermediate steps, mirroring human reasoning processes. Prompting
LLMs with CoT examples (Wei et al., 2022b) and fine-tuning them on question-CoT solution pairs
(Ouyang et al., 2022; Perez et al., 2021) have proven e!ective, with the latter demonstrating superior
performance. Furthermore, the advent of Reinforcement Learning with Human Feedback (RLHF;
Ouyang et al., 2022) has enabled the alignment of LLM behaviors with human preferences through
reward models, significantly enhancing model capabilities.

Beyond prompting and further training, developing e!ective decoding strategies is another crucial
avenue for improvement. Self-consistency decoding (Wang et al., 2023) leverages multiple reasoning
paths to arrive at a voted answer. Incorporating a verifier, such as an o!-the-shelf LLM (Huang
et al., 2022; Luo et al., 2023), can further guide LLMs in reasoning tasks by providing a feedback
loop to verify final answers, identify errors, and suggest corrections. However, the gain of such
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Figure 1 | Example tree structure built with our proposed OmegaPRM algorithm. Each node in the
tree indicates a state of partial chain-of-thought solution, with information including accuracy of
rollouts and other statistics. Each edge indicates an action, i.e., a reasoning step, from the last state.
Yellow edges are correct steps and blue edges are wrong.

approaches remains limited for complex multi-step reasoning problems. Reward models o!er a
promising alternative to verifiers, enabling the reranking of candidate outcomes based on reward
signals to ensure higher accuracy. Two primary types of reward models have emerged: Outcome
Reward Models (ORMs; Cobbe et al., 2021; Yu et al., 2024), which provide feedback only at the end of
the problem-solving process, and Process Reward Models (PRMs; Li et al., 2023; Lightman et al., 2023;
Uesato et al., 2022), which o!er granular feedback at each reasoning step. PRMs have demonstrated
superior e!ectiveness for complex reasoning tasks by providing such fine-grained supervision.

The primary bottleneck in developing PRMs lies in obtaining process supervision signals, which
require supervised labels for each reasoning step. Current approaches rely heavily on costly and labor-
intensive human annotation (Lightman et al., 2023; Uesato et al., 2022). Automating this process
is crucial for scalability and e"ciency. While recent e!orts using per-step Monte Carlo estimation
have shown promise (Wang et al., 2024a,b), their e"ciency remains limited due to the vast search
space. To address this challenge, we introduce OmegaPRM, a novel divide-and-conquer Monte Carlo
Tree Search (MCTS) algorithm inspired by AlphaGo Zero (Silver et al., 2017) for automated process
supervision data collection. For each question, we build a Monte Carlo Tree, as shown in Fig. 1,
with the details explained in §3.3. This algorithm enables e"cient collection of over 1.5 million
high-quality process annotations without human intervention. Our PRM, trained on this dataset
and combined with weighted self-consistency decoding, significantly improves the performance of
instruction-tuned Gemini Pro from 51% to 69.4% on MATH500 (Lightman et al., 2023) and from
86.4% to 93.6% on GSM8K (Cobbe et al., 2021). We also boosted the success rates of Gemma2 27B
from 42.3% to 58.2% on MATH500 and from 74.0% to 92.2% on GSM8K.
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Our main contributions are as follows:

• We propose a novel divide-and-conquer style Monte Carlo Tree Search algorithm for automated
process supervision data generation.

• The algorithm enables the e"cient generation of over 1.5 million process supervision annotations,
representing the largest and highest quality dataset of its kind to date. Additionally, the entire
process operates without any human annotation, making our method both financially and
computationally cost-e!ective.

• We combine our verifier with weighted self-consistency to further boost the performance of LLM
reasoning. We significantly improves the success rates from 51% to 69.4% on MATH500 and
from 86.4% to 93.6% on GSM8K for instruction-tuned Gemini Pro. For Gemma2 27B, we also
improved the success rates of from 42.3% to 58.2% on MATH500 and from 74.0% to 92.2% on
GSM8K.

2. Related Work

Improving mathematical reasoning ability of LLMs. Mathematical reasoning poses significant
challenges for LLMs, and it is one of the key tasks for evaluating the reasoning ability of LLMs. With a
huge amount of math problems in pretraining datasets, the pretrained LLMs (Gemini Team et al.,
2024; OpenAI, 2023; Touvron et al., 2023) are able to solve simple problems, yet struggle with
more complicated reasoning. To overcome that, the chain-of-thought (Fu et al., 2023; Wei et al.,
2022b) type prompting algorithms were proposed. These techniques were e!ective in improving the
performance of LLMs on reasoning tasks without modifying the model parameters. The performance
was further improved by supervised fine-tuning (SFT; Cobbe et al., 2021; Liu et al., 2024; Yu et al.,
2023) with high quality question-response pairs with full CoT reasoning steps.

Application of reward models in mathematical reasoning of LLMs. To further improve the LLM’s
math reasoning performance, verifiers can help to rank and select the best answer when multiple
rollouts are available. Several works (Huang et al., 2022; Luo et al., 2023) have shown that using
LLM as verifier is not suitable for math reasoning. For trained verifiers, two types of reward models
are commonly used: Outcome Reward Model (ORM) and Process Reward Model (PRM). Both have
shown performance boost on math reasoning over self-consistency (Cobbe et al., 2021; Lightman
et al., 2023; Uesato et al., 2022), yet evidence has shown that PRM outperforms ORM (Lightman
et al., 2023; Wang et al., 2024a). Generating high quality process supervision data is the key for
training PRM, besides expensive human annotation (Lightman et al., 2023), Math-Shepherd (Wang
et al., 2024a) and MiPS (Wang et al., 2024b) explored Monte Carlo estimation to automate the data
collection process with human involvement, and both observed large performance gain. Our work
shared the essence with MiPS and Math-Shepherd, but we explore further in collecting the process
data using MCTS.

Monte Carlo Tree Search (MCTS). MCTS (#wiechowski et al., 2021) has been widely adopted in
reinforcement learning (RL). AlphaGo (Silver et al., 2016) and AlphaGo Zero (Silver et al., 2017)
were able to achieve great performance with MCTS and deep reinforcement learning. For LLMs, there
are planning algorithms that fall in the category of tree search, such as Tree-of-Thought (Yao et al.,
2023) and Reasoning-via-Planing (Hao et al., 2023). Recently, utilizing tree-like decoding to find
the best output during the inference-time has become a hot topic to explore as well, multiple works
(Feng et al., 2023, 2024; Kang et al., 2024; Ma et al., 2023; Tian et al., 2024; Zhang et al., 2024)
have observed improvements in reasoning tasks.
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3. Methods

3.1. Process Supervision

Process supervision is a concept proposed to di!erentiate from outcome supervision. The reward
models trained with these objectives are termed Process Reward Models (PRMs) and Outcome Reward
Models (ORMs), respectively. In the ORM framework, given a query 𝐿 (e.g., a mathematical problem)
and its corresponding response 𝑀 (e.g., a model-generated solution), an ORM is trained to predict
the correctness of the final answer within the response. Formally, an ORM takes 𝐿 and 𝑀 and outputs
the probability 𝑁 = ORM(𝐿, 𝑀) that the final answer in the response is correct. With a training set of
question-answer pairs available, an ORM can be trained by sampling outputs from a policy model
(e.g., a pretrained or fine-tuned LLM) using the questions and obtaining the correctness labels by
comparing these outputs with the golden answers.

