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The exercises in this document are taken from the February 21, 2024 draft of Ravi Vakil’s “The
Rising Sea”. You can access the draft here.

Preliminary Results

Results in Arbitrary Categories

Lemma 0.1. If f : A→ B, the inclusion map ι : ker f → A is monic.

Proof. If g1, g2 : C → ker f are such that ι ◦ g1 = ι ◦ g2, then the following diagram commutes:

C

ker f A

D

ι

0
g◦f

∃!

ι◦g1

ι◦g2

We immediately notice both g1 and g2 satisfy the unique arrow because ι ◦ g2 = ι ◦ g1. By uniqueness,
g1 = g2.

Lemma 0.2. If f : A→ B, the projection π : B → cok f is epic.

Proof. Suppose g1, g2 : cok f → C are such that g1◦π = g2◦π. Then the following diagram commutes:

C

cok f

A B

∃!

0

f

π
g1◦π

g2◦π

We notice immediately that g1 and g2 satisfy the unique arrow because g2◦π = g1◦π, so by uniqueness
g1 = g2.

Lemma 0.3. If h = g ◦ f and h is epic, then g is epic.

Proof. Suppose ϕ ◦ g = φ ◦ g. Then it’s also true that

ϕ ◦ g ◦ f = φ ◦ g ◦ f

which by definition implies
ϕ ◦ h = φ ◦ h

Because h is epic, ϕ = φ as desired.
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Lemma 0.4. If h = g ◦ f and h is monic, then f is monic.

Proof. If f ◦ ϕ = f ◦ φ, then
g ◦ f ◦ ϕ = g ◦ f ◦ φ

which means by definition
h ◦ ϕ = h ◦ φ

Because h is monic, then ϕ = φ as desired.

Lemma 0.5. If A
f−→ B

g
↪−→ C, then ker(g ◦ f) = ker f .

Proof. If ker f
ι
↪−→ A is the inclusion, it follows that the following diagram commutes:

C

ker f Aι

0
g◦f

If there is a morphism h : D → A such that g ◦ f ◦ h = 0, then we notice

g ◦ f ◦ h = 0 = g ◦ 0

which implies, by g being monic, that f ◦ h = 0. Then we obtain a unique induced morphism from
the following diagram:

B

ker f A

D

ι

0
f

∃!
h

Thus, in particular, the following diagram commutes as well:

C

ker f A

D

ι

0
g◦f

∃!
h

Corollary 0.5.1. If A
f−→ B

g
↪−→ C, then coim(g ◦ f) = coim f .

Proof. ker(g ◦ f) = ker f , thus

coim(g ◦ f) = cok ker(g ◦ f) = cok ker f = coim f

Lemma 0.6. If A
f
↠ B

g−→ C, then cok(g ◦ f) = cok g.

Proof. If C
π
↠ cok g is the projection,
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cok g

A C
g◦f

0 π

commutes because π ◦ g = 0. If we have some p : C → D such that p ◦ g ◦ f = 0, we notice

p ◦ g ◦ f = 0 = 0 ◦ f

which implies, by f being epic, that p ◦ g = 0. Thus the following commutes:

D

cok g

B C

∃!

g

0 π

p

In particular, we have the following unique morphism from the above diagram such that the following
diagram commutes:

D

cok g

A C

∃!

g◦f

0 π

p

Corollary 0.6.1. If A
f
↠ B

g−→ C, then im(g ◦ f) = im g.

Proof. cok(g ◦ f) = cok f , thus

im(g ◦ f) = ker cok(g ◦ f) = ker cok g = im g

Lemma 0.7. If ker g
φ
↪−→ A

f
↪−→ B

g−→ C such that f ◦ φ is the inclusion
ι : ker g ↪→ B, then ker(g ◦ f) = ker g.

Proof. We have the following diagram commutes:

C

ker g A
φ

0
g◦f

because
g ◦ f ◦ φ = g ◦ ι = 0

Now if there exists some morphism h : D → A such that g ◦ f ◦ h = 0, then
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C

ker g B

D

ι

0
g

∃!
f◦h

If ϕ is the induced morphism, then

f ◦ φ ◦ ϕ = ι ◦ ϕ = f ◦ h

Because f is monic, we get that φ ◦ ϕ = h so that the following diagram commutes:

C

ker g A

D

φ

0
g◦f

ϕ

h

Lemma 0.8. If A
f−→ B

g−→ C, then there is a canonical monomorphism ker f ↪→ ker(g ◦ f).

Proof. The canonical morphism is the one induced in the following commutative diagram:

C

ker(g ◦ f) A

ker f

i

0
g◦f

j

∃!

where g ◦ f ◦ j = g ◦ 0 = 0, and the induced morphism is monic by Lemma 0.4.

Lemma 0.9. If A
f−→ B

g−→ C, then there is a canonical epimorphism cok(g ◦ f) ↠ cok g.

Proof. The canonical morphism is the one induced in the following commutative diagram:

cok g

cok(g ◦ f)

A C

∃!

g◦f

0 p q

where q ◦ g ◦ f = 0 ◦ f = 0, and the induced morphism is epic by Lemma 0.3.

Lemma 0.10. If If A
f−→ B

g−→ C, then there is a canonical monomorphism im(g ◦ f) ↪→ im g

Proof. Using the same notation as was used in the Lemmas referenced, by Lemma 0.9 we get a
morphism q′ : cok(g ◦ f) ↠ cok g such that q = q′ ◦ p. Then by Lemma 0.8, we get the desired
morphism i′ : ker p ↪→ ker q such that i′ = i ◦ q′.
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Results in Abelian Categories

Lemma 0.11. If ι : A→ B, then ι is monic if and only if im ι = A.

Proof. The forward direction is by definition of an Abelian Category. For the reverse direction, suppose
im ι = A. Then ι is a kernel of its cokernel, and by Lemma 0.1 we obtain that ι is monic.

Lemma 0.12. If π : A→ B, then π is epic if and only if coimπ = B.

Proof. The forward direction is by definition of an Abelian Category. For the reverse direction, suppose
coimπ = B. Then π is a cokernel of its kernel, and by Lemma 0.2 we obtain that π is epic.

Lemma 0.13. If a morphism f : A→ B factorizes as both ι ◦ q and ι′ ◦ q′ where ι′ is monic and ι ◦ q
is the canonical factorization of f through im f , the following diagram commutes:

A kerπ

kerπ′ B

q

q′ ι∃!

ι′

[1]

Proof. We will let π : B → cok ι and π′ : B → cok ι′ be the projections. Therefore

π′ ◦ f = π′ ◦ ι′ ◦ q′ = 0 ◦ q′ = 0

Because also cok ι = cok f , we get the following commutative diagram:

cok ι′

cok ι

A B

∃!φ

0

f

π

π′

Therefore
π′ ◦ ι = φ ◦ π ◦ ι = φ ◦ 0 = 0

We use the fact that π′ ◦ ι = 0 to get the following commutative diagram:

cok ι′

kerπ′ B

kerπ

0

ι′

π′

∃!χ

ι

Therefore
ι′ ◦ q′ = ι ◦ q = ι′ ◦ χ ◦ q

We use the fact that ι′ is monic to obtain

q′ = χ ◦ q

which shows the desired diagram does indeed commute.

Theorem 0.14. For every morphism f : A→ B, the following diagram commutes:
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cok f

imf B

A

ι

0
π

∃!q
f

[1]

Proof. Existence of the morphism q : A → im f is simply by definition of im f . The main result is
that q is epic. To show this, suppose there are two morphism g, h : im f → C such that g ◦ q = h ◦ q.
Then

g ◦ q − h ◦ q = 0⇒ (g − h) ◦ q = 0

We will focus our attention on ker g − h, which is the equalizer of g and h, from which we obtain the
following commutative diagram:

C

ker g − h im f

A

0

j

g−h

∃!p

q

This implies that
f = ι ◦ q = ι ◦ j ◦ p

We notice that ι ◦ j is monic, so by the statement above, we obtain from Lemma 0.13 the following
commutative diagram:

A im f

ker g − h B

q

p ιχ

ι◦j

Therefore
ι = ι ◦ j ◦ χ

Using the fact ι is monic we obtain
idim f = j ◦ χ

Using this, we also obtain
j ◦ χ ◦ j = idim f ◦ j = j

Now using the fact j is monic, we get
χ ◦ j = idker g−h

Thus j is an isomorphism and is in particular epic. Then

(g − h) ◦ j = 0 = 0 ◦ j

implies that, by j being epic, that g − h = 0, or equivalently g = h. Thus q is indeed epic.

Theorem 0.15 (The First Isomorphism Theorem or The 1IT). If f : A → B is a morphism, then
im f = coim f .

6



Proof. We have the canonical epimorphism q : A→ im f . Because f = ι ◦ q and ι is monic, we get by
Corollary 0.5.1 that

coim f = coim(ι ◦ q) = coim q

From Theorem 0.7 we obtain from that q is epic. By definition, in any abelian category the coimage
of an epimorphism is the target, so in the case of q : A→ im f

coim q = im f

Hence
coim f = im f

Theorem 0.16 (The Third Isomorphism Theorem or the 3IT). If A ↪→ B ↪→ C, then C/B =
(C/A)/(B/A).

Proof. To prove this, let j : A ↪→ B and i : B ↪→ C as well as q = cok(i ◦ j) and p = cok i . We’re
going to show that (C/A)/(B/A) satisfies the universal property of C/B. First, we observe there is a
canonical morphism ι given below:

cok(i ◦ j)

cok j

A B C

∃!

