Last updated: 2018-08-31
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date 
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
 ✔ Environment: empty 
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
 ✔ Seed: 
set.seed(20180719) 
The command set.seed(20180719) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
 ✔ Session information: recorded 
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
 ✔ Repository version: 86e52f5 
wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
    Ignored:    .Rproj.user/
| File | Version | Author | Date | Message | 
|---|---|---|---|---|
| Rmd | 86e52f5 | Xiang Zhu | 2018-08-31 | wflow_publish(“analysis/load2013_liver.Rmd”) | 
| html | 1734dec | Xiang Zhu | 2018-08-30 | Build site. | 
| Rmd | 6b3b280 | Xiang Zhu | 2018-08-30 | wflow_publish(“analysis/load2013_liver.Rmd”) | 
| Rmd | dbd04eb | Xiang Zhu | 2018-08-30 | minor update chunk option | 
| html | 8843641 | Xiang Zhu | 2018-08-30 | Build site. | 
| Rmd | e5fe6e0 | Xiang Zhu | 2018-08-30 | wflow_publish(“analysis/load2013_liver.Rmd”) | 
/project/mstephens/test_rss/data/load2013/load2013_sumstat.mat/scratch/PI/whwong/zduren/share/PECA_human/PECA2/Liver_network.txtFirst look at the approximated log marginal likelihoods (elbo column below).
| piva | sigb | elbo | time | 
|---|---|---|---|
| 0.0001000 | 0.0515913 | 189566935.0 | 1047.9433 | 
| 0.0001778 | 0.0386880 | 88426696.9 | 957.1887 | 
| 0.0003162 | 0.0290119 | 64568073.4 | 1302.2966 | 
| 0.0005623 | 0.0217559 | 35953379.4 | 1276.2622 | 
| 0.0010000 | 0.0163146 | 16999449.9 | 1443.6655 | 
| 0.0017783 | 0.0122342 | 6239008.6 | 1536.1694 | 
| 0.0031623 | 0.0091744 | 1241460.2 | 1233.5987 | 
| 0.1000000 | 0.0016315 | -640022.0 | 4096.3463 | 
| 0.3162278 | 0.0009174 | -731651.6 | 3479.1000 | 
| 0.1778279 | 0.0012234 | -766687.1 | 3141.6219 | 
| 0.5623413 | 0.0006880 | -898377.8 | 2900.3702 | 
| 0.0056234 | 0.0068798 | -946876.3 | 3797.0045 | 
| 0.0562341 | 0.0021756 | -997159.9 | 3615.5936 | 
| 0.0316228 | 0.0029012 | -1100972.1 | 4003.9145 | 
| 0.0100000 | 0.0051591 | -1141247.3 | 4012.4360 | 
| 0.0177828 | 0.0038688 | -1435636.8 | 3133.8837 | 
Next look at the gene-level posterior statistics when the marginal likelihood is maximized.
| hgnc_symbol | chromosome_name | start_position | end_position | gene_nid | vb_weight | vb_mean | vb_var | 
|---|---|---|---|---|---|---|---|
| LGALS9B | 17 | 20352708 | 20370852 | 14712 | 1 | 444.66672 | 0.0010826 | 
| OR11H1 | 22 | 16448824 | 16449805 | 17914 | 1 | 207.94006 | 0.0026617 | 
| CBWD6 | 9 | 69204538 | 69269662 | 8588 | 1 | 197.17232 | 0.0026617 | 
| RGL2 | 6 | 33259431 | 33267101 | 6194 | 1 | 167.12435 | 0.0005348 | 
| CDRT15L2 | 17 | 20483037 | 20484224 | 14713 | 1 | 162.23593 | 0.0006613 | 
| C16orf86 | 16 | 67700719 | 67702661 | 14191 | 1 | 132.58307 | 0.0000199 | 
| GALNT4 | 12 | 89913185 | 89920039 | 11797 | 1 | 128.69132 | 0.0000426 | 
| ARL17A | 17 | 44594068 | 44657088 | 15110 | 1 | 93.25737 | 0.0004824 | 
| CLEC18B | 16 | 74442529 | 74455368 | 14272 | 1 | 93.07069 | 0.0000250 | 
| ALOXE3 | 17 | 7999218 | 8022365 | 14590 | 1 | 74.02143 | 0.0000047 | 
Look at top genes: LGALS9B, OR11H1, RGL2.
R version 3.5.0 (2018-04-23)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
[1] bindrcpp_0.2.2 DT_0.4         knitr_1.20     dplyr_0.7.5   
[5] R.matlab_3.6.1
loaded via a namespace (and not attached):
 [1] Rcpp_0.12.17      bindr_0.1.1       whisker_0.3-2    
 [4] magrittr_1.5      workflowr_1.1.1   tidyselect_0.2.4 
 [7] R6_2.2.2          rlang_0.2.1       highr_0.7        
[10] stringr_1.3.1     tools_3.5.0       R.oo_1.22.0      
[13] git2r_0.21.0      htmltools_0.3.6   yaml_2.1.19      
[16] rprojroot_1.3-2   digest_0.6.15     assertthat_0.2.0 
[19] tibble_1.4.2      purrr_0.2.5       htmlwidgets_1.2  
[22] R.utils_2.6.0     glue_1.2.0        evaluate_0.10.1  
[25] rmarkdown_1.10    stringi_1.2.3     pillar_1.2.3     
[28] compiler_3.5.0    backports_1.1.2   R.methodsS3_1.7.1
[31] pkgconfig_2.0.1  This reproducible R Markdown analysis was created with workflowr 1.1.1