In contrast, a PRM is trained to predict the correctness of each intermediate step 𝑀𝑂 in the solution.
Formally, 𝑁𝑂 = PRM( [𝐿, 𝑀1:𝑂→1], 𝑀𝑂), where 𝑀1:𝑃 = [𝑀1, . . . , 𝑀𝑃] represents the first 𝑃 steps in the solution.
This provides more precise and fine-grained feedback than ORMs, as it identifies the exact location
of errors. Process supervision has also been shown to mitigate incorrect reasoning in the domain of
mathematical problem solving. Despite these advantages, obtaining the intermediate signal for each
step’s correctness to train such a PRM is non-trivial. Previous work (Lightman et al., 2023) has relied
on hiring domain experts to manually annotate the labels, which is and di"cult to scale.

3.2. Process Annotation with Monte Carlo Method

In two closely related works, Math-Shepherd (Wang et al., 2024a) and MiPS (Wang et al., 2024b),
the authors propose an automatic annotation approach to obtain process supervision signals using
the Monte Carlo method. Specifically, a “completer” policy is established that can take a question 𝐿
and a prefix solution comprising the first 𝑂 steps 𝑀1:𝑂 and output the completion — often referred to as
a “rollout” in reinforcement learning — of the subsequent steps until the final answer is reached. As
shown in Fig. 2(a), for any step of a solution, the completer policy can be used to randomly sample
𝑄 rollouts from that step. The final answers of these rollouts are compared to the golden answer,
providing 𝑄 labels of answer correctness corresponding to the 𝑄 rollouts. Subsequently, the ratio of
correct rollouts to total rollouts from the 𝑂-th step, as represented in Eq. (1), estimates the “correctness
level” of the prefix steps up to 𝑂. Regardless of false positives, 𝑀1:𝑂 should be considered correct as
long as any of the rollouts is correct in the logical reasoning scenario.

𝑅𝑂 = MonteCarlo(𝐿, 𝑀1:𝑂) =
num(correct rollouts from 𝑂-th step)
num(total rollouts from 𝑂-th step) (1)

Taking a step forward, a straightforward strategy to annotate the correctness of intermediate
steps in a solution is to perform rollouts for every step from the beginning to the end, as done in both
Math-Shepherd and MiPS. However, this brute-force approach requires a large number of policy calls.
To optimize annotation e"ciency, we propose a binary-search-based Monte Carlo estimation.

Monte Carlo estimation using binary search. As suggested by Lightman et al. (2023), supervising
up to the first incorrect step in a solution is su"cient to train a PRM. Therefore, our objective is
locating the first error in an e"cient way. We achieve this by repeatedly dividing the solution and
performing rollouts. Assuming no false positives or negatives, we start with a solution with potential
errors and split it at the midpoint 𝑆. We then perform rollouts for 𝑇1:𝑆 with two possible outcomes:
(1) 𝑅𝑆 > 0, indicating that the first half of the solution is correct, as at least one correct answer can be
rolled out from 𝑆-th step, and thus the error is in the second half; (2) 𝑅𝑆 = 0, indicating the error is
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very likely in the first half, as none of the rollouts from 𝑆-th step is correct. This process narrows down
the error location to either the first or second half of the solution. As shown in Fig. 2(b), by repeating
this process on the erroneous half iteratively until the partial solution is su"ciently small (i.e., short
enough to be considered as a single step), we can locate the first error with a time complexity of
𝑈(𝑄 log𝑉) rather than 𝑈(𝑄𝑉) in the brute-force setting, where 𝑉 is the total number of steps in the
original solution.

3.3. Monte Carlo Tree Search

Although binary search improves the e"ciency of locating the first error in a solution, we are still not
fully utilizing policy calls as rollouts are simply discarded after stepwise Monte Carlo estimation. In
practice, it is necessary to collect multiple PRM training examples (a.k.a., triplets of question, partial
solution and correctness label) for a question (Lightman et al., 2023; Wang et al., 2024a). Instead
of starting from scratch each time, we can store all rollouts during the process and conduct binary
searches from any of these rollouts whenever we need to collect a new example. This approach allows
for triplets with the same solution prefix but di!erent completions and error locations. Such reasoning
structures can be represented as a tree, as described in previous work like Tree of Thought (Yao et al.,
2023).

Formally, consider a state-action tree representing detailed reasoning paths for a question, where
a state 𝑇 contains the question and all preceding reasoning steps, and an action 𝑊 is a potential
subsequent step from a specific state. The root state is the question without any reasoning steps:
𝑋root = 𝐿. The policy can be directly modeled by a language model as 𝑌(𝑊|𝑇) = LM(𝑊|𝑇), and the
state transition function is simply the concatenation of the preceding steps and the action step, i.e.,
𝑇↑ = Concatenate(𝑇, 𝑊).

Collecting PRM training examples for a question can now be formulated as constructing such a
state-action tree. This reminds us the classic Monte Carlo Tree Search (MCTS) algorithm, which
has been successful in many deep reinforcement learning applications (Silver et al., 2016, 2017).
However, there are some key di!erences when using a language model as the policy. First, MCTS
typically handles an environment with a finite action space, such as the game of Go, which has fewer
than 361 possible actions per state (Silver et al., 2017). In contrast, an LM policy has an infinite action
space, as it can generate an unlimited number of distinct actions (sequences of tokens) given a prompt.
In practice, we use temperature sampling to generate a fix number of 𝑄 completions for a prompt,
treating the group of 𝑄 actions as an approximate action space. Second, an LM policy can sample a
full rollout until the termination state (i.e., reaching the final answer) without too much overhead
than generating a single step, enabling the possibility of binary search. Consequently, we propose an
adaptation of the MCTS algorithm named OmegaPRM, primarily based on the one introduced in
AlphaGo (Silver et al., 2016), but with modifications to better accommodate the scenario of PRM
training data collection. We describe the algorithm details as below.

Tree Structure. Each node 𝑇 in the tree contains the question 𝐿 and prefix solution 𝑀1:𝑂, together with
all previous rollouts {(𝑇, 𝑋𝑃)}𝑄𝑃=1 from the state. Each edge (𝑇, 𝑊) is either a single step or a sequence of
consecutive steps from the node 𝑇. The nodes also store a set of statistics,

{𝑍 (𝑇),MC(𝑇),𝑎(𝑇, 𝑋)},

where 𝑍 (𝑇) denotes the visit count of a state, MC(𝑇) represents the Monte Carlo estimation of a state
as specified in Eq. (1), and 𝑎(𝑇, 𝑋) is a state-rollout value function that is correlated to the chance of
selecting a rollout during the selection phase of tree traversal. Specifically,
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Problem: Let p(x) be a monic polynomial of degree 4.
Three of the roots of p(x) are 1, 2, 3. Find p(0)+p(4). Golden Answer: 24

Solution: Since three of the roots of p(x) .... Final Answer 20.   ✘

  Problem: ....
  Since three of the roots of
  p(x) are 1, 2 and 3, we can
  write: 

Rollout 1: .... Final Answer 24.   ✔

Rollout 2: .... Final Answer 24.  ✔

Rollout 3: .... Final Answer 20.  ✘

MC = 0.67

(a) Monte Carlo estimation of a prefix solution.