0

j

p

i

q

We will first show that ι is monic. We will do this by first proving ker(q ◦ i) = A. Suppose that there
is some h : D → B such that q ◦ i ◦ h = 0. Then we get the following commutative diagram:

cok(i ◦ j)

ker q C

D

i◦j

0 q

i◦h
∃!h′

Then
i ◦ j ◦ h′ = i ◦ h

implies, by i being monic, that j ◦ h′ = h. Thus h′ is the unique morphism satisfying the diagram
below, where ker q = A essentially by definition:

cok(i ◦ j)

A B

D

j

0 q◦i

h

∃!
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This demonstrates that indeed A = ker(q ◦ i). By Corollary 0.6.1

im ι = im(ι ◦ p)

which by commutativity is equal to im(q ◦ i). By the 1IT 0.15, im(q ◦ i) = coim(q ◦ i) = B/ ker(q ◦ i).
By our work above, B/ ker(q ◦ i) = B/A. Then we obtain that

im ι = B/A

By Lemma 0.11, this shows that ι is indeed monic. We claim that cok ι = cok i, where we let
τ : C ↠ C/B be the canonical projection. Suppose that h ◦ ι = 0 for some morphism h : C/A → D.
Therefore

0 = 0 ◦ p = h ◦ ι ◦ p = h ◦ q ◦ i

Therefore h ◦ q factors uniquely through cok i = C/B as shown below:

C/B D

B C C/A

∃!h′

i

0 τ

q

h

However, we can also show that τ factors through q, because τ ◦ i ◦ j = 0 ◦ j = 0, so we also have the
following commutative diagram:

C/A C/B

A C

∃!τ ′

i◦j

0 q τ

Plugging in our result that τ = τ ′ ◦ q to the previous result, we obtain that

h ◦ q = h′ ◦ τ = h′ ◦ τ ′ ◦ q

Now because q is an epimorphism, we obtain that h = h′ ◦τ ′. The final thing to show is that τ ′ ◦ ι = 0.
This is because

τ ′ ◦ ι ◦ p = τ ′ ◦ q ◦ i = τ ◦ i = 0 = 0 ◦ p

and p is epic implies that indeed τ ′ ◦ ι = 0. We have shown that h factors uniquely through τ ′ in the
below commutative diagram

D

C/B

B/A C/A

∃!h′

ι

0
τ ′

h

so indeed C/B = cok ι = (C/A)/(B/A) because C/B satisfies the universal property of cok ι.

Lemma 0.17. If A
f
−↠ B

g−→ C and ker(g ◦ f) = ker f , then g is monic.
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Proof. We obtain by taking the cokernel of each side that

coim(g ◦ f) = coim f

By the 1IT 0.15, we obtain that
im(g ◦ f) = im f

Thus we have the following commutative diagram:

cok(g ◦ f)

A B C B = im(g ◦ f)

0

f g g

0

By Lemma 0.1, g being a kernel is monic.

Lemma 0.18. If F : A → B is a right exact covariant functor and f : A → B is epic, then Ff is
epic.

Proof. We have the exact sequence ker f
i−→ A

f−→ B → 0. By right exactness of F , then the following
is also exact:

F ker f
Fi−→ FA

Ff−−→ FB → 0

In particular, imFf = FB is the target of Ff , so by Lemma 0.12 Ff is epic.

Lemma 0.19. If F : A → B is a left exact covariant functor and f : A → B is monic, then Ff is
monic.

Proof. We have the exact sequence 0→ A
f−→ B

p−→ cok f . By left exactness of F , the following is also
exact:

0→ FA
Ff−−→ FB

Fp−−→ F cok f

In particular, kerFf = 0 so Ff is monic.

Lemma 0.20. If F : A → B is a right exact covariant functor and f : A → B, then cokFf =
F cok f .

Proof. We have A
f−→ B

p−→ cok f → 0 is an exact sequence in A . Then by right exactness,

FA
Ff−−→ FB

Fp−−→ F cok f → 0

is exact. Then we get the following commutative diagram:

F cok f

cokFf

FA FB

∃!

Ff

0
π

Fp
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where Fp is epic by Lemma 0.18. Thus by exactness

kerFp = imFf = kerπ

Therefore

kerπ = kerFp⇒ coimπ = coimFg

Because both π and Fg are epic, we also have coimπ = π and coimFp = Fp, which proves π = Fp.

Corollary 0.20.1. If F : A → B is a right exact contravariant functor and f : A → B, then
cokFf = F ker f .

Proof. If F : A → B is contravariant, then F : A op → B is an equivalent formulation. Because
limits in A op are colimits in A and vice versa,

ker f = cok(fop)

implies that by Lemma 0.20

F ker f = F cok(fop) = cokFfop = cokFf

Lemma 0.21. If F : A → B is a left exact covariant functor and f : A→ B, then kerFf = F ker f .

Proof. We have 0→ ker f
i−→ A

f−→ B is exact. By left exactness,

0→ F ker f
Fi−→ FA

Ff−−→ FB

is exact. Therefore we have the following commutative diagram:

FB

kerFf FA

F ker f

ι

0
Ff

∃!

Fi

where Fi is monic by Lemma 0.19. By exactness, imFi = kerFf , and because Fi is monic, then
imFi = F ker f by Lemma 0.11, which proves kerFf = F ker f .

Corollary 0.21.1. If F : A → B is a left exact contravariant functor and f : A → B, then
kerFf = F cok f .

Proof. If F : A → B is contravariant, then F : A op → B is an equivalent formulation. Because
limits in A op are colimits in A and vice versa,

cok f = ker(fop)

implies that by Lemma 0.21

F cok f = F ker(fop) = kerFfop = kerFf
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Lemma 0.22. If F : A → B is an exact covariant functor and f : A → B, then imFf = F im f
and coimFf = F coim f .

Proof. By Lemmas 0.21 and 0.20, we have

F im f = F ker cok f = kerF cok f = ker cokFf = imFf

as well as

F coim f = F cok ker f = cokF ker f = cok kerFf = coimFf

Lemma 0.23. If F : A → B is an exact contravariant functor and f : A → B, then imFf =
F coim f and coimFf = F im f .

Proof. By Corollaries 0.21.1 and 0.20.1,

F coim f = F cok ker f = kerF ker f = ker cokFf = imFf

and

F im f = F ker cok f = cokF cok f = cok kerFf = coimFf

Miscellaneous Results

Lemma 0.24. If D : N→ Top is a diagram and D′ : N→ Top is another diagram and there exists
some embedding σ ∈ Nat(D′, D), then colim(D/D′) ∼= colim(D)/ colim(D′).

Proof. Let D : N → Top be a diagram such that D(i) = Xi for every i ∈ N with embeddings
ιi : Xi ↪→ Xi+1, and D′ : N → Top is another diagram such that D(i) = Ai for every i ∈ N with
embeddings ji : Ai ↪→ Ai+1, and let σ ∈ Nat(D′, D) be an embedding of diagrams, i.e. σi : Ai ↪→ Xi

is a natural embedding. For each i ∈ N, let pi : Xi ↠ Xi/Ai be the quotient map taking imσi to
a point. For ease of notation, define X := colimXi and A := colimAi. We observe the following
commutative diagram, and in particular, the induced embedding κ : A ↪→ X:

X

Xi A Xi+1

Ai Ai+1

ιi

fi
∃!

fi+1

ji

gi

σi

gi+1

σi+1

which commutes because σ was natural by assumption. Therefore we let q : X ↠ X/A be the quotient
that maps all of imκ to a point. We can create another functor F : N→ Top that has objects Xi/Ai
and the morphism τi : Xi/Ai → Xi+1/Ai+1 is defined by the below universal property of Xi/Ai :

Xi Xi+1 Xi+1/Ai+1

Xi/Ai

ιi

pi

pi+1

∃!τi
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Now have our two objects of interest in the problem: X/A and colim(Xi/Ai), defined by the
universal properties respectively below:

X •

X/A

q

∼

∃!

•

colim(Xi/Ai)

Xi/Ai Xi+1/Ai+1

∃!

hi

τi

hi+1

Now we will begin constructing maps via universal properties, and eventually show that the two
constructed maps are isomorphisms – i.e. homeomorphisms. We first notice that

q ◦ fi ◦ σi = q ◦ κ ◦ gi = c∗ ◦ g = c∗

where for the rest of the homework we let c∗ be a constant map. Thus q ◦ fi is constant on σi, hence
we obtain a morphism φi : Xi/Ai → X/A for each i ∈ N given as follows:

Xi X X/A

Xi/Ai

fi

pi

q

∃!φi

Now we observe one more thing:

φi+1 ◦ τi ◦ pi
= φi+1 ◦ pi+1 ◦ ιi

= q ◦ fi+1 ◦ ιi
= q ◦ fi

= φi ◦ pi
which implies, because each pi is an epimorphism – i.e. surjective – that φi = φi+1 ◦ τi+1. Therefore
we get the following induced morphism Φ : colim(Xi/Ai)→ X/A below:

X/A

colim(Xi/Ai)

Xi/Ai Xi+1/Ai+1

∃!Φ

hi

φi

τi

hi+1

φi+1

We eventually will show Φ is an isomorphism. For now though, we turn our attention to the following
property:

hi+1 ◦ qi+1 ◦ ιi
= hi+1 ◦ τi ◦ pi

= hi ◦ pi
by construction of τi. Thus we get another morphism ϕ : X → colim(Xi/Ai) given below:
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colim(Xi/Ai)

Xi X Xi+1

Xi Xi+1

τi

hi

∃!ϕ

hi+1

ji

fi
pi

fi+1

pi+1

We claim that ϕ ◦ κ = c∗. To show this, we notice that for a ∈ A, there exists some a′ ∈ Ai for some
i such that a = gi(a

′), so if we can show that for arbitrary gi it is constant, we are done. We observe

ϕ ◦ κ ◦ gi
= ϕ ◦ fi ◦ σi
= hi ◦ pi ◦ σi

= hi ◦ c∗
= c∗

as desired. Therefore ϕ descends downstairs to a map Ψ : X/A→ colim(Xi/Ai) shown below:

X colim(Xi/Ai)

X/A

ϕ

q ∃!Ψ

We now claim that Φ ◦ Ψ = 1X/A and Ψ ◦ Φ = 1colim(Xi/Ai). We will use uniqueness of the maps
induced by universal properties to prove both. We observe first that

Φ ◦Ψ ◦ q = Φ ◦ ϕ

Now, we realize that every element of x ∈ X has the property that there exists some i ∈ N such that
there exists some x′ ∈ Xi where x = fi(x

′). Therefore

Φ ◦ ϕ ◦ fi
= Φ ◦ hi ◦ pi

= φi ◦ pi
= q ◦ fi

shows Φ ◦ Ψ ◦ q acts the same as q on every im fi, hence indeed Φ ◦ Ψ ◦ q = q. Then we observe the
following commutative diagram, where the unique arrow is satisfied by both Φ◦Ψ and 1X/A, proving,
by uniqueness, the two are equal:

X X/A

X/A

q

q ∃!

For the second claim, we observe

Ψ ◦ Φ ◦ hi
= Ψ ◦ φi
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and

Ψ ◦ φi ◦ pi
= Ψ ◦ q ◦ fi

= ϕ ◦ fi
= hi ◦ pi

The second equation shows, because pi is an epimorphism, that hi = Ψ ◦ φi, so by the first equation
we get Ψ ◦Φ ◦ hi = hi, thus both Ψ ◦Φ and 1colim(Xi/Ai) satisfy the unique arrow from the universal
property below:

colim(Xi/Ai)

colim(Xi/Ai)

Xi/Ai Xi+1/Ai+1

∃!

hi

hi

τi

hi+1

hi+1

This proves that Φ (or equivalently Ψ) are homeomorphisms, so the claim that colim(Xi/Ai) ∼=
colim(Xi)/ colim(Ai) is true.

