Last updated: 2018-07-19
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20180714)
The command set.seed(20180714) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: bc2681e
wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: docs/.DS_Store
Ignored: docs/figure/.DS_Store
Unstaged changes:
Modified: analysis/flash_em.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
| File | Version | Author | Date | Message |
|---|---|---|---|---|
| Rmd | bc2681e | Jason Willwerscheid | 2018-07-19 | wflow_publish(“analysis/alt_alg.Rmd”) |
Here I implement the algorithm described in a previous note and compare results with FLASH.
Click “Code” to view the implementation.
# INITIALIZATION FUNCTIONS ------------------------------------------
add_new_altfl <- function(data, fl, seed=1) {
set.seed(seed)
altfl <- list()
altfl$tau <- fl$tau
altfl$Rk <- flashr:::flash_get_R(data, fl)
n <- nrow(fl$tau)
p <- ncol(fl$tau)
altfl$wl <- rep(0.1, n)
altfl$wf <- rep(0.1, p)
altfl$mul <- rnorm(n)
altfl$muf <- rnorm(p)
altfl$s2l <- rep(1, n)
altfl$s2f <- rep(1, p)
altfl$al <- altfl$af <- 1
altfl$pi0l <- altfl$pi0f <- 0.9
altfl$KL <- sum(unlist(fl$KL_l) + unlist(fl$KL_f))
return(altfl)
}
fl_to_altfl <- function(data, fl, k) {
altfl <- list()
altfl$tau <- fl$tau
altfl$Rk <- flashr:::flash_get_R(data, fl)
altfl$al <- fl$gl[[k]]$a
altfl$pi0l <- fl$gl[[k]]$pi0
altfl$af <- fl$gf[[k]]$a
altfl$pi0f <- fl$gf[[k]]$pi0
s2 = 1/(fl$EF2[, k] %*% t(fl$tau))
s = sqrt(s2)
Rk = flashr:::flash_get_Rk(data, fl, k)
x = fl$EF[, k] %*% t(Rk * fl$tau) * s2
w = 1 - fl$gl[[k]]$pi0
a = fl$gl[[k]]$a
altfl$wl <- ebnm:::wpost_normal(x, s, w, a)
altfl$mul <- ebnm:::pmean_cond_normal(x, s, a)
altfl$s2l <- ebnm:::pvar_cond_normal(s, a)
s2 = 1/(fl$EL2[, k] %*% fl$tau)
s = sqrt(s2)
Rk = flashr:::flash_get_Rk(data, fl, k)
x = fl$EL[, k] %*% (Rk * fl$tau) * s2
w = 1 - fl$gf[[k]]$pi0
a = fl$gf[[k]]$a
altfl$wf <- ebnm:::wpost_normal(x, s, w, a)
altfl$muf <- ebnm:::pmean_cond_normal(x, s, a)
altfl$s2f <- ebnm:::pvar_cond_normal(s, a)
altfl$KL <- sum(unlist(fl$KL_l)[-k] + unlist(fl$KL_f)[-k])
return(altfl)
}
altfl_to_fl <- function(altfl, fl, k) {
fl$EL[, k] <- compute_EX(altfl$wl, altfl$mul)
fl$EL2[, k] <- compute_EX2(altfl$wl, altfl$mul, altfl$s2l)
fl$EF[, k] <- compute_EX(altfl$wf, altfl$muf)
fl$EF2[, k] <- compute_EX2(altfl$wf, altfl$muf, altfl$s2f)
fl$gl[[k]] <- list(pi0 = altfl$pi0l, a = altfl$al)
fl$gf[[k]] <- list(pi0 = altfl$pi0f, a = altfl$af)
fl$ebnm_fn_l <- fl$ebnm_fn_f <- "alt"
fl$ebnm_param_l <- fl$ebnm_param_f <- list()
fl$tau <- altfl$tau
return(fl)
}
# OBJECTIVE FUNCTION ------------------------------------------------
compute_obj <- function(altfl) {
with(altfl, {
EL <- compute_EX(wl, mul)
EL2 <- compute_EX2(wl, mul, s2l)
EF <- compute_EX(wf, muf)
EF2 <- compute_EX2(wf, muf, s2f)
obj <- rep(0, 8)
obj[1] <- sum(0.5 * log(tau / (2 * pi)))
obj[2] <- sum(-0.5 * (tau * (Rk^2 - 2 * Rk * outer(EL, EF) + outer(EL2, EF2))))
tmp <- (1 - wl) * (log(pi0l) - log(1 - wl))