?

MC = 0.25

MC = 0.5

MC = 0
First error step

? ? ? ? ? ? ?

✔ ✔ ✔ ✔

✘

? ?? ?

✔ ✔ ✔ ✔

✔ ✔ ✔ ✔

? ?

✔
1 2 3 4 5 6 7 8

✔ ✔

✔ NA

(b) Error locating using binary search.

0

1 3

2
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Selected

Select Binary Search

0

1 3

2

4

5

6

Maintain

N++

MC, Q

MC, Q

MC, Q

(c) Three stages in an iteration of the MCTS process.

Figure 2 | Illustration of the process supervision rollouts, Monte Carlo estimation using binary search
and the MCTS process. (a) An example of Monte Carlo estimation of a prefix solution. Two out of the
three rollouts are correct, producing the Monte Carlo estimation MC(𝐿, 𝑀1:𝑂) = 2/3 ↓ 0.67. (b) An
example of error locating using binary search. The first error step is located at the 7th step after three
divide-and-rollouts, where the rollout positions are indicated by the vertical dashed lines. (c) The
MCTS process. The dotted lines in Select stage represent the available rollouts for binary search. The
bold colored edges represent steps with correctness estimations. The yellow color indicates a correct
step, i.e., with a preceding state 𝑇 that MC(𝑇) > 0 and the blue color indicates an incorrect step, i.e.,
with MC(𝑇) = 0. The number of dashes in each colored edge indicates the number of steps.

𝑎(𝑇, 𝑋) = 𝑏1→MC(𝑇) · 𝑐
len(𝑋)

𝑑 , (2)

where 𝑏, 𝑐 ↔ (0, 1] and 𝑑 > 0 are constant hyperparameters; while len(𝑋) denotes the length of a
rollout in terms of number of tokens. 𝑎 is supposed to indicate how likely a rollout will be chosen for
each iteration and our goal is to define a heuristic that selects the most valuable rollout to search
with. The most straightforward strategy is uniformly choosing rollout candidates generated by the
policy in previous rounds; however, this is obviously not an e!ective way. Lightman et al. (2023)
suggests surfacing the convincing wrong-answer solutions for annotators during labeling. Inspired
by this, we propose to prioritize supposed-to-be-correct wrong-answer rollouts during selection. We
use the term supposed-to-be-correct to refer to the state with a Monte Carlo estimation MC(𝑇) closed
to 1; and use wrong-answer to refer that the specific rollout 𝑋 has a wrong final answer. The rollout
contains mistakes made by the policy that should have been avoided given its high MC(𝑇). We expect
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a PRM that learns to detect errors in such rollouts will be more useful in correcting the mistakes
made by the policy. The first component in Eq. (2), 𝑏1→MC(𝑇) , has a larger value as MC(𝑇) is closer
to 1. Additionally, we incorporate a length penalty factor 𝑐

len(𝑋)
𝑑 , to penalize excessively long rollouts.

Select. The selection phase in our algorithm is simpler than that of AlphaGo (Silver et al., 2016),
which involves selecting a sequence of actions from the root to a leaf node, forming a trajectory with
multiple states and actions. In contrast, we maintain a pool of all rollouts {(𝑇𝑃, 𝑋𝑃𝑒)} from previous
searches that satisfy 0 < MC(𝑇𝑃) < 1. During each selection, a rollout is popped and selected
according to tree statistics, (𝑇, 𝑋) = argmax(𝑇,𝑋) [𝑎(𝑇, 𝑋) + 𝑓 (𝑇)], using a variant of the PUCT (Rosin,
2011) algorithm,

𝑓 (𝑇) = 𝑅puct

√∑
𝑃 𝑍 (𝑇𝑃)

1 + 𝑍 (𝑇) , (3)

where 𝑅puct is a constant determining the level of exploration. This strategy initially favors rollouts
with low visit counts but gradually shifts preference towards those with high rollout values.

Binary Search. We perform a binary search to identify the first error location in the selected rollout,
as detailed in §3.2. The rollouts with 0 < MC(𝑇) < 1 during the process are added to the selection
candidate pool. All divide-and-rollout positions before the first error become new states. For the
example in Fig. 2(b), the trajectory 𝑇[𝐿] ↗ 𝑇[𝐿, 𝑀1:4] ↗ 𝑇[𝐿, 𝑀1:6] ↗ 𝑇[𝐿, 𝑀1:7] is added to the tree after
the binary search. The edges 𝑇[𝐿] ↗ 𝑇[𝐿, 𝑀1:4] and 𝑇[𝐿, 𝑀1:4] ↗ 𝑇[𝐿, 𝑀1:6] are correct, with MC values
of 0.25 and 0.5, respectively; while the edge 𝑇[𝐿, 𝑀1:6] ↗ 𝑇[𝐿, 𝑀1:7] is incorrect with MC value of 0.

Maintain. After the binary search, the tree statistics 𝑍 (𝑇), MC(𝑇), and 𝑎(𝑇, 𝑋) are updated. Specifi-
cally, 𝑍 (𝑇) is incremented by 1 for the selected (𝑇, 𝑋). Both MC(𝑇) and 𝑎(𝑇, 𝑋) are updated for the new
rollouts sampled from the binary search. This phase resembles the backup phase in AlphaGo but is
simpler, as it does not require recursive updates from the leaf to the root.

Tree Construction. By repeating the aboved process, we can construct a state-action tree as the
example illustrated in Fig. 1. The construction ends either when the search count reaches a predeter-
mined limit or when no additional rollout candidates are available in the pool.

3.4. PRM Training

Each edge (𝑇, 𝑊) with a single-step action in the constructed state-action tree can serve as a training
example for the PRM. It can be trained using the standard classification loss

Lpointwise =
𝑍∑
𝑃=1

𝑔̂𝑃 log 𝑔𝑃 + (1 → 𝑔̂𝑃) log(1 → 𝑔𝑃), (4)

where 𝑔̂𝑃 represents the correctness label and 𝑔𝑃 = PRM(𝑇, 𝑊) is the prediction score of the PRM. Wang
et al. (2024b) have used the Monte Carlo estimation as the correctness label, denoted as 𝑔̂ = MC(𝑇).
Alternatively, Wang et al. (2024a) have employed a binary labeling approach, where 𝑔̂ = 1[MC(𝑇) > 0],
assigning 𝑔̂ = 1 for any positive Monte Carlo estimation and 𝑔̂ = 0 otherwise. We refer the former
option as pointwise soft label and the latter as pointwise hard label. In addition, considering there are
many cases where a common solution prefix has multiple single-step actions, we can also minimize the
cross-entropy loss between the PRM predictions and the normalized pairwise preferences following
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the Bradley-Terry model (Christiano et al., 2017). We refer this training method as pairwise approach,
and the detailed pairwise loss formula can be found in Section Appendix B.

