<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />




<title>MASH v FLASH GTEx analysis: Top 20 v Zero</title>

<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/cosmo.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<script src="site_libs/navigation-1.1/codefolding.js"></script>
<link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<link href="site_libs/font-awesome-4.5.0/css/font-awesome.min.css" rel="stylesheet" />

<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
  pre:not([class]) {
    background-color: white;
  }
</style>
<script type="text/javascript">
if (window.hljs) {
  hljs.configure({languages: []});
  hljs.initHighlightingOnLoad();
  if (document.readyState && document.readyState === "complete") {
    window.setTimeout(function() { hljs.initHighlighting(); }, 0);
  }
}
</script>



<style type="text/css">
h1 {
  font-size: 34px;
}
h1.title {
  font-size: 38px;
}
h2 {
  font-size: 30px;
}
h3 {
  font-size: 24px;
}
h4 {
  font-size: 18px;
}
h5 {
  font-size: 16px;
}
h6 {
  font-size: 12px;
}
.table th:not([align]) {
  text-align: left;
}
</style>


</head>

<body>

<style type = "text/css">
.main-container {
  max-width: 940px;
  margin-left: auto;
  margin-right: auto;
}
code {
  color: inherit;
  background-color: rgba(0, 0, 0, 0.04);
}
img {
  max-width:100%;
  height: auto;
}
.tabbed-pane {
  padding-top: 12px;
}
button.code-folding-btn:focus {
  outline: none;
}
</style>


<style type="text/css">
/* padding for bootstrap navbar */
body {
  padding-top: 51px;
  padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar)  */
.section h1 {
  padding-top: 56px;
  margin-top: -56px;
}

.section h2 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h3 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h4 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h5 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h6 {
  padding-top: 56px;
  margin-top: -56px;
}
</style>

<script>
// manage active state of menu based on current page
$(document).ready(function () {
  // active menu anchor
  href = window.location.pathname
  href = href.substr(href.lastIndexOf('/') + 1)
  if (href === "")
    href = "index.html";
  var menuAnchor = $('a[href="' + href + '"]');

  // mark it active
  menuAnchor.parent().addClass('active');

  // if it's got a parent navbar menu mark it active as well
  menuAnchor.closest('li.dropdown').addClass('active');
});
</script>


<div class="container-fluid main-container">

<!-- tabsets -->
<script>
$(document).ready(function () {
  window.buildTabsets("TOC");
});
</script>

<!-- code folding -->
<style type="text/css">
.code-folding-btn { margin-bottom: 4px; }
</style>
<script>
$(document).ready(function () {
  window.initializeCodeFolding("hide" === "show");
});
</script>




<script>
$(document).ready(function ()  {

    // move toc-ignore selectors from section div to header
    $('div.section.toc-ignore')
        .removeClass('toc-ignore')
        .children('h1,h2,h3,h4,h5').addClass('toc-ignore');

    // establish options
    var options = {
      selectors: "h1,h2,h3",
      theme: "bootstrap3",
      context: '.toc-content',
      hashGenerator: function (text) {
        return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
      },
      ignoreSelector: ".toc-ignore",
      scrollTo: 0
    };
    options.showAndHide = true;
    options.smoothScroll = true;

    // tocify
    var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>

<style type="text/css">

#TOC {
  margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
  position: relative;
  width: 100%;
}
}


.toc-content {
  padding-left: 30px;
  padding-right: 40px;
}

div.main-container {
  max-width: 1200px;
}

div.tocify {
  width: 20%;
  max-width: 260px;
  max-height: 85%;
}

@media (min-width: 768px) and (max-width: 991px) {
  div.tocify {
    width: 25%;
  }
}

@media (max-width: 767px) {
  div.tocify {
    width: 100%;
    max-width: none;
  }
}

.tocify ul, .tocify li {
  line-height: 20px;
}

.tocify-subheader .tocify-item {
  font-size: 0.90em;
  padding-left: 25px;
  text-indent: 0;
}

.tocify .list-group-item {
  border-radius: 0px;
}


</style>

<!-- setup 3col/9col grid for toc_float and main content  -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>