obj[3] <- sum(tmp[!is.nan(tmp)])
tmp <- wl * (log(1 - pi0l) - log(wl))
obj[4] <- sum(tmp[!is.nan(tmp)])
obj[5] <- sum(0.5 * wl * (log(al) + log(s2l) + 1 - al * (mul^2 + s2l)))
tmp <- (1 - wf) * (log(pi0f) - log(1 - wf))
obj[6] <- sum(tmp[!is.nan(tmp)])
tmp <- wf * (log(1 - pi0f) - log(wf))
obj[7] <- sum(tmp[!is.nan(tmp)])
obj[8] <- sum(0.5 * wf * (log(af) + log(s2f) + 1 - af * (muf^2 + s2f)))
return(sum(obj) + KL)
})
}
compute_EX <- function(w, mu) {
return(as.vector(w * mu))
}
compute_EX2 <- function(w, mu, sigma2) {
return(as.vector(w * (mu^2 + sigma2)))
}
# UPDATE FUNCTIONS --------------------------------------------------
update_a <- function(w, EX2) {
return(sum(w) / sum(EX2))
}
update_pi0 <- function(w) {
return(sum(1 - w) / length(w))
}
update_mul <- function(a, tau, Rk, EF, EF2) {
n <- nrow(tau)
p <- ncol(tau)
numer <- rowSums(tau * Rk * matrix(EF, nrow=n, ncol=p, byrow=TRUE))
denom <- a + rowSums(tau * matrix(EF2, nrow=n, ncol=p, byrow=TRUE))
return(numer / denom)
}
update_muf <- function(a, tau, Rk, EL, EL2) {
n <- nrow(tau)
p <- ncol(tau)
numer <- colSums(tau * Rk * matrix(EL, nrow=n, ncol=p, byrow=FALSE))
denom <- a + colSums(tau * matrix(EL2, nrow=n, ncol=p, byrow=FALSE))
return(numer / denom)
}
update_s2l <- function(a, tau, EF2) {
n <- nrow(tau)
p <- ncol(tau)
return(1 / (a + rowSums(tau * matrix(EF2, nrow=n, ncol=p, byrow=TRUE))))
}
update_s2f <- function(a, tau, EL2) {
n <- nrow(tau)
p <- ncol(tau)
return(1 / (a + colSums(tau * matrix(EL2, nrow=n, ncol=p, byrow=FALSE))))
}
update_wl <- function(a, pi0, mu, sigma2, tau, Rk, EF, EF2) {
C1 <- log(1 - pi0) - log(pi0)
C2 <- 0.5 * (log(a) + log(sigma2) - a * (mu^2 + sigma2) + 1)
C3 <- rowSums(tau * (Rk * outer(mu, EF) - 0.5 * outer(mu^2 + sigma2, EF2)))
C <- C1 + C2 + C3
return(1 / (1 + exp(-C)))
}
update_wf <- function(a, pi0, mu, sigma2, tau, Rk, EL, EL2) {
C1 <- log(1 - pi0) - log(pi0)
C2 <- 0.5 * (log(a) + log(sigma2) - a * (mu^2 + sigma2) + 1)
C3 <- colSums(tau * (Rk * outer(EL, mu) - 0.5 * outer(EL2, mu^2 + sigma2)))
C <- C1 + C2 + C3
return(1 / (1 + exp(-C)))
}
# ALGORITHM ---------------------------------------------------------
update_tau <- function(altfl) {
within(altfl, {
EL <- compute_EX(wl, mul)
EL2 <- compute_EX2(wl, mul, s2l)
EF <- compute_EX(wf, muf)
EF2 <- compute_EX2(wf, muf, s2f)
R2 <- Rk^2 - 2 * Rk * outer(EL, EF) + outer(EL2, EF2)
tau <- matrix(1 / colMeans(R2), nrow=nrow(tau), ncol=ncol(tau),
byrow=TRUE)
})
}
update_loadings_post <- function(altfl) {
within(altfl, {
EF <- compute_EX(wf, muf)
EF2 <- compute_EX2(wf, muf, s2f)
mul <- update_mul(al, tau, Rk, EF, EF2)
s2l <- update_s2l(al, tau, EF2)
wl <- update_wl(al, pi0l, mul, s2l, tau, Rk, EF, EF2)
})
}
update_loadings_prior <- function(altfl) {
within(altfl, {
EL2 <- compute_EX2(wl, mul, s2l)
al <- update_a(wl, EL2)
pi0l <- update_pi0(wl)
})
}
update_factor_post <- function(altfl) {
within(altfl, {
EL <- compute_EX(wl, mul)
EL2 <- compute_EX2(wl, mul, s2l)