We use the pointwise soft label when evaluating the main results in §4.1, and a comparion of the
three objectives are discussed in §4.3.

4. Experiments

Data Generation. We conduct our experiments on the challenging MATH dataset (Hendrycks et al.,
2021). We use the same training and testing split as described in Lightman et al. (2023), which
consists of 12K training examples and a subset with 500 holdout representative problems from
the original 5K testing examples introduced in Hendrycks et al. (2021). We observe similar policy
performance on the full test set and the subset. For creating the process annotation data, we use the
questions from the training split and set the search limit to 100 per question, resulting 1.5M per-step
process supervision annotations. To reduce the false positive and false negative noise, we filtered out
questions that are either too hard or too easy for the model. Please refer to Appendix A for details.
We use 𝑏 = 0.5, 𝑐 = 0.9 and 𝑑 = 500 for calculating 𝑎(𝑇, 𝑋) in Eq. (2); and 𝑅puct = 0.125 in Eq. (3).
We sample 𝑄 = 8 rollouts for each Monte Carlo estimation.

Models. In previous studies (Lightman et al., 2023; Wang et al., 2024a,b), both proprietary models
such as GPT-4 (OpenAI, 2023) and open-source models such as Llama2 (Touvron et al., 2023) were
explored. In our study, we perform experiments with both proprietary Gemini Pro (Gemini Team
et al., 2024) and open-source Gemma2 (Gemma Team et al., 2024) models. For Gemini Pro, we
follow Lightman et al. (2023); Wang et al. (2024a) to initially fine-tune it on math instruction data,
achieving an accuracy of approximately 51% on the MATH test set. The instruction-tuned model is
then used for solution sampling. For open-source models, to maximize reproducibility, we directly
use the pretrained Gemma2 27B checkpoint with the 4-shot prompt introduced in Gemini Team et al.
(2024). The reward models are all trained from the pretrained checkpoints.

Metrics and baselines. We evaluate the PRM-based majority voting results on GSM8K (Cobbe et al.,
2021) and MATH500 (Lightman et al., 2023) using PRMs trained on di!erent process supervision data.
We choose the product of scores across all steps as the final solution score following Lightman et al.
(2023), where the performance di!erence between product and minimum of scores was compared
and the study showed the di!erence is minor. Baseline process supervision data include PRM800K
(Lightman et al., 2023) and Math-Shepherd (Wang et al., 2024a), both publicly available. Additionally,
we generate a process annotation dataset with our Gemini policy model using the brute-force approach
described in Wang et al. (2024a,b), referred to as Math-Shepherd (our impl) in subsequent sections.

4.1. Main Results

Table 1 and Fig. 3 presents the performance comparison of PRMs trained on various process annotation
datasets. OmegaPRM consistently outperforms the other process supervision datasets. Specifically, the
fine-tuned Gemini Pro achieves 69.4% and 93.6% accuracy on MATH500 and GSM8K, respectively,
using OmegaPRM-weighted majority voting. For the pretrained Gemma2 27B, it also performs the
best with 58.2% and 92.2% accuracy on MATH500 and GSM8K, respectively. It shows superior
performance comparing to both human annotated PRM800K but also automatic annotated Math-
Shepherd. More specifically, when the number of samples is small, almost all the PRM models
outperforme the majority vote. However, as the number of samples increases, the performance of
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(a) Gemini Pro on MATH500. (b) Gemini Pro on GSM8K.

(c) Gemma2 27B on MATH500. (d) Gemma2 27B on GSM8K.

Figure 3 | A comparison of PRMs trained with di!erent process supervision datasets, evaluated by
their ability to search over many test solutions using a PRM-weighted majority voting. We visualize
the variance across many sub-samples of the 128 solutions we generated in total per problem.

Table 1 | The performance comparison of PRMs trained with di!erent process supervision datasets.
The numbers represent the percentage of problems solved using PRM-weighted majority voting with
𝑄 = 64.

MATH500 GSM8K
Gemini Pro Gemma 2 27B Gemini Pro Gemma 2 27B

MajorityVote@64 67.2 54.7 92.7 90.6
+ Math-Shepherd 67.2 57.4 92.7 90.5
+ Math-Shepherd (our impl) 67.2 55.2 91.8 91.4
+ PRM800K 67.6 57.2 92.9 91.7
+ OmegaPRM 69.4 58.2 93.6 92.2

other PRMs gradually converges to the same level of the majority vote. In contrast, our PRM model
continues to demonstrate a clear margin of accuracy.
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4.2. Step Distribution

An important factor in process supervision is the number of steps in a solution and the length of each
step. Previous works (Lightman et al., 2023; Wang et al., 2024a,b) use rule-based strategies to split a
solution into steps, e.g., using newline as delimiters. In contrast, we propose a more flexible method
for step division, treating any sequence of consecutive tokens in a solution as a valid step. We observe
that many step divisions in Math-Shepherd lack semantic coherence to some extent. Therefore, we
hypothesize that semantically explicit cutting is not necessary for training a PRM.

Figure 4 | Number of steps distribution.

In practice, we first examine the distribution of the number of steps per solution in PRM800K
and Math-Shepherd, as shown in Fig. 4, noting that most solutions have less than 20 steps. During
binary search, we aim to divide a full solution into 16 pieces. To calculate the expected step length,
we divide the average solution length by 16. The binary search terminates when a step is shorter
than this value. The resulting distributions of step lengths for OmegaPRM and the other two datasets
are shown in Fig. 5. This flexible splitting strategy produces a step length distribution similar to that
of the rule-based strategy.

Figure 5 | Step length distribution in terms of number of tokens.

4.3. PRM Training Objectives

Table 2 | Comparison of di!erent training objectives for PRMs.

Soft Label Hard Label Pairwise

PRM Accuracy (%) 70.1 63.3 64.2

As outlined in §3.4, PRMs can be trained using multiple objectives. We construct a small process
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supervision test set using the problems from the MATH test split. We train PRMs using pointwise
soft label, pointwise hard label and pairwise loss respectively, and evaluate how accurately they can
classify the per-step correctness. Table 2 presents the comparison of di!erent objectives, and the
pointwise soft label is the best among them with 70.1% accuracy.

4.4. Algorithm E!ciency

As described in Section §3.2 and §3.3, we utilize binary search and Monte Carlo Tree Search to
improve the e"ciency of OmegaPRM process supervision data collection by e!ectively identifying the
first incorrect step and reusing rollouts in Monte Carlo estimation. To quantitatively measure the
e"ciency of OmegaPRM, we collected process supervision data using both brute-force-style method
(Wang et al., 2024a,b) and OmegaPRM with the same computational budget. As a result, we were
able to generate 200K data points using the brute-force algorithm compared to 15 million data
points with OmegaPRM, demonstrating a 75-times e"ciency improvement. In practice, we randomly
down-sampled OmegaPRM data to 1.5 million for PRM training.