<div class="toc-content col-xs-12 col-sm-8 col-md-9">




<div class="navbar navbar-default  navbar-fixed-top" role="navigation">
  <div class="container">
    <div class="navbar-header">
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
      </button>
      <a class="navbar-brand" href="index.html">MASHvFLASH</a>
    </div>
    <div id="navbar" class="navbar-collapse collapse">
      <ul class="nav navbar-nav">
        <li>
  <a href="index.html">Home</a>
</li>
<li>
  <a href="about.html">About</a>
</li>
      </ul>
      <ul class="nav navbar-nav navbar-right">
        <li>
  <a href="https://github.com/willwerscheid/MASHvFLASH">
    <span class="fa fa-github"></span>
     
  </a>
</li>
      </ul>
    </div><!--/.nav-collapse -->
  </div><!--/.container -->
</div><!--/.navbar -->

<!-- Add a small amount of space between sections. -->
<style type="text/css">
div.section {
  padding-top: 12px;
}
</style>

<div class="fluid-row" id="header">

<div class="btn-group pull-right">
<button type="button" class="btn btn-default btn-xs dropdown-toggle" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"><span>Code</span> <span class="caret"></span></button>
<ul class="dropdown-menu" style="min-width: 50px;">
<li><a id="rmd-show-all-code" href="#">Show All Code</a></li>
<li><a id="rmd-hide-all-code" href="#">Hide All Code</a></li>
</ul>
</div>



<h1 class="title toc-ignore">MASH v FLASH GTEx analysis: “Top 20” v Zero</h1>

</div>


<p><strong>Last updated:</strong> 2018-08-04</p>
<strong>workflowr checks:</strong> <small>(Click a bullet for more information)</small>
<ul>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>R Markdown file:</strong> up-to-date </summary></p>
<p>Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.</p>
</details>
</li>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>Environment:</strong> empty </summary></p>
<p>Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.</p>
</details>
</li>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>Seed:</strong> <code>set.seed(20180609)</code> </summary></p>
<p>The command <code>set.seed(20180609)</code> was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.</p>
</details>
</li>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>Session information:</strong> recorded </summary></p>
<p>Great job! Recording the operating system, R version, and package versions is critical for reproducibility.</p>
</details>
</li>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>Repository version:</strong> <a href="https://github.com/willwerscheid/MASHvFLASH/tree/c018ca36e5c10476f5502b422393a8b6870a559f" target="_blank">c018ca3</a> </summary></p>
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated. <br><br> Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use <code>wflow_publish</code> or <code>wflow_git_commit</code>). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
<pre><code>
Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/
    Ignored:    docs/.DS_Store
    Ignored:    docs/images/.DS_Store
    Ignored:    docs/images/.Rapp.history
    Ignored:    output/.DS_Store
    Ignored:    output/.Rapp.history
    Ignored:    output/MASHvFLASHgtex/.DS_Store
    Ignored:    output/MASHvFLASHsims/.DS_Store
    Ignored:    output/MASHvFLASHsims/backfit/.DS_Store
    Ignored:    output/MASHvFLASHsims/backfit/.Rapp.history