muf <- update_muf(af, tau, Rk, EL, EL2)
s2f <- update_s2f(af, tau, EL2)
wf <- update_wf(af, pi0f, muf, s2f, tau, Rk, EL, EL2)
})
}
update_factor_prior <- function(altfl) {
within(altfl, {
EF2 <- compute_EX2(wf, muf, s2f)
af <- update_a(wf, EF2)
pi0f <- update_pi0(wf)
})
}
do_one_update <- function(altfl) {
obj <- rep(0, 5)
altfl <- update_tau(altfl)
obj[1] <- compute_obj(altfl)
altfl <- update_loadings_post(altfl)
obj[2] <- compute_obj(altfl)
altfl <- update_loadings_prior(altfl)
obj[3] <- compute_obj(altfl)
altfl <- update_factor_post(altfl)
obj[4] <- compute_obj(altfl)
altfl <- update_factor_prior(altfl)
obj[5] <- compute_obj(altfl)
return(list(altfl = altfl, obj = obj))
}
optimize_alt_fl <- function(altfl, tol = .01, verbose = FALSE) {
obj <- compute_obj(altfl)
diff <- Inf
while (diff > tol) {
tmp <- do_one_update(altfl)
new_obj <- tmp$obj[length(tmp$obj)]
diff <- new_obj - obj
obj <- new_obj
if (verbose) {
message(paste("Objective:", obj))
}
altfl <- tmp$altfl
}
return(altfl)
}
Using the same dataset as in previous investigations, I fit a FLASH object with four factors (recall that it’s the fourth factor that has been causing problems during loadings updates):
load("./data/before_bad.Rdata")
# devtools::install_github("stephenslab/flashr")
devtools::load_all("/Users/willwerscheid/GitHub/flashr")
Loading flashr
fl <- flash_add_greedy(data, Kmax=4, verbose=FALSE)
fitting factor/loading 1
fitting factor/loading 2
fitting factor/loading 3
fitting factor/loading 4
The objective as computed by FLASH is:
flash_get_objective(data, fl)
[1] -1297148
I now convert the fourth factor to an “altfl” object. The objective as computed by the alternate method is:
altfl <- fl_to_altfl(data, fl, 4)
compute_obj(altfl)
[1] -1288461
Next, I optimize the altfl object:
altfl <- optimize_alt_fl(altfl, verbose=TRUE)
Objective: -1267406.2685275
Objective: -1260756.13822147
Objective: -1257939.29612236
Objective: -1257300.63730127
Objective: -1257110.55550233
Objective: -1257016.7314057
Objective: -1256963.52277046
Objective: -1256932.3695305
Objective: -1256914.13309796
Objective: -1256902.74309918
Objective: -1256895.1068788
Objective: -1256889.8003563
Objective: -1256886.07583612
Objective: -1256883.4080515
Objective: -1256881.44636624
Objective: -1256879.9749153
Objective: -1256878.85630259
Objective: -1256877.99813191
Objective: -1256877.33547644
Objective: -1256876.82128467
Objective: -1256876.42074587
Objective: -1256876.10774166
Objective: -1256875.8624804
Objective: -1256875.66985319
Objective: -1256875.5182584
Objective: -1256875.39874455
Objective: -1256875.3043765
Objective: -1256875.22976218
Objective: -1256875.17069613
Objective: -1256875.12388932
Objective: -1256875.08676316
Objective: -1256875.05729166
Objective: -1256875.03387997
Objective: -1256875.0152705
Objective: -1256875.00047012
Objective: -1256874.98869349
Objective: -1256874.9793189
Finally, I put the altfl object back into the fourth factor of the flash object.