5. Limitations

There are some limitations with our paper, which we reserve for future work:

Automatic process annotation is noisy. Our method for automatic process supervision annotation
introduces noise in the form of false positives and negatives, but experiments indicate that it can
still e!ectively train a PRM. The PRM trained on our dataset performs better than one trained on
the human-annotated PRM800K dataset. The precise impact of noise on PRM performance remains
uncertain. For future research, a comprehensive comparison of human and automated annotations
should be conducted. One other idea is to integrate human and automated annotations, which could
result in more robust and e"cient process supervision.

Human supervision is still necessary. Unlike the work presented in AlphaGo Zero (Silver et al.,
2017), our method requires the question and golden answer pair. The question is necessary for LLM
to start the MCTS and the golden answer is inevitable for the LLM to compare its rollouts with and
determine the correctness of the current step. This will limit the method to the tasks with such
question and golden answer pairs. Therefore, we need to adapt the current method further to make
it suitable for open-ended tasks.

6. Conclusion

In conclusion, we introduce OmegaPRM, a divide-and-conquer Monte Carlo Tree Search algorithm,
designed to automate the process supervision data collection for LLMs. By e"ciently pinpointing the
first error in the Chain-of-Thought and balancing data quality, OmegaPRM addresses the shortcomings
of existing methods. Our automated approach enables the collection of over 1.5 million process
supervision annotations, which are used to train a PRM. Leveraging this automated process supervision
with the weighted self-consistency algorithm, we improve LLM mathematical reasoning performance,
achieving a 69.4% success rate on the MATH benchmark — a 18.4% absolute increase over the base
model which amounts to a relative improvement of 36%. Additionally, our method significantly
reduces data collection costs compared to human annotation and brute force Monte-Carlo sampling.
These findings highlight OmegaPRM’s potential to enhance LLM capabilities in complex multi-step
reasoning tasks.

11



Improve Mathematical Reasoning in Language Models by Automated Process Supervision

7. Acknowledgements

We would like to express our deepest gratitude to Matt Barnes, Jindong Chen and Rif A. Saurous, for
their support and helpful feedback to our work. We also thank Peiyi Wang for clarifying the details in
Math-Shepherd and providing insightful suggestions.

References

P. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement learning
from human preferences. arXiv preprint arXiv:1706.03741, 2017.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,
R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168, 2021.

X. Feng, Z. Wan, M. Wen, S. M. McAleer, Y. Wen, W. Zhang, and J. Wang. Alphazero-like tree-search
can guide large language model decoding and training. arXiv preprint arXiv:2309.17179, 2023.

X. Feng, Z. Wan, M. Wen, S. M. McAleer, Y. Wen, W. Zhang, and J. Wang. Alphazero-like tree-search
can guide large language model decoding and training. arXiv preprint arXiv:2309.17179, 2024.

Y. Fu, H. Peng, A. Sabharwal, P. Clark, and T. Khot. Complexity-based prompting for multi-step
reasoning. In Proceedings of the 11th International Conference on Learning Representations (ICLR),
May 2023.

Gemini Team, M. Reid, N. Savinov, D. Teplyashin, Dmitry, Lepikhin, T. Lillicrap, J. baptiste Alayrac,
R. Soricut, A. Lazaridou, O. Firat, J. Schrittwieser, I. Antonoglou, R. Anil, S. Borgeaud, A. Dai,
K. Millican, E. Dyer, M. Glaese, T. Sottiaux, B. Lee, F. Viola, M. Reynolds, Y. Xu, J. Molloy, J. Chen,
M. Isard, P. Barham, T. Hennigan, R. McIlroy, M. Johnson, J. Schalkwyk, E. Collins, E. Rutherford,
E. Moreira, K. Ayoub, M. Goel, C. Meyer, G. Thornton, Z. Yang, H. Michalewski, Z. Abbas, N. Schucher,
A. Anand, R. Ives, J. Keeling, K. Lenc, S. Haykal, S. Shakeri, P. Shyam, A. Chowdhery, R. Ring,
S. Spencer, E. Sezener, L. Vilnis, O. Chang, N. Morioka, G. Tucker, C. Zheng, O. Woodman, N. Attaluri,
T. Kocisky, E. Eltyshev, X. Chen, T. Chung, V. Selo, S. Brahma, P. Georgiev, A. Slone, Z. Zhu, J. Lottes,
S. Qiao, B. Caine, S. Riedel, A. Tomala, M. Chadwick, J. Love, P. Choy, S. Mittal, N. Houlsby, Y. Tang,
M. Lamm, L. Bai, Q. Zhang, L. He, Y. Cheng, P. Humphreys, Y. Li, S. Brin, A. Cassirer, Y. Miao, L. Zilka,
T. Tobin, K. Xu, L. Proleev, D. Sohn, A. Magni, L. A. Hendricks, I. Gao, S. Ontanon, O. Bunyan,
N. Byrd, A. Sharma, B. Zhang, M. Pinto, R. Sinha, H. Mehta, D. Jia, S. Caelles, A. Webson, A. Morris,
B. Roelofs, Y. Ding, R. Strudel, X. Xiong, M. Ritter, M. Dehghani, R. Chaabouni, A. Karmarkar, G. Lai,
F. Mentzer, B. Xu, Y. Li, Y. Zhang, T. L. Paine, A. Goldin, B. Neyshabur, K. Baumli, A. Levskaya,
M. Laskin, W. Jia, J. W. Rae, K. Xiao, A. He, S. Giordano, L. Yagati, J.-B. Lespiau, P. Natsev,
S. Ganapathy, F. Liu, D. Martins, N. Chen, Y. Xu, M. Barnes, R. May, A. Vezer, J. Oh, K. Franko,
S. Bridgers, R. Zhao, B. Wu, B. Mustafa, S. Sechrist, E. Parisotto, T. S. Pillai, C. Larkin, C. Gu,
C. Sorokin, M. Krikun, A. Guseynov, J. Landon, R. Datta, A. Pritzel, P. Thacker, F. Yang, K. Hui,
A. Hauth, C.-K. Yeh, D. Barker, J. Mao-Jones, S. Austin, H. Sheahan, P. Schuh, J. Svensson, R. Jain,
V. Ramasesh, A. Briukhov, D.-W. Chung, T. von Glehn, C. Butterfield, P. Jhakra, M. Wietho!,
J. Frye, J. Grimstad, B. Changpinyo, C. L. Lan, A. Bortsova, Y. Wu, P. Voigtlaender, T. Sainath,
S. Gu, C. Smith, W. Hawkins, K. Cao, J. Besley, S. Srinivasan, M. Omernick, C. Ga!ney, G. Surita,
R. Burnell, B. Damoc, J. Ahn, A. Brock, M. Pajarskas, A. Petrushkina, S. Noury, L. Blanco, K. Swersky,
A. Ahuja, T. Avrahami, V. Misra, R. de Liedekerke, M. Iinuma, A. Polozov, S. York, G. van den
Driessche, P. Michel, J. Chiu, R. Blevins, Z. Gleicher, A. Recasens, A. Rrustemi, E. Gribovskaya,
A. Roy, W. Gworek, S. M. R. Arnold, L. Lee, J. Lee-Thorp, M. Maggioni, E. Piqueras, K. Badola,