Unstaged changes:
    Modified:   code/gtexanalysis.R

</code></pre>
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. </details>
</li>
</ul>
<details> <summary> <small><strong>Expand here to see past versions:</strong></small> </summary>
<ul>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
File
</th>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
<th style="text-align:left;">
Message
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/willwerscheid/MASHvFLASH/blob/c018ca36e5c10476f5502b422393a8b6870a559f/analysis/Top20vZero.Rmd" target="_blank">c018ca3</a>
</td>
<td style="text-align:left;">
Jason Willwerscheid
</td>
<td style="text-align:left;">
2018-08-04
</td>
<td style="text-align:left;">
wflow_publish(c(“analysis/index.Rmd”, “analysis/Top20vZero.Rmd”))
</td>
</tr>
</tbody>
</table>
</ul>
<p></details></p>
<hr />
<div id="introduction" class="section level2">
<h2>Introduction</h2>
<p>This analysis compares the “Top 20” FLASH fit to the “Zero” FLASH fit (which does not include any canonical loadings). See <a href="MASHvFLASHgtex2.html">here</a> for fitting details. See <a href="MASHvOHF.html#introduction_to_plots">here</a> and <a href="OHFvTop20.html#introduction">here</a> for introductions to the plots. Because the first data-driven loading in the “Zero” fit generally acts as a surrogate for the “equal effects” loading in the “Top 20” fit, I combine the two loadings in the plots below for ease of interpretation.</p>
<pre class="r"><code>library(mashr)</code></pre>
<pre><code>Loading required package: ashr</code></pre>
<pre class="r"><code>devtools::load_all(&quot;/Users/willwerscheid/GitHub/flashr/&quot;)</code></pre>
<pre><code>Loading flashr</code></pre>
<pre class="r"><code>gtex &lt;- readRDS(gzcon(url(&quot;https://github.com/stephenslab/gtexresults/blob/master/data/MatrixEQTLSumStats.Portable.Z.rds?raw=TRUE&quot;)))
strong &lt;- t(gtex$strong.z)

fpath &lt;- &quot;./output/MASHvFLASHgtex2/&quot;
top20_final &lt;- readRDS(paste0(fpath, &quot;top20.rds&quot;))
zero_final &lt;- readRDS(paste0(fpath, &quot;zero.rds&quot;))

all_fl_lfsr &lt;- readRDS(paste0(fpath, &quot;fllfsr.rds&quot;))
top20_lfsr &lt;- all_fl_lfsr[[4]]
zero_lfsr &lt;- all_fl_lfsr[[5]]
top20_pm &lt;- flash_get_fitted_values(top20_final)
zero_pm &lt;- flash_get_fitted_values(zero_final)</code></pre>
<pre class="r"><code>missing.tissues &lt;- c(7, 8, 19, 20, 24, 25, 31, 34, 37)
gtex.colors &lt;- read.table(&quot;https://github.com/stephenslab/gtexresults/blob/master/data/GTExColors.txt?raw=TRUE&quot;, sep = &#39;\t&#39;, comment.char = &#39;&#39;)[-missing.tissues, 2]
OHF.colors &lt;- c(&quot;tan4&quot;, &quot;tan3&quot;)
zero.colors &lt;- c(&quot;black&quot;, gray.colors(19, 0.2, 0.9),
                 gray.colors(17, 0.95, 1))

plot_test &lt;- function(n, lfsr, pm, method_name) {
  plot(strong[, n], pch=1, col=&quot;black&quot;, xlab=&quot;&quot;, ylab=&quot;&quot;, cex=0.6,
       ylim=c(min(c(strong[, n], 0)), max(c(strong[, n], 0))),
       main=paste0(&quot;Test #&quot;, n, &quot;; &quot;, method_name))
  size = rep(0.6, 44)
  shape = rep(15, 44)
  signif &lt;- lfsr[, n] &lt;= .05
  shape[signif] &lt;- 17
  size[signif] &lt;- 1.35 - 15 * lfsr[signif, n]
  size &lt;- pmin(size, 1.2)
  points(pm[, n], pch=shape, col=as.character(gtex.colors), cex=size)
  abline(0, 0)
}

plot_ohf_v_ohl_loadings &lt;- function(n, ohf_fit, ohl_fit, ohl_name,
                                    legend_pos = &quot;bottomright&quot;) {
  ohf &lt;- abs(ohf_fit$EF[n, ] * apply(abs(ohf_fit$EL), 2, max))
  ohl &lt;- -abs(ohl_fit$EF[n, ] * apply(abs(ohl_fit$EL), 2, max))
  data &lt;- rbind(c(ohf, rep(0, length(ohl) - 45)),
                c(ohl[1:45], rep(0, length(ohf) - 45),
                  ohl[46:length(ohl)]))
  colors &lt;- c(&quot;black&quot;,
              as.character(gtex.colors),
              OHF.colors,
              zero.colors[1:(length(ohl) - 45)])
  x &lt;- barplot(data, beside=T, col=rep(colors, each=2),
               main=paste0(&quot;Test #&quot;, n, &quot; loadings&quot;),
               legend.text = c(&quot;OHF&quot;, ohl_name),
               args.legend = list(x = legend_pos, bty = &quot;n&quot;, pch=&quot;+-&quot;,
                                  fill=NULL, border=&quot;white&quot;))
  text(x[2*(46:47) - 1], min(data) / 10,
       labels=as.character(1:2), cex=0.4)
  text(x[2*(48:ncol(data))], max(data) / 10,
       labels=as.character(1:(length(ohl) - 45)), cex=0.4)
}