Chapter 1

Section 1.1

There are no exercises in this section.

Section 1.2

Exercise 1.2.A

Proof. (a) If we have a groupoid C with one object X, we could define the group of C to be Aut(X).
On the other hand if we’re given a group G by the standard definition, we could define a category
with one object, namely the underlying set of G, where the morphisms are defined by the action
of the elements of G, and where composition of morphisms is given by multiplication of the
elements.

(b) Consider the following category:

A B

This is not a group because it has two objects, or by interpreting the morphisms as the elements
of the set, we cannot compose the morphism A→ B with itself, so our operation is not always
defined.

Exercise 1.2.B

Proof. Since the subcategory of C consisting of the single object A and the morphisms Aut(A) all
have inverses, we have a monoid that is also a groupoid, a.k.a. a group.

For Example 1.2.2, given any set S, Aut(S) is the set of all bijections from S to itself, a.k.a. the
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permutation group of S.

For Example 1.2.3, given any k vector space V , Aut(V ) is the set of all bijective linear transfor-
mations from V to itself. For V with dimension n, these can be interpreted as the group of n × n
matrices with entries in k.

Suppose A,B ∈ C are isomorphic, and let φ ∈ Mor(A,B) be an isomorphism. For any f ∈ Aut(A),
we can define a map ϕ : Aut(A)→ Aut(B) that acts by

f 7→ φ ◦ f ◦ φ−1

To demonstrate ϕ is an isomorphism, we need to show it has an inverse. We do this by letting
ϕ̃ : Aut(B)→ Aut(A) that acts by

g 7→ φ−1 ◦ g ◦ φ
Then

ϕ ◦ ϕ̃(g) = ϕ(φ−1 ◦ g ◦ φ) = φ ◦ (φ−1 ◦ g ◦ φ) ◦ φ−1 = idB ◦ g ◦ idB = g

and

ϕ̃ ◦ ϕ(f) = ϕ̃(φ ◦ f ◦ φ−1) = φ−1 ◦ (φ ◦ f ◦ φ−1) ◦ φ = idA ◦ f ◦ idA = f

so indeed ϕ̃ = ϕ−1. Also

ϕ(f ◦ g) = φ ◦ f ◦ g ◦ φ−1 = φ ◦ f ◦ φ−1 ◦ φ ◦ g ◦ φ−1 = ϕ(f) ◦ ϕ(g)

Therefore ϕ (and similarly ϕ−1) preserve compositions of morphisms.

Exercise 1.2.C

Proof. We wish to show that the following diagram commutes for all V,U ∈ f.d.V eck and T ∈
Mor(V,U):

V U

V ∨∨ U∨∨

T

mV mU

T∨∨

as well as that mV is an isomorphism. We first define mV : V → V ∨∨ as

mV (x)(f) = f(x)

for any f ∈ V ∨ and any x ∈ V . Then

mV (x+ y)(f) = f(x+ y) = f(x) + f(y) = (mV (x) +mV (y))(f)

and

mV (cx)(f) = f(cx) = cf(x) = cmV (x)(f)

so indeed mV ∈ Mor(V, V ∨∨).
To construct an inverse to mV , we simultaneously fix bases for all finite dimensional vector spaces

so that if {e1, . . . , en} be a basis for V , we let {ϵ1, . . . , ϵn} be the corresponding dual basis for V ∨,
meaning that for each 1 ≤ i, j ≤ n,

ϵi(ei) =

{
1, if i = j
0, if i ̸= j

}

15



We define m̃V : V ∨∨ → V as

m̃V (φ) =

n∑
k=1

φ(ϵi)ei

Then

mV ◦ m̃V (φ)(
∑
i

aiϵi) = mV (
∑
i

φ(ϵi)ei)(
∑
i

aiϵi) =
∑
i

aiϵi(
∑
j

φ(ϵj)ej)

=
∑
i

aiφ(ϵi) = φ(
∑
i

aiϵi)

which implies that mV ◦ m̃V = idV ∨∨ . On the other hand for any ϵj

mV (
∑
i

biei)(ϵj) = ϵj(
∑
i

biei) =
∑
i

biϵj(ei) = bj

Then we clearly see that

m̃V ◦mV (
∑
i

biei) =
∑
i

biei

so additionally m̃V ◦mV = idV implies that as desired m̃V = m−1
V and that mV is an isomorphism.

Now to prove

V U

V ∨∨ U∨∨

T

mV mU

T∨∨

commutes, we first observe that for any φ ∈ V ∨∨ and any g ∈ U∨, T∨∨(φ)(g) = φ(g ◦T ) which makes
sense because g ◦ T : V → k. Therefore if {d1, . . . , dm} is a basis for U with dual basis {δ1, . . . , δm}

mU ◦ T (
∑
i

aiei) = mU (
∑
i

aiTei)

and

mU (
∑
i

aiTei)(
∑
j

αjδj) =
∑
j

αjδj(
∑
i

aiTei)

=
∑
j

αjδj(
∑
i

ai
∑
k

cikdk) =
∑
j

αj
∑
i

aic
i
j

where we have rewritten each

Tei =

m∑
k=1

cikdi

On the other hand,

T∨∨(mV (
∑
i

aiei))(
∑
j

αjδj) = mV (
∑
i

aiei)(
∑
j

αjδj ◦ T ) =
∑
j

αjδj ◦ T (
∑
i

aiei)

=
∑
j

αjδj(
∑
i

aiTei) =
∑
j

αjδj(
∑
i

ai
∑
k

cikdk) =
∑
j

αj
∑
i

aic
i
j

which proves the diagram does indeed commute.
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Exercise 1.2.D

Proof. First we will simultaneously fix bases for all vector spaces. Then the inverse functor G :
f.d.V eck → V will map any V ∈ f.d.V eck with dimension n to kn. If W ∈ f.d.V eck has dimension
m with fixed basis {w1, . . . , wm} and V has basis {v1, . . . , vn}, then for any T : V → W we define
GT ∈ Mor(kn, km) such that if for each 1 ≤ i ≤ n

Tvi =

m∑
j=1

cijwj

then

GTki =

m∑
j=1

cijkj

where {k1, . . . , kn} is a basis for kn constructed inductively such that for any kn
′ ⊂ kn, the basis

{k1, . . . , kn′} is a subset of the basis {k1, . . . , kn}.

To show F ◦ G is naturally isomorphic to idf.d.V eck , we want to show the following diagram com-
mutes:

V W

F ◦G(V ) F ◦G(W )

T

mV mW

F◦G(T )

where we define mV (vi) = ki for each 1 ≤ i ≤ n. mV is then an isomorphism because its inverse m−1
V

is described how you would think: it is the linear map that sends each ki to vi. Following the diagram
on the bottom,

F ◦G(T )(mV (
∑
i

aivi)) = F ◦G(T )(
∑
i

aiki)

= F (
∑
i

ai
∑
j

cijkj) =
∑
i

ai
∑
j

cijkj

On the other hand,

mV (T
∑
i

aivi) = mV (
∑
i

ai
∑
j

cijwj) =
∑
i

ai
∑
j

cijkj

so the diagram commutes. To show G ◦ F is naturally isomorphic to idV , we want to show

kn km

G ◦ F (kn) G ◦ F (km)

mkn

T

mkm

G◦F (T )

where here mkn = idkn . Because G◦F (kn) = kn and preserves bases, the diagram trivially commutes
because also G ◦ F (T ) = T .

Section 1.3

Exercise 1.3.A

Proof. Suppose both A and B as objects of a category C are initial. Then we have

17



A B
∃!f

∃!g

because by A being initial f exists and by B being initial g exists. But now we observe

A A∃!

and because by definition of C being a category, idA ∈ Mor(A,A), so the only morphism from A to
itself is idA by uniqueness. But f ◦ g ∈ Mor(A,A) implies that f ◦ g = idA. Similarly g ◦ f = idB , so
A ∼= B.

If A,B ∈ C are final, then the same diagrams exist but now because A,B are final instead. The
same argument holds here.

Exercise 1.3.B

Proof.

Category Initial Object Final Object

Set ∅ {∗}
Ring Z 0
Top ∅ {∗}

Subset(X) ∅ X
Op(X) ∅ X

Exercise 1.3.C

Proof. (⇒) Assuming A ↪→ S−1A, we want to prove S has no zero divisors. Assuming for a contra-
diction that s ∈ S is a zero divisor, let as = 0 for some a ∈ A. Noting that 0 7→ 0/1, we also
observe that a 7→ a/1 = 0/1 because s(1 · a − 1 · 0) = sa = 0. This contradicts the mapping
being an injection.

(⇐) Now we assume S has no zero divisors. If a, b ∈ A are mapped to the same element of S−1A,
then a/1 = b/1. This is true if and only if there exists some s ∈ S such that

s(a1− b1) = 0 ⇐⇒ s(a− b) = 0

But s being a non-zero divisor implies that a − b = 0, hence a = b proving that the canonical
map is injective.

Exercise 1.3.D

Proof. Suppose we have an A-algebra B such that every element of A is mapped to an invertible
element of B via the map g. We want to make the following diagram commute:

A S−1A

B

g
∃!

If we’re constructing the unique map f : S−1A→ B, by commutativity we have f(a/1) = g(a) for all
a ∈ A. Also notice that

1B = f(1/1) = f(s/s) = f(s/1)f(1/s) = g(s)f(1/s)

18



so f(1/s) = g(s)−1, which exists since g maps elements of A to invertible elements in B. Then

f(a/s) = f(a/1)f(1/s) = g(a)g(s)−1

means that if f is a morphism, it is uniquely determined by the line above. To show f is linear,

f(a1/s1 + a2/s2) = f(
s2a1 + s1a2

s1s2
) = g(s2a1 + s1a2)g(s1s2)

−1

= [g(s2)g(a1) + g(s1)g(a2)]g(s1)
−1g(s2)

−1

= g(a1)g(s1)
−1 + g(a2)g(s2)

−1 = f(a1/s1) + f(a2/s2)

and

f(
a1
s1

a2
s2

) = f(
a1a2
s1s2

) = g(a1a2)g(s1s2)
−1

= g(a1)g(s1)
−1g(a2)g(s2)

−1 = f(
a1
s1

)f(
a2
s2

)

which concludes the proof.

Exercise 1.3.E

Proof. We will take the construction given in the hint to be S−1M and define the map ϕ :M → S−1M
as m 7→ m

1 . Clearly this map is an A-module map that sends elements of S to invertible elements.
We want to show that the following diagram commutes for all α that map elements of S to invertible
elements of N :

M S−1M

N

ϕ

α ∃!