12



Improve Mathematical Reasoning in Language Models by Automated Process Supervision

S. Vikram, L. Gonzalez, A. Baddepudi, E. Senter, J. Devlin, J. Qin, M. Azzam, M. Trebacz, M. Polacek,
K. Krishnakumar, S. yiin Chang, M. Tung, I. Penchev, R. Joshi, K. Olszewska, C. Muir, M. Wirth, A. J.
Hartman, J. Newlan, S. Kashem, V. Bolina, E. Dabir, J. van Amersfoort, Z. Ahmed, J. Cobon-Kerr,
A. Kamath, A. M. Hrafnkelsson, L. Hou, I. Mackinnon, A. Frechette, E. Noland, X. Si, E. Taropa,
D. Li, P. Crone, A. Gulati, S. Cevey, J. Adler, A. Ma, D. Silver, S. Tokumine, R. Powell, S. Lee,
K. Vodrahalli, S. Hassan, D. Mincu, A. Yang, N. Levine, J. Brennan, M. Wang, S. Hodkinson,
J. Zhao, J. Lipschultz, A. Pope, M. B. Chang, C. Li, L. E. Shafey, M. Paganini, S. Douglas, B. Bohnet,
F. Pardo, S. Odoom, M. Rosca, C. N. dos Santos, K. Soparkar, A. Guez, T. Hudson, S. Hansen,
C. Asawaroengchai, R. Addanki, T. Yu, W. Stokowiec, M. Khan, J. Gilmer, J. Lee, C. G. Bostock,
K. Rong, J. Caton, P. Pejman, F. Pavetic, G. Brown, V. Sharma, M. Lu$i%, R. Samuel, J. Djolonga,
A. Mandhane, L. L. Sjösund, E. Buchatskaya, E. White, N. Clay, J. Jiang, H. Lim, R. Hemsley,
Z. Cankara, J. Labanowski, N. D. Cao, D. Steiner, S. H. Hashemi, J. Austin, A. Gergely, T. Blyth,
J. Stanton, K. Shivakumar, A. Siddhant, A. Andreassen, C. Araya, N. Sethi, R. Shivanna, S. Hand,
A. Bapna, A. Khodaei, A. Miech, G. Tanzer, A. Swing, S. Thakoor, L. Aroyo, Z. Pan, Z. Nado,
J. Sygnowski, S. Winkler, D. Yu, M. Saleh, L. Maggiore, Y. Bansal, X. Garcia, M. Kazemi, P. Patil,
I. Dasgupta, I. Barr, M. Giang, T. Kagohara, I. Danihelka, A. Marathe, V. Feinberg, M. Elhawaty,
N. Ghelani, D. Horgan, H. Miller, L. Walker, R. Tanburn, M. Tariq, D. Shrivastava, F. Xia, Q. Wang,
C.-C. Chiu, Z. Ashwood, K. Baatarsukh, S. Samangooei, R. L. Kaufman, F. Alcober, A. Stjerngren,
P. Komarek, K. Tsihlas, A. Boral, R. Comanescu, J. Chen, R. Liu, C. Welty, D. Bloxwich, C. Chen,
Y. Sun, F. Feng, M. Mauger, X. Dotiwalla, V. Hellendoorn, M. Sharman, I. Zheng, K. Haridasan,
G. Barth-Maron, C. Swanson, D. Rogozi&ska, A. Andreev, P. K. Rubenstein, R. Sang, D. Hurt,
G. Elsayed, R. Wang, D. Lacey, A. Ili%, Y. Zhao, A. Iwanicki, A. Lince, A. Chen, C. Lyu, C. Lebsack,
J. Gri"th, M. Gaba, P. Sandhu, P. Chen, A. Koop, R. Rajwar, S. H. Yeganeh, S. Chang, R. Zhu,
S. Radpour, E. Davoodi, V. I. Lei, Y. Xu, D. Toyama, C. Segal, M. Wicke, H. Lin, A. Bulanova,
A. P. Badia, N. Raki%evi%, P. Sprechmann, A. Filos, S. Hou, V. Campos, N. Kassner, D. Sachan,
M. Fortunato, C. Iwuanyanwu, V. Nikolaev, B. Lakshminarayanan, S. Jazayeri, M. Varadarajan,
C. Tekur, D. Fritz, M. Khalman, D. Reitter, K. Dasgupta, S. Sarcar, T. Orndu!, J. Snaider, F. Huot,
J. Jia, R. Kemp, N. Trdin, A. Vijayakumar, L. Kim, C. Angermueller, L. Lao, T. Liu, H. Zhang, D. Engel,
S. Greene, A. White, J. Austin, L. Taylor, S. Ashraf, D. Liu, M. Georgaki, I. Cai, Y. Kulizhskaya,
S. Goenka, B. Saeta, Y. Xu, C. Frank, D. de Cesare, B. Robenek, H. Richardson, M. Alnahlawi, C. Yew,
P. Ponnapalli, M. Tagliasacchi, A. Korchemniy, Y. Kim, D. Li, B. Rosgen, K. Levin, J. Wiesner, P. Banzal,
P. Srinivasan, H. Yu, Ça’lar Ünlü, D. Reid, Z. Tung, D. Finchelstein, R. Kumar, A. Elissee!, J. Huang,
M. Zhang, R. Aguilar, M. Giménez, J. Xia, O. Dousse, W. Gierke, D. Yates, K. Jalan, L. Li, E. Latorre-
Chimoto, D. D. Nguyen, K. Durden, P. Kallakuri, Y. Liu, M. Johnson, T. Tsai, A. Talbert, J. Liu, A. Neitz,
C. Elkind, M. Selvi, M. Jasarevic, L. B. Soares, A. Cui, P. Wang, A. W. Wang, X. Ye, K. Kallarackal,
L. Loher, H. Lam, J. Broder, D. Holtmann-Rice, N. Martin, B. Ramadhana, M. Shukla, S. Basu,
A. Mohan, N. Fernando, N. Fiedel, K. Paterson, H. Li, A. Garg, J. Park, D. Choi, D. Wu, S. Singh,
Z. Zhang, A. Globerson, L. Yu, J. Carpenter, F. de Chaumont Quitry, C. Radebaugh, C.-C. Lin, A. Tudor,
P. Shro!, D. Garmon, D. Du, N. Vats, H. Lu, S. Iqbal, A. Yakubovich, N. Tripuraneni, J. Manyika,
H. Qureshi, N. Hua, C. Ngani, M. A. Raad, H. Forbes, J. Stanway, M. Sundararajan, V. Ungureanu,
C. Bishop, Y. Li, B. Venkatraman, B. Li, C. Thornton, S. Scellato, N. Gupta, Y. Wang, I. Tenney,
X. Wu, A. Shenoy, G. Carvajal, D. G. Wright, B. Bariach, Z. Xiao, P. Hawkins, S. Dalmia, C. Farabet,
P. Valenzuela, Q. Yuan, A. Agarwal, M. Chen, W. Kim, B. Hulse, N. Dukkipati, A. Paszke, A. Bolt,
K. Choo, J. Beattie, J. Prendki, H. Vashisht, R. Santamaria-Fernandez, L. C. Cobo, J. Wilkiewicz,
D. Madras, A. Elqursh, G. Uy, K. Ramirez, M. Harvey, T. Liechty, H. Zen, J. Seibert, C. H. Hu,
A. Khorlin, M. Le, A. Aharoni, M. Li, L. Wang, S. Kumar, N. Casagrande, J. Hoover, D. E. Badawy,
D. Soergel, D. Vnukov, M. Miecnikowski, J. Simsa, P. Kumar, T. Sellam, D. Vlasic, S. Daruki, N. Shabat,
J. Zhang, G. Su, J. Zhang, J. Liu, Y. Sun, E. Palmer, A. Gha!arkhah, X. Xiong, V. Cotruta, M. Fink,
L. Dixon, A. Sreevatsa, A. Goedeckemeyer, A. Dimitriev, M. Jafari, R. Crocker, N. FitzGerald,