plot_ohl_v_zero_loadings &lt;- function(n, ohl_fit, zero_fit, ohl_name,
                                    legend_pos = &quot;topright&quot;) {
  ohl &lt;- abs(ohl_fit$EF[n, ] * apply(abs(ohl_fit$EL), 2, max))
  # Combine equal effects and first data-driven loading
  ohl[1] &lt;- ohl[1] + ohl[46]
  ohl &lt;- ohl[-46]
  zero &lt;- -abs(zero_fit$EF[n, ] * apply(abs(zero_fit$EL), 2, max))
  data &lt;- rbind(c(ohl, rep(0, length(zero) - length(ohl) + 44)),
                c(zero[1], rep(0, 44), zero[2:length(zero)]))
  colors &lt;- c(&quot;black&quot;, as.character(gtex.colors), zero.colors)
  x &lt;- barplot(data, beside=T, col=rep(colors, each=2),
               main=paste0(&quot;Test #&quot;, n, &quot; loadings&quot;),
               legend.text = c(ohl_name, &quot;Zero&quot;),
               args.legend = list(x = legend_pos, bty = &quot;n&quot;, pch=&quot;+-&quot;,
                                  fill=NULL, border=&quot;white&quot;))
  text(x[2*(seq(46, ncol(data), by=2)) - 1], min(data) / 10,
       labels=as.character(seq(2, length(zero), by=2)), cex=0.4)
}

compare_methods &lt;- function(lfsr1, lfsr2, pm1, pm2) {
  res &lt;- list()
  res$first_not_second &lt;- find_A_not_B(lfsr1, lfsr2)
  res$lg_first_not_second &lt;- find_large_A_not_B(lfsr1, lfsr2)
  res$second_not_first &lt;- find_A_not_B(lfsr2, lfsr1)
  res$lg_second_not_first &lt;- find_large_A_not_B(lfsr2, lfsr1)
  res$diff_pms &lt;- find_overall_pm_diff(pm1, pm2)
  return(res)
}

# Find tests where many conditions are significant according to
#   method A but not according to method B.
find_A_not_B &lt;- function(lfsrA, lfsrB) {
  select_tests(colSums(lfsrA &lt;= 0.05 &amp; lfsrB &gt; 0.05))
}

# Find tests where many conditions are highly significant according to
#   method A but are not significant according to method B.
find_large_A_not_B &lt;- function(lfsrA, lfsrB) {
  select_tests(colSums(lfsrA &lt;= 0.01 &amp; lfsrB &gt; 0.05))
}

find_overall_pm_diff &lt;- function(pmA, pmB, n = 4) {
  pm_diff &lt;- colSums((pmA - pmB)^2)
  return(order(pm_diff, decreasing = TRUE)[1:4])
}

# Get at least four (or min_n) &quot;top&quot; tests.
select_tests &lt;- function(colsums, min_n = 4) {
  n &lt;- 45
  n_tests &lt;- 0
  while (n_tests &lt; min_n &amp;&amp; n &gt; 0) {
    n &lt;- n - 1
    n_tests &lt;- sum(colsums &gt;= n)
  }
  return(which(colsums &gt;= n))
}</code></pre>
<pre class="r"><code>plot_it &lt;- function(n, legend.pos = &quot;topright&quot;) {
  par(mfrow=c(1, 2))
  plot_test(n, top20_lfsr, top20_pm, &quot;Top 20&quot;)
  plot_test(n, zero_lfsr, zero_pm, &quot;Zero&quot;)
  