fl2 <- altfl_to_fl(altfl, fl, 4)
The fits are very different. For priors on both factors and loadings, the altfl fit favors less sparsity (smaller spikes, i.e., smaller pi0) and more shrinkage (narrower slabs, i.e., greater a).
list(loadings = fl$gl[[4]], alt_loadings = fl2$gl[[4]])
$loadings
$loadings$pi0
[1] 0.7252435
$loadings$a
[1] 0.05228744
$alt_loadings
$alt_loadings$pi0
[1] 0.6079064
$alt_loadings$a
[1] 0.1251973
list(factors = fl$gf[[4]], alt_factors = fl2$gf[[4]])
$factors
$factors$pi0
[1] 0.3667051
$factors$a
[1] 23.14738
$alt_factors
$alt_factors$pi0
[1] 0.1302886
$alt_factors$a
[1] 36.28001
A scatterplot comparing the fitted fourth factor/loading appears as follows:
fitted <- flash_get_fitted_values(fl)
fitted2 <- flash_get_fitted_values(fl2)
minval <- min(c(fitted, fitted2))
maxval <- max(c(fitted, fitted2))
plot(fitted, fitted2, pch='.',
xlab="FLASH fit", ylab="Alternate fit",
xlim=c(minval, maxval), ylim=c(minval, maxval),
main="Fitted values")

To see what’s going on, I fit the estimated loadings against the estimated prior on the loadings. For the FLASH fit:
plot(density(fl$EL[, 4]), xlim=c(-15, 15), ylim=c(0, 0.1),
main="FLASH loadings")
grid <- seq(-15, 15, by=.05)
y <- (1 - fl$gl[[4]]$pi0) * dnorm(grid, 0, 1/sqrt(fl$gl[[4]]$a))
lines(grid, y, lty=2)
legend("topright", legend = c("fitted", "prior"), lty = c(1, 2))

For the alternate approach:
plot(density(fl2$EL[, 4]), xlim=c(-15, 15), ylim=c(0, 0.1),
main="Alternate approach")
grid <- seq(-15, 15, by=.05)
y <- (1 - fl2$gl[[4]]$pi0) * dnorm(grid, 0, 1/sqrt(fl2$gl[[4]]$a))
lines(grid, y, lty=2)
legend("topright", legend = c("fitted", "prior"), lty = c(1, 2))

It seems almost as if FLASH were fitting the model \[ l_i \sim^{iid} g_l + e, \] where \(e\) is some error term, rather than the model \[ l_i \sim^{iid} g_l. \] This might explain why the prior gets pulled up more by the fitted values in the latter approach.
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] flashr_0.5-12
loaded via a namespace (and not attached):
[1] Rcpp_0.12.17 pillar_1.2.1 plyr_1.8.4
[4] compiler_3.4.3 git2r_0.21.0 workflowr_1.0.1
[7] R.methodsS3_1.7.1 R.utils_2.6.0 iterators_1.0.9
[10] tools_3.4.3 testthat_2.0.0 digest_0.6.15
[13] tibble_1.4.2 evaluate_0.10.1 memoise_1.1.0
[16] gtable_0.2.0 lattice_0.20-35 rlang_0.2.0
[19] Matrix_1.2-12 foreach_1.4.4 commonmark_1.4
[22] yaml_2.1.17 parallel_3.4.3 ebnm_0.1-12
[25] withr_2.1.1.9000 stringr_1.3.0 roxygen2_6.0.1.9000
[28] xml2_1.2.0 knitr_1.20 devtools_1.13.4
[31] rprojroot_1.3-2 grid_3.4.3 R6_2.2.2
[34] rmarkdown_1.8 ggplot2_2.2.1 ashr_2.2-10
[37] magrittr_1.5 whisker_0.3-2 backports_1.1.2
[40] scales_0.5.0 codetools_0.2-15 htmltools_0.3.6
[43] MASS_7.3-48 assertthat_0.2.0 softImpute_1.4
[46] colorspace_1.3-2 stringi_1.1.6 lazyeval_0.2.1
[49] munsell_0.4.3 doParallel_1.0.11 pscl_1.5.2
[52] truncnorm_1.0-8 SQUAREM_2017.10-1 R.oo_1.21.0
This reproducible R Markdown analysis was created with workflowr 1.0.1