13



Improve Mathematical Reasoning in Language Models by Automated Process Supervision

A. Kumar, S. Ghemawat, I. Philips, F. Liu, Y. Liang, R. Sterneck, A. Repina, M. Wu, L. Knight,
M. Georgiev, H. Lee, H. Askham, A. Chakladar, A. Louis, C. Crous, H. Cate, D. Petrova, M. Quinn,
D. Owusu-Afriyie, A. Singhal, N. Wei, S. Kim, D. Vincent, M. Nasr, C. A. Choquette-Choo, R. Tojo,
S. Lu, D. de Las Casas, Y. Cheng, T. Bolukbasi, K. Lee, S. Fatehi, R. Ananthanarayanan, M. Patel,
C. Kaed, J. Li, S. R. Belle, Z. Chen, J. Konzelmann, S. Põder, R. Garg, V. Koverkathu, A. Brown,
C. Dyer, R. Liu, A. Nova, J. Xu, A. Walton, A. Parrish, M. Epstein, S. McCarthy, S. Petrov, D. Hassabis,
K. Kavukcuoglu, J. Dean, and O. Vinyals. Gemini 1.5: Unlocking multimodal understanding across
millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Gemma Team, M. Riviere, S. Pathak, P. G. Sessa, C. Hardin, S. Bhupatiraju, L. Hussenot, T. Mesnard,
B. Shahriari, A. Ramé, J. Ferret, P. Liu, P. Tafti, A. Friesen, M. Casbon, S. Ramos, R. Kumar, C. L. Lan,
S. Jerome, A. Tsitsulin, N. Vieillard, P. Stanczyk, S. Girgin, N. Momchev, M. Ho!man, S. Thakoor,
J.-B. Grill, B. Neyshabur, O. Bachem, A. Walton, A. Severyn, A. Parrish, A. Ahmad, A. Hutchison,
A. Abdagic, A. Carl, A. Shen, A. Brock, A. Coenen, A. Laforge, A. Paterson, B. Bastian, B. Piot,
B. Wu, B. Royal, C. Chen, C. Kumar, C. Perry, C. Welty, C. A. Choquette-Choo, D. Sinopalnikov,
D. Weinberger, D. Vijaykumar, D. Rogozi&ska, D. Herbison, E. Bandy, E. Wang, E. Noland, E. Moreira,
E. Senter, E. Eltyshev, F. Visin, G. Rasskin, G. Wei, G. Cameron, G. Martins, H. Hashemi, H. Klimczak-
Pluci&ska, H. Batra, H. Dhand, I. Nardini, J. Mein, J. Zhou, J. Svensson, J. Stanway, J. Chan, J. P.
Zhou, J. Carrasqueira, J. Iljazi, J. Becker, J. Fernandez, J. van Amersfoort, J. Gordon, J. Lipschultz,
J. Newlan, J. yeong Ji, K. Mohamed, K. Badola, K. Black, K. Millican, K. McDonell, K. Nguyen,
K. Sodhia, K. Greene, L. L. Sjoesund, L. Usui, L. Sifre, L. Heuermann, L. Lago, L. McNealus, L. B.
Soares, L. Kilpatrick, L. Dixon, L. Martins, M. Reid, M. Singh, M. Iverson, M. Görner, M. Velloso,
M. Wirth, M. Davidow, M. Miller, M. Rahtz, M. Watson, M. Risdal, M. Kazemi, M. Moynihan,
M. Zhang, M. Kahng, M. Park, M. Rahman, M. Khatwani, N. Dao, N. Bardoliwalla, N. Devanathan,
N. Dumai, N. Chauhan, O. Wahltinez, P. Botarda, P. Barnes, P. Barham, P. Michel, P. Jin, P. Georgiev,
P. Culliton, P. Kuppala, R. Comanescu, R. Merhej, R. Jana, R. A. Rokni, R. Agarwal, R. Mullins,
S. Saadat, S. M. Carthy, S. Perrin, S. M. R. Arnold, S. Krause, S. Dai, S. Garg, S. Sheth, S. Ronstrom,
S. Chan, T. Jordan, T. Yu, T. Eccles, T. Hennigan, T. Kocisky, T. Doshi, V. Jain, V. Yadav, V. Meshram,
V. Dharmadhikari, W. Barkley, W. Wei, W. Ye, W. Han, W. Kwon, X. Xu, Z. Shen, Z. Gong, Z. Wei,
V. Cotruta, P. Kirk, A. Rao, M. Giang, L. Peran, T. Warkentin, E. Collins, J. Barral, Z. Ghahramani,
R. Hadsell, D. Sculley, J. Banks, A. Dragan, S. Petrov, O. Vinyals, J. Dean, D. Hassabis, K. Kavukcuoglu,
C. Farabet, E. Buchatskaya, S. Borgeaud, N. Fiedel, A. Joulin, K. Kenealy, R. Dadashi, and A. Andreev.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

S. Hao, Y. Gu, H. Ma, J. J. Hong, Z. Wang, D. Z. Wang, and Z. Hu. Reasoning with language model is
planning with world model. arXiv preprint arXiv:2305.14992, 2023.

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt. Measuring
mathematical problem solving with the math dataset. NeurIPS, 2021.

J. Huang, S. S. Gu, L. Hou, Y. Wu, X. Wang, H. Yu, and J. Han. Large language models can self-improve.
arXiv preprint arXiv:2210.11610, 2022.

J. Kang, X. Z. Li, X. Chen, A. Kazemi, Q. Sun, B. Chen, D. Li, X. He, Q. He, F. Wen, J. Hao, and
J. Yao. Mindstar: Enhancing math reasoning in pre-trained llms at inference time. arXiv preprint
arXiv:2405.16265, 2024.