  par(mfrow=c(1, 1))
  plot_ohl_v_zero_loadings(n, top20_final, zero_final, &quot;Top 20&quot;,
                           legend.pos)
}</code></pre>
</div>
<div id="significant-for-top-20-not-zero" class="section level2">
<h2>Significant for Top 20, not Zero</h2>
<p>It is possible to distinguish three classes of cases where the “Top 20” method picks out significant effects but the “Zero” method does not. I give a typical example for each class.</p>
<ol style="list-style-type: decimal">
<li>Because the “Zero” fit does not include canonical loadings, it generally shrinks large effects more aggressively than the “Top 20” fit. In the following example, the canonical loadings allow for a very simple interpretation of the “Top 20” fit: there are two large unique effects, plus a moderately-sized identical effect (none of the data-driven loadings are very important). The “Zero” fit, in contrast, is a fairly complicated combination of data-driven factors.</li>
</ol>
<pre class="r"><code># top20.v.zero &lt;- compare_methods(top20_lfsr, zero_lfsr, top20_pm, zero_pm)

plot_it(2838)</code></pre>
<p><img src="figure/Top20vZero.Rmd/lg_uniq-1.png" width="672" style="display: block; margin: auto;" /><img src="figure/Top20vZero.Rmd/lg_uniq-2.png" width="672" style="display: block; margin: auto;" /></p>
<ol start="2" style="list-style-type: decimal">
<li>In a second, infrequent class of cases, at least one of the additional 17 data-driven factors in the “Zero” fit turns out to be important. In the following example, the 21st loading, which quite plausibly introduces correlations among ovarian, uterine, and vaginal tissues (see <a href="MASHvFLASHgtex2.html#flash_loadings">here</a>), has a moderate weight. This pushes the estimates for these tissues down just enough to make the effects more significant than effects in other non-brain tissues. As in the previous example, the “Top 20” fit has a much simpler interpretation: in this case, only the “equal effects” loading is important.</li>
</ol>
<pre class="r"><code>plot_it(2821)</code></pre>
<p><img src="figure/Top20vZero.Rmd/extra_dd-1.png" width="672" style="display: block; margin: auto;" /><img src="figure/Top20vZero.Rmd/extra_dd-2.png" width="672" style="display: block; margin: auto;" /></p>
<ol start="3" style="list-style-type: decimal">
<li>Finally, there is a class of cases where posterior means are very similar but one method finds significance where the other does not. What’s happening, I think, is that because it does not include a canonical equal-effects loading, the “Zero” fit generally loads the second data-driven factor as well as the first. In other words, the “Zero” fit makes up for the absence of an equal-effects factor by combining the first two data-driven factors, which increases the degree of uncertainty in the point estimates.</li>
</ol>
<pre class="r"><code>plot_it(14572)</code></pre>
<p><img src="figure/Top20vZero.Rmd/not_interpretable-1.png" width="672" style="display: block; margin: auto;" /><img src="figure/Top20vZero.Rmd/not_interpretable-2.png" width="672" style="display: block; margin: auto;" /></p>
</div>
<div id="significant-for-zero-not-top-20" class="section level2">
<h2>Significant for Zero, not Top 20</h2>
<p>When the “Zero” method picks out significant effects but the “Top 20” method does not, the culprit is most often one or two outlying effects, as in the first class of cases discussed above. Three typical examples follow.</p>
<pre class="r"><code>lg.uniq &lt;- c(3728, 14862, 1735)
for (n in lg.uniq) {
  plot_it(n)
}</code></pre>
<p><img src="figure/Top20vZero.Rmd/zero_not_top20-1.png" width="672" style="display: block; margin: auto;" /><img src="figure/Top20vZero.Rmd/zero_not_top20-2.png" width="672" style="display: block; margin: auto;" /><img src="figure/Top20vZero.Rmd/zero_not_top20-3.png" width="672" style="display: block; margin: auto;" /><img src="figure/Top20vZero.Rmd/zero_not_top20-4.png" width="672" style="display: block; margin: auto;" /><img src="figure/Top20vZero.Rmd/zero_not_top20-5.png" width="672" style="display: block; margin: auto;" /><img src="figure/Top20vZero.Rmd/zero_not_top20-6.png" width="672" style="display: block; margin: auto;" /></p>
</div>
<div id="different-posterior-means" class="section level2">
<h2>Different posterior means</h2>
<p>Each of the following examples illustrates how the additional canonical loadings can create large differences in posterior means (the extra data-driven loadings are unimportant in each case). It is difficult to generalize any further: sometimes the result is a small equal-effects loading (#617); sometimes, the data-driven loadings become unimportant, so that the comparatively smaller effects are aggressively shrunken towards their mean (#10904, #10581). I think that these examples point up one of the principal weaknesses of the “Zero” fit, which is that without the canonical loadings, many of the results become difficult to interpret (and therefore less plausible).</p>
<pre class="r"><code>diff.pms &lt;- c(617, 10904, 10581)
for (n in diff.pms) {
  plot_it(n)
}</code></pre>
<p><img src="figure/Top20vZero.Rmd/diff_pms-1.png" width="672" style="display: block; margin: auto;" /><img src="figure/Top20vZero.Rmd/diff_pms-2.png" width="672" style="display: block; margin: auto;" /><img src="figure/Top20vZero.Rmd/diff_pms-3.png" width="672" style="display: block; margin: auto;" /><img src="figure/Top20vZero.Rmd/diff_pms-4.png" width="672" style="display: block; margin: auto;" /><img src="figure/Top20vZero.Rmd/diff_pms-5.png" width="672" style="display: block; margin: auto;" /><img src="figure/Top20vZero.Rmd/diff_pms-6.png" width="672" style="display: block; margin: auto;" /></p>
</div>
<div id="session-information" class="section level2">
<h2>Session information</h2>
<pre class="r"><code>sessionInfo()</code></pre>
<pre><code>R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] flashr_0.5-12 mashr_0.2-7   ashr_2.2-10  