For any such map β : S−1M → N , by commutativity we have β(m/1) = α(m). We will let σs to be
the isomorphism s× · : N → N . Then

α(m) = β(
m

1
) = β(s

m

s
) = sβ(

m

s
)

Then applying the isomorphism σ−1
s to either side, we get

σ−1
s ◦ α(m) = β(

m

s
)

which means that if β is an A-module morphism, then it is uniquely determined by the line above.
To show β is linear, we see

β(
m1

s1
+
m2

s2
) = β(

s2m1 + s1m2

s1s2
) = σ−1

s1s2 ◦ α(s2m1 + s1m2)

= σ−1
s1s2(s2α(m1) + s1α(m2)) = σ−1

s1 α(m1) + σ−1
s2 α(m2) = β(

m1

s1
) + β(

m2

s2
)

where we used the fact that σs1 ◦ σs2 = σs1s2 = σs2s1 = σs2 ◦ σs1 . Also

β(
a

s1

m

s2
) = β(

am

s1s2
) = σ−1

s1s2α(am) = aσ−1
s1 ◦ σ

−1
s2 α(m) =

a

s1
β(
m

s
)

so β is S−1A-linear and uniquely satisfies the commutative diagram.
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Exercise 1.3.F

Proof. (a) This is just a special case of the following part of the question.

(b) We define a map f : S−1
⊕
Mi →

⊕
S−1Mi that acts as

(mi)

s
7→ (

mi

s
)

To show f is linear, we observe

f(
(mi)

s
+

(m′
i)

s′
) = f(

(s′mi + sm′
i)

ss′
) = (

s′mi + sm′
i

ss′
) = (

mi

s
+
m′
i

s′
)

= (
mi

s
) + (

m′
i

s
) = f(

(mi)

s
) + f(

(m′
i)

s′
)

and

f(
a

s

(mi)

s′
) = f(

(ami)

ss′
) = (

ami

ss′
) =

a

s
(
mi

s′
) =

a

s
f(

(mi)

s′
)

To be completely thorough we should show that f is well defined, but I will not do this for
brevity. Now we see that if

(mi)

s
7→ 0

then for each i, mi

s = 0. This means that for each mi, there exists some ri ∈ S such that
rimi = 0. But because there are only finitely many i, we take

∏
ri ∈ S, and then (mi)/s = 0

because ∏
ri(mi) = (0) = 0

so f is injective. To show f is surjective, fix any (mi

si
) ∈

⊕
S−1Mi. Then again using the

fact that only finitely many mi are nonzero, we define for each mi an element ci of S, namely
ci :=

∏
j ̸=i sj . Then

f(
(cimi)∏

si
) = (

cimi∏
si
) = (

mi

si
)

as desired so f is surjective, thus proving f is an isomorphism.

(c) If we let each Mi = Z and S = Z \ {0}, then S−1Mi = Q where we are considering these as Z
modules. Letting ι be the canonical embedding of

∏
Zi →

∏
Qi, then we have

∏
Zi S−1

∏
Zi

∏
Qi

ϕ

ι ∃!φ

However, φ does not map to the element (1, 12 ,
1
3 ,

1
4 , . . . ). To prove this, we suppose

(n1, n2, . . . )

s
7→ (1,

1

2
,
1

3
, . . . )

Then

sφ(
(n1, n2, . . . )

s
) = φ(s

(n1, n2, . . . )

s
) = φ(

(n1, n2, . . . )

1
) = (n1, n2, . . . )

But on the other hand, by hypothesis φ( (n1,n2,... )
s ) = (1, 12 , . . . ) so also

sφ(
(n1, n2, . . . )

s
) = s(1,

1

2
, . . . )
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which implies for some nonzero integer s, (s, s2 ,
s
3 , . . . ) = (n1, n2, n3, . . . ) where each ni ∈ Z.

This would imply that every prime number pi divides s because s
pi

would be in the sequence
and would have to equal ni ∈ Z. But this is a contradiction because there are infinitely many
primes, hence no such s can exist. Thus φ is not surjective, but φ is the unique morphism that
preserves the structure of

∏
Zi which embeds into both S−1

∏
Zi and

∏
Qi.

Exercise 1.3.G

Proof. We have
6(1⊗ 2) = 1⊗ 12 = 1⊗ 0 = 0

On the other hand,
5(1⊗ 2) = 10(1⊗ 1) = 10⊗ 1 = 0⊗ 1 = 0

Therefore
1⊗ 1 + 1⊗ 1 = 1⊗ 2 = (6− 5)(1⊗ 2) = 6(1⊗ 2)− 5(1⊗ 2) = 0− 0 = 0

We can now see that we only have two elements in Z/(10) ⊗Z Z/(12), being 0 and 1 ⊗ 1. To show
1 ⊗ 1 ̸= 0, we can show that there is a bilinear map from Z/(10) ⊗Z Z/(12) to Z/(2), given by first
noticing that any a⊗ b = ab⊗ 1, which then we just map ab 7→ ab mod 2. It’s readily verified this is
bilinear, and we notice 1⊗ 1 7→ 1 mod 2, which is a nonzero element, hence 1⊗ 1 ̸= 0 either by the
universal property.

Exercise 1.3.H

For simplicity of the proof we will use the facts that the Hom functor is left exact–proven in Exercise
1.6.F– and that for all A modules M,N,P

HomA(M ⊗N,P ) ∼= HomA(M,HomA(N,P ))

by Exercise 1.5.D.

Lemma. If the sequence Hom(C,P )
g∗−→ Hom(B,P )

f∗

−→ Hom(A,P ) is exact for all P ∈ModA, then

A
f−→ B

g−→ C is exact. [5]

Proof. First, we let P = cok f = B/ im f and let π be the projection from B onto cok f . Then
π ∈ ker f∗ because f∗(π) = π ◦ f = 0, and by exactness π ∈ im g∗. Let h ∈ Hom(C,P ) such that
g∗(h) = π, or equivalently h ◦ g = π. Then we observe that

ker g ⊂ kerπ = im f

which demonstrates ker g ⊂ im f .
To prove the reverse inclusion, we now let P = C and we trace idC through the diagram to see

0 = f∗ ◦ g∗(idC) = f∗(idC ◦ g) = g ◦ f

Then clearly im f ⊂ ker g. Therefore

A
f−→ B

g−→ C

is exact.

Main Result. Given M ′ f−→ M
g−→ M ′′ → 0 is exact, we first fix an arbitrary P ∈ ModA and

subsequently apply Hom(·,HomA(N,P )). By left exactness of the Hom functor, the following is
exact:

0→ Hom(M ′′,HomA(N,P ))
g∗−→ Hom(M,HomA(N,P ))

f∗

−→ Hom(M ′,HomA(N,P ))
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Now we use the fact that · ⊗N is left adjoint to Hom(N, ·) by Exercise 1.5.D so that

0→ Hom(M ′′ ⊗N,P )) (g⊗N)∗−−−−−→ Hom(M ⊗N,P )) (f⊗N)∗−−−−−→ Hom(M ′ ⊗N,P ))

is exact for all P . The lemma yields that

M ′ ⊗N f⊗N−−−→M ⊗N g⊗N−−−→M ′′ ⊗N

is exact. Now to show g⊗N is surjective given g is, fix any m′′⊗n ∈M ′′⊗N . Because g is surjective,
let g(m) = m′′. Then g ⊗ N(m ⊗ n) = g(m) ⊗ n = m′′ ⊗ n proving that g ⊗ N is surjective. This
completes the proof.

Exercise 1.3.I

Proof. In this category, the objects are pairs (T, t : M × N → T ) such that t is bilinear, and a
morphism f : T → T ′ is a morphism of A modules such that f ◦ t = t′. Defining the tensor product to
be the initial objects of this category, by the fact that any initial object in a category is unique up to
unique isomorphism, we get the desired result. But for a more concrete proof, suppose we have (T, t)
and (T ′, t′) both satisfying the definition of tensor product. Then

M ×N T

T ′

t

t′

∃!f

and also

M ×N T ′

T

t′

t
∃!g

commute. On the other hand,

M ×N T

T

t

t
∃!

means that idT satisfies the definition, as well as g ◦ f because g ◦ f ◦ t = g ◦ t′ = t, so by uniqueness
idT = g ◦ f , and a similar argument shows f ◦ g = idT ′ .

We could define the product in any category C to be the final object in a category whose objects
are pairs (P, pM , pN ) where P ∈ C , pM ∈ MorC (P,M) and pN ∈ MorC (P,N). The morphisms of
the category are morphisms f ∈ MorC (P ′, P ) such that p′M = pM ◦ f and p′N = pN ◦ f . Again, any
final object in a category is unique up to unique isomorphism, so the product is defined up to unique
isomorphism.

Exercise 1.3.J

Proof. Suppose we have some pair (T, t) as in the previous exercise. To show that

M ×N M ⊗N

T

ϕ

t

∃!
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If any such φ :M ⊗N → T exists that makes the diagram commute, then by definition

φ(m⊗ n) = t(m,n)

Notice this proves that if φ exists, it is unique. To show this φ ∈ HomA(M ⊗N,T ) we first need to
show that it is well defined. Letting R be the linear subspace of the free module F (M ×N) spanned
by all elements of the form

(m1 +m2, n)− (m1, n)− (m2, n)

(m,n1 + n2)− (m,n1)− (m,n2)

(am, n)− a(m,n)
(m, an)− a(m,n)

we formally have any tensor m ⊗ n = (m,n) + R as a coset. But for each basis element x of R, we
notice that f(x) = 0 because f is bilinear, so f ≡ 0 on R. Thus it doesn’t matter which representative
of the coset (m,n) +R we pick, so f is well defined. To check linearity,

φ(m1 +m2 ⊗ n) = f(m1 +m2, n) = f(m1, n) + f(m2, n) = φ(m1 ⊗ n) + φ(m2 ⊗ n)

and similarly

φ(m⊗ n1 + n2) = f(m,n1 + n2) = f(m,n1) + f(m,n2) = φ(m⊗ n1) + φ(m⊗ n2)

and
φ(am⊗ n) = f(am, n) = af(m,n) = aφ(m⊗ n)

There are no other linearity relations on M ⊗N , so φ must be linear on other sums of tensors; indeed
φ is an A-module homomorphism and is the unique one making the diagram commute.