Y. Li, Z. Lin, S. Zhang, Q. Fu, B. Chen, J.-G. Lou, and W. Chen. Making large language models better
reasoners with step-aware verifier. arXiv preprint arXiv:2206.02336, 2023.

H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman, I. Sutskever,
and K. Cobbe. Let’s verify step by step. arXiv preprint arXiv:2305.20050, 2023.

14



Improve Mathematical Reasoning in Language Models by Automated Process Supervision

H. Liu, Y. Zhang, Y. Luo, and A. C.-C. Yao. Augmenting math word problems via iterative question
composing. arXiv preprint arXiv:2401.09003, 2024.

L. Luo, Z. Lin, Y. Liu, L. Shu, Y. Zhu, J. Shang, and L. Meng. Critique ability of large language models.
arXiv preprint arXiv:2310.04815, 2023.

Q. Ma, H. Zhou, T. Liu, J. Yuan, P. Liu, Y. You, and H. Yang. Let’s reward step by step: Step-level
reward model as the navigators for reasoning. arXiv preprint arXiv:2310.10080, 2023.

OpenAI. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,
A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano,
J. Leike, and R. Lowe. Training language models to follow instructions with human feedback. arXiv
preprint arXiv:2203.02155, 2022.

E. Perez, D. Kiela, and K. Cho. True few-shot learning with language models. arXiv preprint
arXiv:2105.11447, 2021.

C. D. Rosin. Multi-armed bandits with episode context. Annals of Mathematics and Artificial Intelligence,
61(3):203–230, 2011.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of go with deep neural networks and tree search. Nature, 2016. URL
https://doi.org/10.1038/nature16961.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai,
A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis.
Mastering the game of go without human knowledge. nature, 550(7676):354–359, 2017.

Y. Tian, B. Peng, L. Song, L. Jin, D. Yu, H. Mi, and D. Yu. Toward self-improvement of llms via
imagination, searching, and criticizing. arXiv preprint arXiv:2404.12253, 2024.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava,
S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu,
W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan,
M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril,
J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton,
J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan,
B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur,
S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom. LLaMA 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

J. Uesato, N. Kushman, R. Kumar, F. Song, N. Siegel, L. Wang, A. Creswell, G. Irving, and I. Hig-
gins. Solving math word problems with process-and outcome-based feedback. arXiv preprint
arXiv:2211.14275, 2022.

P. Wang, L. Li, Z. Shao, R. X. Xu, D. Dai, Y. Li, D. Chen, Y. Wu, and Z. Sui. Math-Shepherd: Verify and
reinforce LLMs step-by-step without human annotations. arXiv preprint arXiv:2312.08935, 2024a.

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou. Self-consistency
improves chain of thought reasoning in language models. In Proceedings of the 11th International
Conference on Learning Representations (ICLR), May 2023.

15



Improve Mathematical Reasoning in Language Models by Automated Process Supervision

Z. Wang, Y. Li, Y. Wu, L. Luo, L. Hou, H. Yu, and J. Shang. Multi-step problem solving through a verifier:
An empirical analysis on model-induced process supervision. arXiv preprint arXiv:2402.02658,
2024b.

J. Wei, Y. Tay, R. Bommasani, C. Ra!el, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou,
D. Metzler, E. H. Chi, T. Hashimoto, O. Vinyals, P. Liang, J. Dean, and W. Fedus. Emergent abilities
of large language models, 2022a.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, and D. Zhou. Chain-of-thought
prompting elicits reasoning in large language models. In Proceedings of the 36th Conference on
Neural Information Processing Systems (NeurIPS), Dec 2022b.

S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Gri"ths, Y. Cao, and K. Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models. arXiv preprint arXiv:2305.10601, 2023.

F. Yu, A. Gao, and B. Wang. Ovm, outcome-supervised value models for planning in mathematical
reasoning. arXiv preprint arXiv:2311.09724, 2024.

L. Yu, W. Jiang, H. Shi, J. Yu, Z. Liu, Y. Zhang, J. T. Kwok, Z. Li, A. Weller, and W. Liu. MetaMath: Boot-
strap your own mathematical questions for large language models. arXiv preprint arXiv:2309.12284,
2023.

D. Zhang, S. Zhoubian, Z. Hu, Y. Yue, Y. Dong, and J. Tang. Rest-mcts*: Llm self-training via process
reward guided tree search. arXiv preprint arXiv:2406.03816, 2024.

M. #wiechowski, K. Godlewski, B. Sawicki, and J. Ma&dziuk. Monte carlo tree search: A review of
recent modifications and applications. arXiv preprint arXiv:2103.04931, 2021.

16



Improve Mathematical Reasoning in Language Models by Automated Process Supervision

Appendix

A. Question Filtering

During the evaluation of partial solution correctness using MC estimation, false negative noise may
be introduced when a question is too hard for the model, thus no correct rollout can be found even
with correct partial solution. Or false positive noise may be introduced when a question is too easy,
that model can conclude in correct answer given partial solution with wrong step. It is not possible to
exclude such noise completely, but we can reduce the chance by filtering out questions that are either
too hard or too easy for the model. Specifically, we ran a 𝑄 = 32 rollouts for each question in the 12K
training data, and filter out the questions that with no correct answer (too hard) or no wrong answer
(too easy) in the 32 rollouts.

B. Pairwise Loss Formula

When training with pairwise labels, the Bradley-Terry model (people typically use this objective to
train reward models in RLHF) generally accepts two probability scalars summing up to 1. When we
select the two actions as a pair, there are two cases. The first case is that one sample with a zero MC
value, and the other sample with a positive MC value. The second case is that both samples are with
positive MC values. The first case is straight-forward, and a normalization step is required for the
second case.

Assume the two MC values are 𝑁 and 𝐿, and they follow the Bernoulli distribution: 𝑖(𝑗 = 1) = 𝑁
and 𝑖(𝑘 = 1) = 𝐿. We need to calculate the probability that action X is preferred over action Y and
vice versa.

𝑖(𝑗 > 𝑘 ) = 𝑖(𝑗 = 1,𝑘 = 0) = 𝑁(1 → 𝐿),
𝑖(𝑗 < 𝑘 ) = 𝑖(𝑗 = 0,𝑘 = 1) = (1 → 𝑁)𝐿,
𝑖(𝑗 = 𝑘 ) = 𝑖(𝑗 = 0,𝑘 = 0) + 𝑖(𝑗 = 1,𝑘 = 1) = (1 → 𝑁) (1 → 𝐿) + 𝑁𝐿.

(5)

For the tied situation, each action has half the chance of being preferred. Thus,

𝑖(action X is preferred) = 𝑖(𝑗 > 𝑘 ) + 1/2 ↘ 𝑖(𝑗 = 𝑘 ) = 1/2 ↘ (1 + 𝑁 → 𝐿),
𝑖(action Y is preferred) = 𝑖(𝑗 < 𝑘 ) + 1/2 ↘ 𝑖(𝑗 = 𝑘 ) = 1/2 ↘ (1 + 𝐿 → 𝑁).

(6)

Now the MC values are normalized and we can train with the pairwise loss.
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