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.17        pillar_1.2.1        compiler_3.4.3     
 [4] git2r_0.21.0        plyr_1.8.4          workflowr_1.0.1    
 [7] R.methodsS3_1.7.1   R.utils_2.6.0       iterators_1.0.9    
[10] tools_3.4.3         testthat_2.0.0      digest_0.6.15      
[13] tibble_1.4.2        gtable_0.2.0        evaluate_0.10.1    
[16] memoise_1.1.0       lattice_0.20-35     rlang_0.2.0        
[19] Matrix_1.2-12       foreach_1.4.4       commonmark_1.4     
[22] yaml_2.1.17         parallel_3.4.3      ebnm_0.1-12        
[25] mvtnorm_1.0-7       xml2_1.2.0          withr_2.1.1.9000   
[28] stringr_1.3.0       knitr_1.20          roxygen2_6.0.1.9000
[31] devtools_1.13.4     rprojroot_1.3-2     grid_3.4.3         
[34] R6_2.2.2            rmarkdown_1.8       rmeta_3.0          
[37] ggplot2_2.2.1       magrittr_1.5        whisker_0.3-2      
[40] scales_0.5.0        backports_1.1.2     codetools_0.2-15   
[43] htmltools_0.3.6     MASS_7.3-48         assertthat_0.2.0   
[46] softImpute_1.4      colorspace_1.3-2    stringi_1.1.6      
[49] lazyeval_0.2.1      munsell_0.4.3       doParallel_1.0.11  
[52] pscl_1.5.2          truncnorm_1.0-8     SQUAREM_2017.10-1  
[55] R.oo_1.21.0        </code></pre>
</div>

<!-- Adjust MathJax settings so that all math formulae are shown using
TeX fonts only; see
http://docs.mathjax.org/en/latest/configuration.html.  This will make
the presentation more consistent at the cost of the webpage sometimes
taking slightly longer to load. Note that this only works because the
footer is added to webpages before the MathJax javascript. -->
<script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
</script>

<hr>
<p>
  This reproducible <a href="http://rmarkdown.rstudio.com">R Markdown</a>
  analysis was created with
  <a href="https://github.com/jdblischak/workflowr">workflowr</a> 1.0.1
</p>
<hr>


</div>
</div>

</div>

<script>

// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
  $('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
  bootstrapStylePandocTables();
});


</script>

<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>