Exercise 1.3.K

Proof. (a) We define scalar multiplication by first constructing a bilinear map φb : B×M → B⊗AM
for each b ∈ B given by

φb(b
′,m) = bb′ ⊗m

To prove φb is bilinear,

φb(b1 + b2,m) = b(b1 + b2)⊗m = bb1 + bb2 ⊗m = bb1 ⊗m+ bb2 ⊗m = φb(b1,m) + φb(b2,m)

and

φb(b
′,m1 +m2) = bb′ ⊗m1 +m2 = bb′ ⊗m1 + bb′ ⊗m2 = φb(b

′,m1) + φb(b
′,m2)

as well as
φb(ab

′,m) = bab′ ⊗m = bb′ ⊗ am = φb(b
′, am) = aφb(b

′,m)

Thus

B ×M B ⊗AM

B ⊗AM

φb ∃!ϕb
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commutes and we define scalar multiplication by b as the function ϕb. It’s easy to verify that

ϕb1 ◦ ϕb2(b⊗m) = ϕb1b2(b⊗m)

Thus
b1(b2b⊗m) = (b1b2)b⊗m

By ϕb being A-linear,

b(b1 ⊗m1 + b2 ⊗m2) = bb1 ⊗m1 + bb2 ⊗m2

Also

ϕb1+b2(b⊗m) = (b1 + b2)b⊗m = b1b+ b2b⊗m = b1b⊗m+ b2b⊗m
= ϕb1(b⊗m) + ϕb2(b⊗m)

And finally
ϕ1(b⊗m) = 1b⊗m = b⊗m

so we have indeed defined a B-module structure on B⊗AM . To see that this defines a functor,
we want to show that for any X,Y, Z ∈ modA, f ∈ HomA(X,Y ) and g ∈ HomA(Y,Z), that
B⊗g◦f = B⊗g◦B⊗f where we define B⊗f as the induced map in the following commutative
diagram:

B ×X B ⊗A X

B × Y B ⊗A Y

ϕX

idB×f ∃!
ϕY

To be thorough we should prove that ϕY ◦ idB × f is bilinear, but it is readily verifiable because
f is A-linear. Now to show that this functor respects compositions, we see

B ⊗ g ◦B ⊗ f(b⊗ x) = B ⊗ g(b⊗ f(x)) = b⊗ g ◦ f(x) = B ⊗ g ◦ f(b⊗ x)

so we do have a functor from modA → modB .

(b) We have a similar approach for the construction of multiplication: for all b ∈ B and c ∈ C, we
define a map φb,c : B × C → B ⊗A C as

φb,c(b
′, c′) = bb′ ⊗ cc′

To show φb,c is A-bilinear, we see

φb,c(b1 + b2, c
′) = b(b1 + b2)⊗ cc′ = bb1 ⊗ cc′ + bb2 ⊗ cc′ = φb,c(b1, c) + φb,c(b2, c

′)

and

φb,c(b
′, c1 + c2) = bb′ ⊗ c(c1 + c2) = bb′ ⊗ cc1 + bb′ ⊗ cc2 = φb,c(b

′, c1) + φb,c(b
′, c2)

as well as
φb,c(ab

′, c′) = bab′ ⊗ cc′ = bb′ ⊗ cac′ = φb,c(b
′, ac′) = aφb,c(b

′, c′)

Then we get a commutative diagram induced by the universal property:

B × C B ⊗A C

B ⊗A C
φb,c

∃!ϕb,c
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Then we use the action of ϕb,c to be multiplication by b⊗ c. Therefore

ϕb,c ◦ ϕb′,c′(b′′ ⊗ c′′) = ϕb,c(b
′b′′ ⊗ c′c′′) = bb′b′′ ⊗ cc′c′′ = ϕbb′,cc′(b

′′ ⊗ c′′)

so multiplication is associative. The multiplicative identity is

ϕ1,1(b⊗ c) = 1b⊗ 1c = b⊗ c

To show multiplication is distributive,

ϕb,c(b1 ⊗ c1 + b2 ⊗ c2) = ϕb,c(b1 ⊗ c1) + ϕb,c(b2 ⊗ c2)

because ϕb,c is A-linear. We notice that because B,C are commutative rings,

(b1 ⊗ c1)(b2 ⊗ c2) = b1b2 ⊗ c1c2 = b2b1 ⊗ c2c1 = (b2 ⊗ c2)(b1 ⊗ b1)

implying that multiplication is also right distributive since

(b1 ⊗ c1 + b2 ⊗ c2)(b⊗ c) = (b⊗ c)(b1 ⊗ c1 + b2 ⊗ c2) = (b⊗ c)(b1 ⊗ c1) + (b⊗ c)(b2 ⊗ c2)

= (b1 ⊗ c1)(b⊗ c) + (b2 ⊗ c2)(b⊗ c)

This completes the verification of the ring axioms, so indeed B ⊗A C is a ring.

Exercise 1.3.L

Proof. We will use the universal property of tensor products to construct a map β : S−1A ⊗AM →
S−1M . We define a map α : S−1A×M → S−1M given by α(as ,m) = am

s . To show α is A bilinear,
we see

α(
a1
s1

+
a2
s2
,m) = α(

s2a1 + s1a2
s1s2

,m) =
(s2a1 + s1a2)m

s1s2
=
a1m

s1
+
a2m

s2
= α(

a1
s1
,m) + α(

a2
s2
,m)

and

α(
a

s
,m1 +m2) =

a(m1 +m2)

s
=
am1

s
+
am2

s
= α(

a

s
,m1) + α(

a

s
,m2)

as well as

α(a′
a

s
,m) = α(

a′a

s
,m) =

a′am

s
= a′

am

s
= a′α(

a

s
,m) =

aa′m

s
= α(

a

s
, a′m)

Then α is A bilinear, and hence we get an induced map β : S−1A ⊗A M → S−1M from the below
diagram:

S−1A×M S−1A⊗AM

S−1M

α ∃!

We will now construct an inverse to β. Let ϕ(m) = 1 ⊗m. This is clearly A bilinear as well so we
obtain a unique φ : S−1M → S−1A⊗AM

M S−1M

S−1A⊗AM
ϕ

∃!
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Then

φ ◦ β(a
s
⊗m) = φ(

am

s
) =

1

s
⊗ am =

a

s
⊗m

and

β ◦ φ(m
s
) = β(

1

s
⊗m) =

m

s

so indeed S−1M ∼= S−1A ⊗AM as A-modules. We can extend the A-module structure into a S−1A
module structure by the previous exercise, and in fact the same morphisms we just constructed can
be considered to be S−1A linear as well. We can see this by

β(
a

s

a′

s′
⊗m) =

a′am

ss′
=
a′

s′
am

s
=
a′

s′
β(
a

s
⊗m)

and

φ(
a

s

m

s′
) = φ(

am

ss′
) =

1

ss′
⊗ am =

a

s

1

s′
⊗m =

a

s
φ(
m

s′
)

Therefore they are also isomorphic as S−1A modules as well.

Exercise 1.3.M

Proof. We will use the universal property to construct our desired map. We define α :M×
⊕

i∈I Ni →⊕
i∈IM ⊗Ni where

α(m,
∑
i

ni) =
∑
i

m⊗ ni

To verify α is A-bilinear,

α(m1 +m2,
∑
i

ni) =
∑
i

m1 +m2 ⊗ ni =
∑
i

m1 ⊗ ni +
∑
i

m2 ⊗ ni

= α(m1,
∑
i

ni) + α(m2,
∑
i

ni)

and

α(m,
∑
i

ni +
∑
i

n′i) = α(m,
∑
i

ni + n′i) =
∑
i

m⊗ ni + n′i

=
∑

m⊗ ni +
∑
i

m⊗ n′i = α(m,
∑
i

ni) + α(m,
∑
i

n′i)

as well as

α(am,
∑
i

ni) =
∑
i

am⊗ ni = a
∑
i

m⊗ ni =
∑
i

m⊗ ani = α(m, a
∑
i

ni)

Then let φ be the unique induced map below:

M ×
⊕

iNi M ⊗A
⊕

iNi

⊕
iM ⊗A Ni

α ∃!

Then φ(m ⊗
∑
i ni) =

∑
im ⊗ ni, and the inverse map ϕ is defined as ϕ(

∑
im ⊗ ni) = m ⊗

∑
i ni.

The construction of ϕ follows from the diagram below:
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⊕
M ⊗Ni M ⊗Nj M ⊗

⊕
Ni

M ×Nj

πj ∃!φj

αj

and then defining ϕ =
∑
i φj ◦ πj which is well defined because all but finitely many of the πj

are nonzero for any given element. These are clearly inverses, hence M ⊗
⊕
Ni ∼=

⊕
M ⊗ Ni as

A-modules.

Exercise 1.3.N

Proof. Letting S = {(x, y) ∈ X × Y : α(x) = β(y)} with the obvious projection maps πX and πY , it
is immediate that

S Y

X Z

πY

πX β

α

commutes by construction of S. Now suppose we’re given the following commutative diagram:

W Y

X Z

pY

pX β

α

We want to show that

W

S Y

X Z

∃!

pX

pY

πY

πX β

α

commutes for some unique map φ : W → S. Any such map φ that makes the diagram commute has
πX ◦φ = pX and πY ◦φ = pY . It’s then clear that if φ(w) = (φX(w), φY (w)) for all w ∈W , that then
φX = pX and φY = pY . Thus uniqueness is proven, and the fact that φ makes the diagram commute
is trivial so indeed S = X ×Z Y .

Exercise 1.3.O

Proof. We claim that if A,B,C ∈ Op(X) such that A,B ⊂ C, then A ×C B = A ∩ B. In Op(X),
we observe that there is at most one arrow from any object to any other object, so we needn’t prove
uniqueness in the universal property argument. It is clear that

A ∩B B

A C

commutes–notice that commutativity here is just saying that every element of A ∩ B is an element
of C because the morphisms are inclusions. If we have another open set W such that W ⊂ A and
W ⊂ B, it’s clear that every element of W must be an element of A ∩ B by definition, which proves
that
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W

A ∩B B

A C

∃!

commutes as well, thus proving A×C B = A ∩B.

Exercise 1.3.P

Proof. First of all, given the following data

W

X × Y

X Y

∃!pX pY

πX πY

we have our unique morphism φ : W → X × Y that makes the diagram above commute. But by
Z being final, there is only one morphism from any object to Z, hence the entire diagram below
commutes:

W

X × Y Y

X Z

pX

pY

∃!

πY

πX

Therefore X×Y satisfies the definition of X×Z Y , and by the standard universal property argument,
are defined up to unique isomorphism.

Exercise 1.3.Q

Proof. The path traced in red below

U V

W X

Y Z

is equal to

U V

W X

Y Z
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by commutativity of the top square, and by commutativity of the bottom square

U V

W X

Y Z

Now we need to show

P

U V

Y Z

χ2

χ1

∃!

commutes. We will first use the fact that the lower square is universal to get

P V

W X

Y Z

χ2

χ1

∃!φ

Now we use this φ : P →W with the universal property of the top square to get

P

U V

W X

χ2

φ

∃!ϕ

It is easily checked that ϕ is the desired morphism that makes the original diagram commute, so we
have shown that the tower is indeed a Cartesian diagram.

Exercise 1.3.R

Proof. We have

X1 ×Y X2 X2

X1 Y

Z

ι2

ι1 g

f

h

commuting, then
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X1 ×Y X2

X1 ×Z X2 X2

X1 Z

ι2

ι1

∃!

h◦g
h◦f

induces the unique natural morphism demonstrated here.

Exercise 1.3.S

Proof. From the previous exercise, the following diagram commutes

X1 ×Y X2

X1 ×Z X2 X2

X1 Z

τ2

τ1

∃!φ
π2

π1 h◦g
h◦f

because

X1 ×Y X2 X2

X1 Y

τ2

τ1 g

f

commutes. There is another natural map α : Y → Y ×Z Y given by

Y

Y ×Z Y Y

Y Z

idY

idY

∃!α
µ2

µ1 h

h

Additionally, there is a map θ : X1 ×Z X2 → Y ×Z Y given by

X1 ×Z X2

Y ×Z Y Y

Y Z

g◦π2

f◦π1

∃!θ
µ2

µ1 h

h

Then we would first like to show the following diagram commutes:

X1 ×Y X2 X1 ×Z X2

Y Y ×Z Y

φ

f◦τ1 θ

α

30



To do this, we will turn to the following commutative diagram:

X1 ×Y X2

Y ×Z Y Y

Y Z

g◦π2◦φ

f◦π1◦φ

∃!
µ2

µ1 h

h

On one hand, we will show that α ◦ f ◦ τ1 makes the diagram commute. We observe

µ1 ◦ α ◦ f ◦ τ1 = f ◦ τ1 = f ◦ π1 ◦ φ

as well as
µ2 ◦ α ◦ f ◦ τ1 = µ2 ◦ α ◦ g ◦ τ2 = g ◦ τ2 = g ◦ π2 ◦ φ

On the other hand, we will show that θ ◦ φ makes the diagram commute. We have

µ1 ◦ θ ◦ φ = f ◦ π1 ◦ φ

and also
µ2 ◦ θ ◦ φ = g ◦ π2 ◦ φ

By uniqueness of the induced map, we obtain that indeed θ ◦ φ = α ◦ f ◦ τ1. Now we need to show
the square is universal. Suppose the following diagram commutes:

P

X1 ×Y X2 X1 ×Z X2

Y Y ×Z Y

p2

p1

φ

f◦τ1 θ

α

Then
α ◦ p1 = θ ◦ p2

implies, by applying µ1 or µ2 to the left of each equation,

p1 = µ1 ◦ θ ◦ p2 = µ2 ◦ θ ◦ p2

which is true by definition if and only if

p1 = f ◦ π1 ◦ p2 = g ◦ π2 ◦ p2

Therefore the following diagram commutes:

P

X1 ×Y X2 X2

X1 Y

π2◦p2

π1◦p2

∃!

τ2

τ1 g

f

Let χ be the induced map, which proves uniqueness. We will show that χ makes the following diagram
commute:
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P

X1 ×Y X2 X1 ×Z X2

Y Y ×Z Y

p2

p1

χ

φ

f◦τ1 θ

α

To show f ◦ τ1 ◦ χ = p1, we have

f ◦ τ1 ◦ χ = f ◦ π1 ◦ p2 = p1

To show φ ◦ χ = p2, we will show that both φ ◦ χ and p2 satisfies the following induced map:

P

X1 ×Z X2 X2

X1 Y ×Z Y

π2◦p2

π1◦p2

∃!

π2

π1 h◦g
h◦f

It’s obvious that p2 makes the diagram commute. On the other hand,

π1 ◦ φ ◦ χ = τ1 ◦ χ = π1 ◦ p2

as well as
π2 ◦ φ ◦ χ = τ2 ◦ χ = π2 ◦ p2

Since both make the diagram commute, by uniqueness, φ ◦ χ = p2 which completes the proof.

Exercise 1.3.T

Proof. Given an indexed family of sets Ai for i ∈ I, the disjoint union is the set∐
i∈I

Ai =
⋃
i∈I
{(x, i) : x ∈ Ai}

where each Ai is equipped with a map ιi : Ai →
∐
iAi such that

ιi(x) = (x, i)

Now we suppose we have a set P such that for each i ∈ I, there is a map pi : Ai → P . Then

P

∐
iAi

Ai

∃!

ιi

pi

where the unique map φ is defined by φ(x, i) = pi(x). This definition is given to us by commutativity,
so uniqueness is proven, and the construction is well defined because ιi is an injection for each i ∈ I,
which proves existence so indeed the disjoint union is the coproduct in Sets.
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Exercise 1.3.U

Proof. Suppose β : A→ B and γ : A→ C are ring morphisms and
φ : B → B ⊗ C and ϕ : C → B ⊗ C are as defined in the exercise. To show φ is a ring morphism, we
recall that B can be considered an A-module where scalar multiplication is defined as a · b := β(a)b.
We immediately get φ(1) = 1⊗ 1 which is the identity on B ⊗ C, so φ preserves identities. To show
φ is linear,

φ(b1 + b2) = b1 + b2 ⊗ 1 = b1 ⊗ 1 + b2 ⊗ 1 = φ(b1) + φ(b2)

and
φ(b1b2) = b1b2 ⊗ 1 = (b1 ⊗ 1)(b2 ⊗ 1) = φ(b1)φ(b2)

An almost identical argument shows ϕ is a ring morphism as well. Lastly, we suppose we have a ring
P with morphisms f : B → P and g : C → P such that the following diagram commutes:

P C

B A

g

f

β

γ

To show

P

B ⊗A C C

B A

∃!

ϕ

g

φf

β

γ

commutes, we see that if any such map χ : B ⊗A C → P exists that satisfies the diagram, χ ◦ φ = f
and χ ◦ ϕ = g. This equivalently says χ(b⊗ 1) = f(b) and χ(1⊗ c) = g(c). This actually determines
the action of χ entirely because χ is a ring morphism and thus

χ(b⊗ c) = χ((b⊗ 1)(1⊗ c)) = χ(b⊗ 1)χ(1⊗ c) = f(b)g(c)

This proves that χ is unique. To prove existence, we need to show that χ is a ring morphism. We can
use the universal property of tensor products to do so. Define α : B × C → P as α(b, c) = f(b)g(c).
To show α is A bilinear, we observe

α(ab, c) = f(ab)g(c) = f(β(a)b)g(c) = f ◦ β(a)f(b)g(c) = g ◦ γ(a)f(b)g(c)
= f(b)g(γ(a)c) = f(b)g(ac) = α(b, ac) = aα(b, c)

and

α(b1 + b2, c) = f(b1 + b2)g(c) = f(b1)g(c) + f(b2)g(c) = α(b1, c) + α(b2, c)

and
α(b, c1 + c2) = f(b)g(c1 + c2) = f(b)g(c1) + f(b)g(c2) = α(b, c1) + α(b, c2)

Then by the universal property of tensor products, we get our induced map χ defined exactly as we
require it to be. This proves existence of χ and completes the proof.
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Exercise 1.3.V

Proof. Suppose π1 : X → Y and π2 : X → Z are both monomorphisms and suppose we have two
morphisms f, g : W → X. We want to show that π2 ◦ π1 ◦ f = π2 ◦ π1 ◦ g ⇒ f = g. Supposing
π2 ◦ π1 ◦ f = π2 ◦ π1 ◦ g, by π2 being monic we have π1 ◦ f = π1 ◦ g. Now we use the fact that π1 is
monic to get f = g as desired.

Exercise 1.3.W

Proof. (⇒) We suppose π : X → Y is monic. To prove X ×Y X exists, we claim that X satisfies the
definition of X ×Y X. To show this, we want to show

P

X X

X Y

∃!

p1

p2

idX

idX π

π

holds. Using the fact that π is monic and the fact that π ◦ p1 = π ◦ p2 by commutativity to get
that p1 = p2, so we just need to show that

P

X X

X Y

∃!

p

p

idX

idX π

π

commutes. The unique morphism is clearly p. Thus X satisfies the definition of X ×Y X, and
thus the induced morphism is idX which is, in particular, an isomorphism.

(⇐) Now supposing that there is a unique isomorphism φ : X → X ×Y X and that X ×Y X exists,
we will furthermore suppose that π ◦ f = π ◦ g for some f, g : Z → X. Notice that

X

X ×Y X X

X Y

∃!φ

idX

idX

χ1

χ2 π

π

commuting and φ being an isomorphism implies that χ2 = φ−1 = χ1. Then we obtain a map ϕ
from the below commutative diagram:

Z

X ×Y X X

X Y

∃!

f

g

φ−1

φ−1 π

π
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Therefore f = φ−1 ◦ ϕ and g = φ−1 ◦ ϕ. This implies that f = g as desired so π is monic.

Exercise 1.3.X

Proof. We will use the same variables in this exercise as in Exercise 1.3.S. Let φ : X1×YX2 → X1×ZX2

be induced in the following diagram, using the fact π is monic here so that π ◦ f ◦ τ1 = π ◦ g ◦ τ2 ⇒
f ◦ τ1 = g ◦ τ2:

X1 ×Y X2

X1 ×Z X2 X2

X1 Y

Z

∃!

τ1

τ2

π2

π1 g

f

π

We also use the fact that π is monic implies both µ1, µ2 from Exercise 1.3.S are equal to α−1, where
α is an isomorphism by Exercise 1.3.X. Then

f ◦ π1 = µ1 ◦ θ = α−1 ◦ θ ⇒ α ◦ f ◦ π1 = θ

Now using the magic diagram from Exercise 1.3.S, we have

X1 ×Z X2

X1 ×Y X2 X1 ×Z X2

Y Y ×Z Y

∃!

f◦π1

idX1×ZX2

φ

f◦τ1 α◦f◦π1

α

Let ϕ be the map induced in the above diagram, where it is immediate that φ ◦ ϕ = idX1×ZX2
. To

show ϕ ◦ φ = idX1×YX2 , we will show it satisfies the diagram below, which suffices because clearly
idX1×YX2 also does:

X1 ×Y X2

X1 ×Y X2 X2

X1 Y

∃!

τ1

τ2

τ2

τ1 g

f

We need to show that τ1 = τ1 ◦ ϕ ◦ φ and that τ2 = τ2 ◦ ϕ ◦ φ. Recalling that ϕ is a section of φ and
that τ1 = π1 ◦ φ and τ2 = π2 ◦ φ, we have

τ1 ◦ ϕ ◦ φ = π1 ◦ φ ◦ ϕ ◦ φ = π1 ◦ φ = τ1

as well as
τ2 ◦ ϕ ◦ φ = π2 ◦ φ ◦ ϕ ◦ φ = π2 ◦ φ = τ2

which proves that ϕ = φ−1 and φ is an isomorphism.
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Exercise 1.3.Y

Proof. (a) We have the following diagram is commutative for all f : C → B:

Mor(B,A) Mor(C,A)

Mor(B,A′) Mor(C,A′)

f∗

ιB ιC

f∗

Now because B was arbitrary, we let B = A, and then we have

Mor(A,A) Mor(C,A)

Mor(A,A′) Mor(C,A′)

f∗

ιA ιC

f∗

Now we track idA through the bottom portion of the diagram, letting g = ιA(idA) and f ∈
Mor(C,A) arbitrary to get

f∗ ◦ ιA(idA) = f∗(g) = g ◦ f

On the top side of the diagram, we get

ιC ◦ f∗(idA) = ιC(idA ◦ f) = ιC(f)

By commutativity, these two are equal, hence ιC(f) = g ◦ f , determining ιC entirely.

(b) Now assuming all of the ιC are isomorphisms, we get the following diagram where g ∈ Mor(A,A′)
is as defined in the previous part:

Mor(A′, A) Mor(A,A)

Mor(A′, A′) Mor(A,A′)

g∗

ιA′ ιA

g∗

By surjectivity of ιA, for each f ∈ Mor(A,A′), there exists a unique f ′ ∈ Mor(A,A) such that
ιA(f

′) = f ⇐⇒ g ◦ f ′ = f . On the other side of the diagram, for every α ∈ Mor(A′, A′), there
exists a unique α′ ∈ Mor(A′, A) such that ιA′(α′) = α ⇐⇒ g ◦ α′ = α.

Thus if α = idA′ , we obtain a section α′ of g. Now by uniqueness of the first statement,
there exists a unique f ′ ∈ Mor(A,A) such that g ◦ f ′ = g. But idA and α′ ◦ g both satisfy this
requirement, which proves that α′ ◦ g = idA, proving that α′ = g−1.

Exercise 1.3.Z

Proof. (a) If we’re given some f ∈ Mor(B,A), we want to give a natural transformation mC :
Mor(A,C)→ Mor(B,C). We define for every C ∈ C , we define

mC(ϕ) = ϕ ◦ f

To prove m is indeed a natural transformation, we need to show for every g : C → C ′, the
following diagram commutes:
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Mor(A,C) Mor(A,C ′)

Mor(B,C) Mor(B,C ′)

g∗

mC mC′

g∗

On the bottom side of the diagram, for any ϕ ∈ Mor(A,C), we observe

g∗ ◦mC(ϕ) = g∗(ϕ ◦ f) = g ◦ ϕ ◦ f

on the other hand,
mC′ ◦ g∗(ϕ) = mC′(g ◦ ϕ) = g ◦ ϕ ◦ f

so m is a natural transformation.

Now if we’re given a natural transformation m, we get the following commutative diagram
for arbitrary C ∈ C and g ∈ Mor(A,C):

Mor(A,A) Mor(A,C)

Mor(B,A) Mor(B,C)

g∗

mA mC

g∗

Tracking idA on the bottom and defining f := mA(idA) ∈ Mor(B,A), we get

g∗ ◦mA(idA) = g∗(f) = g ◦ f

On the top, we get
mC ◦ g∗(idA) = mC(g ◦ idA) = mC(g)

By commutativity, mC(g) = g ◦ f for all g ∈ Mor(A,C). Because f uniquely defines m, we have
obtained a unique morphism from every natural transformation.

We define a map φ : Mor(B,A) → Nat(hA, hB) given as φ(f) = ◦f , and another map
ϕ : Nat(hA, hB)→ Mor(B,A) as ϕ(m) = mA(idA). To show these are inverse maps,

ϕ ◦ φ(f) = ϕ(◦f) = idA ◦ f = f

and
φ ◦ ϕ(m) = φ(mA(idA)) = ◦mA(idA) = m

by our previous work. Thus ϕ = φ−1 and we have given the desired bijection.

(b) Given any f ∈ Mor(A,B), define φ(f) = f◦ where φ : Mor(A,B) → Nat(hA, hB). Similarly
to part (a), one can readily check that this defines a natural transformation. We can also do a
similar process of tracking the identity to realize that any for natural transformation m and any
g ∈ Mor(C,A), mC(g) = mA(idA) ◦ g. We then define ϕ : Nat(hA, hB) → Mor(A,B) given by
ϕ(m) = mA(idA). In a very similar manner to part (a), ϕ = φ−1 so we obtain the bijection we
want.

(c) If we’re given any natural transformation m from hA → F , we have that for all f ∈ Mor(B,C),
the following diagram commutes:

Mor(A,B) Mor(A,C)

F (B) F (C)

f∗

mB mC

Ff
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Letting B = A, we have

Mor(A,A) Mor(A,C)

F (A) F (C)

f∗

mA mC

Ff

Yet again, we track idA on the bottom to get Ff ◦mA(idA), and on the top we getmC ◦f∗(idA) =
mC(f ◦ idA) = mC(f). Thus by commutativity, for any f ∈ Mor(A,C),

mC(f) = Ff(mA(idA))

We now notice then that mC is determined entirely by mA(idA), so we define φ : Nat(hA, F )→
F (A) given by φ(m) = mA(idA). On the other hand we define ϕ : F (A) → Nat(hA, F ) to act
as ϕ(χ)C(f) = Ff(χ) for any C ∈ C and f ∈ Mor(A,C).

Then
φ ◦ ϕ(χ) = φ(ϕ(χ)) = ϕ(χ)A(idA) = F (idA)(χ) = idF (A)(χ) = χ

and for any f ∈ Mor(A,C),

ϕ ◦ φ(m)C(f) = ϕ(mA(idA))C(f) = Ff(mA(idA)) = mC(f)

so indeed φ is a bijection.

Section 1.4

Exercise 1.4.A

Proof. We claim that if F : I → C is a functor and e ∈ I is an initial object, then lim←−Ai = Ae.
Because e is initial, there exists a unique morphism into every i ∈ I , so there exists a unique morphism
fi : Ae → Ai for each i. If W is another object in C with maps pi for each i that commutes with
everything, there exists a morphism pe : W → Ae because e ∈ I . We also know that by assumption
the following diagram must commute:

W

Ae Ai

pe pi

∃!fi

so in particular the following diagram commutes for all f : i→ j and all i, j ∈ I .

W

Ae

Ai Aj

pe
pi pj

fi fj
Ff

Uniqueness comes from the fact that any morphism g :W → Ae that makes the diagram commute in
particular makes the following subdiagram commute:
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W

Ae

Ae

g

pe

idAe

so that g = pe.

Exercise 1.4.B

Proof. To show X1 ×Y X2 is the limit of the diagram, we need to show

X1

X1 ×Y X2 Y Z

X2

fτ1

τ2

h

g

commutes given the Cartesian square below:

X1 ×Y X2 X2

X1 Y

τ2

τ1 g

f

But the commutativity of the first diagram is trivial then. Now to show the first diagram is universal,
suppose we have the following commutative diagram:

X1

P Y Z

X2

fp1

p2

h

g

Then we get an induced map from the following diagram:

P

X1 ×Y X2 X2

X1 Y

p1

p2

∃!

τ1

τ2

g

f

This proves uniqueness. This map γ makes the following diagram commute trivially
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X1

P X1 ×Y X2 Y Z

X2

fp1

p2

γ

τ1

τ2

h

g

which proves existence. Thus X1 ×Y X2 is the limit of the diagram.

To show Y ×(Y×ZY ) X1 ×Z X2 is also the limit of the diagram, we first need to show that the
following diagram commutes:

X1

Y ×(Y×ZY ) X1 ×Z X2 Y Z

X2

fπ1◦ι2

π2◦ι2

h

g

where we’re given the following Cartesian diagrams:

Y ×(Y×ZY ) X1 ×Z X2 X1 ×Z X2

Y Y ×Z Y

ι2

ι1 θ

α

and

X1 ×Z X2 X2

X1 Z

π2

π1 h◦g
h◦f

and the induced map α below:

Y

Y ×Z Y Y

Y Z

idY

idY

∃!α

µ1

µ2

h

h

as well as the induced map θ from the following:

X1 ×Z X2

Y ×Z Y Y

Y Z

f◦π1

g◦π2

∃!

µ1

µ2

h

h

Now to show
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X1

Y ×(Y×ZY ) X1 ×Z X2 Y Z

X2

fπ1◦ι2

π2◦ι2

h

g

does indeed commute, we observe

ι1 = ι1

⇒ µ1 ◦ α ◦ ι1 = µ2 ◦ α ◦ ι1
⇒ µ1 ◦ θ ◦ ι2 = µ2 ◦ θ ◦ ι2
⇒ f ◦ π1 ◦ ι2 = g ◦ π2 ◦ ι2

just by recalling the definitions of each. Now that this diagram commutes, we suppose we have the
following commutative diagram to prove universality:

X1

P Y Z

X2

fp1

p2

h

g

Then we can use the universal property of X1×Z X2 to get a unique map β in the following diagram:

P

X1 ×Z X2 X2

X1 Z

p1

p2

∃!

π1

π2

h◦g
h◦f

With this map β, we claim the following diagram commutes:

P X1 ×Z X2

Y Y ×Z Y

β

f◦p1 θ

α

To prove this, we turn to the universal property of Y ×Z Y shown below:

P

Y ×Z Y Y

Y Z

f◦p1

g◦p2

∃!

µ1

µ2

h

h
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We will show that both α ◦ f ◦ p and θ ◦ β satisfy the unique arrow.

To show α ◦ f ◦ p1 satisfies the diagram, we see

µ1 ◦ α ◦ f ◦ p1 = f ◦ p1

and
µ2 ◦ α ◦ f ◦ p1 = f ◦ p1 = g ◦ p2

Now to show θ ◦ β satisfies the diagram,

µ1 ◦ θ ◦ β = f ◦ π1 ◦ β = f ◦ p1

as well as
µ2 ◦ θ ◦ β = g ◦ π2 ◦ β = g ◦ p2

This proves that by uniqueness of the arrow, that α ◦ f ◦ p1 = θ ◦ β. Thus we get an induced map χ
in the following commutative diagram:

P

Y ×(Y×ZY ) X1 ×Z X2 X1 ×Z X2

Y Y ×Z Y

β

f◦p1

∃!

ι2

ι1 θ

α

Therefore the following diagram commutes as well:

X1

P Y ×(Y×ZY ) X1 ×Z X2 Y Z

X2

fp1

p2

χ

π2◦ι2

π1◦ι2

h

g

because
π2 ◦ ι2 ◦ χ = π2 ◦ β = p1

and
π1 ◦ ι2 ◦ χ = π1 ◦ β = p2

This proves that the limit of the diagram

X1

Y Z

X2

f

h

g

is simultaneously X1 ×Y X2 and Y ×(Y×ZY ) X1 ×Z X2, meaning they are defined up to unique
isomorphism, so in particular the following diagram is Cartesian:
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X1 ×Y X2 X1 ×Z X2

Y Y ×Z Y

Exercise 1.4.C

Proof. Let S be the defined set and πi : S → Ai are the projections. It’s clear that for any i, j ∈ I
and m : i→ j, the following diagram commutes:

S

Ai Aj

πi πj

Fm

by construction of S. Now suppose

W

Ai Aj

gi gj

Fm

commutes under the same hypotheses. If there were a map φ :W → S such that

W

S

Ai Aj

φ
gi gj

πi πj

Fm

commutes, then for each w ∈ W , φ(w) = s where πi(s) = gi(w). This element s is uniquely defined
to be (gi(w))i∈I . This demonstrates that φ exists and is unique, so indeed S = lim←−I

Ai.

Exercise 1.4.D

Proof. (a) I’m not entirely sure if the question wants to describe Q as an object of Ring or ModZ,
but I will assume we want Q ∈ Ring. We take the index set to be the set of positive integers
with a unique arrow n→ m if and only if there exists some positive integer k such that m = nk.

If this is the case, we define a ring morphism ϕn,k : Zn → Znk defined by x
ni 7→ kix

(nk)i . Here,

is the ring given by localization by the multiplicative subset generated by n. We define maps
ιn : Zn → Q as x

ni 7→ x
ni . Then by the construction, the following diagram commutes:

Q

Znk Zn

ιnk
ιn

ϕn,k

because

ιnk ◦ ϕn,k(
x

ni
) = ιnk(

xki

(nk)i
) =

xki

(nk)i
=

x

ni
= ιn(

x

ni
)

If we have another ring R with maps fn : Zn →W satisfying the commutativity hypotheses, we
want to show
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R

Q

Znk Zn

∃!
fnk

ιnk

fn

ιn

ϕn,k

By commutativity alone, we would require the unique map φ to act as x
ni 7→ fn(

x
ni ) which shows

that the map φ is unique. To be precise we should show that φ is indeed a ring morphism by
showing that it’s well defined for different choices of x

n , i.e. if xy = p
q then their images are the

same. Notice that x
y = p

q if and only if xqyq = yp
yq . Therefore

φ(
x

y
) = φ ◦ ιy(

x

y
) = φ ◦ ιyq(

xq

yq
) = φ ◦ ιq(

p

q
) = φ(

p

q
)

and the other ring morphism axioms can be easily verified.

(b) For any set X, we have the category Subset(X) in which we can define A1 ∪ A2 = lim−→I
Ai

where I is the discrete category

1 2

Explicitly, we are defining A1 ∪A2 as the coproduct of A1 and A2. If

B

A1 A2

commutes, then A1 ⊂ B and A2 ⊂ B which directly implies that the standard definition of
A1 ∪A2 ⊂ B. Therefore there is a morphism A1 ∪A2 → B, and uniqueness is by uniqueness of
arrows in Subset(X).

Exercise 1.4.E

Proof. Let S be the defined set and let ιi(a) = [(a, i)] where ιi : Ai → S. If m : i→ j, then

ιi(a) = [(a, i)]

and
ιj ◦ Fm(a) = [(Fm(a), j)]

Also notice that (a, i) ∼ (Fm(a), j) because Fm : Ai → Aj and idAj
= F idj are two maps such that

Fm(a) = idAj
(f(a)). This shows that S satisfies the required definition.

To show that S is universal, suppose we have another set W equipped with maps gi : Ai → W
that satisfy the definition. We want to show

W

S

Ai Aj

∃!
gi

Fm

ιi ιj

gj
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We define φ : S → W as φ([(a, i)]) = gi(a), which proves uniqueness because this condition comes
directly from commutativity. To prove existence, we just need to show φ is well defined. In other
words, we need to show that if (ai, i) ∼ (aj , j) then gi(ai, i) = gj(aj , j). If (ai, i) ∼ (aj , j), then for
some α : i→ k and some β : j → k,

Fα(ai) = Fβ(aj)

Then the following diagram must commute:

W

Ai Ak Aj

gi

Fα

gk

Fβ

gj

We now observe that
gi(ai) = gk ◦ Fα(ai) = gk ◦ Fβ(aj) = gj(aj)

so φ is well defined, which proves existence.

Exercise 1.4.F

Proof. For the problem, let mi denote (mi, i) ∈
∐

I Mi as well as the element in Mi depending on
the context for convenience. To prove addition is well defined, suppose mi ∼ mi′ and mj ∼ mj′ for
some i, i′, j, j′ ∈ I . Also pick some l and l′ such that we have

i l ju v

and

i′ l′ j′u′ v′

Then there exists some f : i → ni and some f ′ : i′ → ni such that Ff(mi) = Ff ′(mi′) and some
g : j → nj and g′ : j′ → nj such that Fg(mj) = Fg′(mj′). By the first filtered hypothesis, we have
the following set of arrows in I :

i j

ni n nj

i′ j′

as well as the other set of arrows

i l j

k

i′ l′ j′

We can get another set of arrows

n m k

Therefore we have the paths:
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1. i ni n m

2. i l k m

3. j nj n m

4. j l k m

5. i′ ni n m

6. i′ l′ k m

7. j′ nj n m

8. j′ l′ k m

Then by the second requirement of I being filtered, there exists
m1,m2,m3,m4 ∈ I and arrows such that the following diagram commutes:

l′ k m

i′ m3

ni n m

i m1

l k m

j m2

nj n m

j′ m4

l′ k m

We will add on to this diagram by obtaining the following commutative diagrams:
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m3 m′
13

m m13

m1 m′
13

m2 m′
24

m m24

m4 m′
24

and we will add on to these commutative diagrams one final time to obtain the following commutative
diagram:

m13 m′
0

m m0

m24 m′
0

Adding all of our newest constructions to the large diagram, we get the following commutative diagram:
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l′ k m

i′ m3 m′
13

ni n m m13 m′
0

i m1 m′
13

l k m m0

j m2 m′
24

nj n m m24 m′
0

j′ m4 m′
24

l′ k m

Now just think of this commutative diagram in ModA with the A-modules indexed by the elements
in I above because it’s tedious to relabel the entire diagram. Because all of the morphisms are linear,
if we want to show that Fu(mi) + Fv(mj) ∼ Fu′(mi′) + Fv′(mj′), it suffices to show that there
exists morphisms χ2 : l′ → m0 and χ1 : l → m0 such that F (χ1 ◦ u)(mi) = F (χ2 ◦ u′)(mi′) and
F (χ1 ◦ v)(mj) = F (χ2 ◦ v′)(mj′). We claim that χ1 is the path from l → m0 in the above diagram
and χ2 is the path from l′ → m0. Recalling that Fu(mi) = Fu′(mi′), when tracking our elements
mi,mi′ ,mj ,mj′ , we have that the path i′ → ni = i→ ni and j

′ → nj = j → nj . Therefore we track
the path of mi′ as

l′ k m

i′ m3 m′
13

ni n m m13 m′
0

i m1 m′
13

l k m m0

equals
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l′ k m

i′ m3 m′
13

ni n m m13 m′
0

i m1 m′
13

l k m m0

equals

l′ k m

i′ m3 m′
13

ni n m m13 m′
0

i m1 m′
13

l k m m0

equals

l′ k m

i′ m3 m′
13

ni n m m13 m′
0

i m1 m′
13

l k m m0

equals
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l′ k m

i′ m3 m′
13

ni n m m13 m′
0

i m1 m′
13

l k m m0

which demonstrates that F (χ1 ◦ u)(mi) = F (χ2 ◦ u′)(mi′). On the other hand, tracking mj′ ,

l k m m0

j m2 m′
24

nj n m m24 m′
0

j′ m4 m′
24

l′ k m

equals

l k m m0

j m2 m′
24

nj n m m24 m′
0

j′ m4 m′
24

l′ k m

equals
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l k m m0

j m2 m′
24

nj n m m24 m′
0

j′ m4 m′
24

l′ k m

equals

l k m m0

j m2 m′
24

nj n m m24 m′
0

j′ m4 m′
24

l′ k m

equals

l k m m0

j m2 m′
24

nj n m m24 m′
0

j′ m4 m′
24

l′ k m

which shows that F (χ1 ◦ v)(mj) = F (χ2 ◦ v′)(mj′). This proves that

Fχ1(Fu(mi) + Fv(mj)) = Fχ2(Fu
′(mi′) + Fv′(mj′))

so that indeed
[(Fu(mi) + Fv(mj), l)] = [(Fu′(mi′) + Fv′(mj′), l

′)]

so addition is independent of choice of u, v, and l.
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We define multiplication as a[(mi, i)] = [(ami, i)]. To show multiplication is well defined, suppose
(mi, i) ∼ (mj , j). Then for some f : i→ k and some g : j → k, Ff(mi) = Fg(mj). Then

Ff(ami) = aFf(mi) = aFg(mj) = Fg(amj)

implies
(mi, i) ∼ (mj , j)⇒ (ami, i) ∼ (amj , j)⇒ a[(mi, i)] = a[(mj , j)]

demonstrating multiplication is well defined.

The module axioms are readily verifiable. Now suppose we have an A-module W that satisfies the
commutativity of the diagram indexed by I equipped with morphisms αi. We want to show

W

lim−→I
Mi

Mi Mj

∃!
αi

Ff

αj

We will construct such a unique map. By commutativity, we are required that φ([(mi, i)]) = αi(mi).
This proves φ is unique. To prove φ is well defined, suppose (mi, i) ∼ (mj , j). Then there exists
some f : i → k and some g : j → k such that Ff(mi) = Fg(mj). Then the following diagram must
commute:

W

Mi Mk Mj

αi

Ff

αk

Fg

αj

Therefore
αi(mi) = αk ◦ Ff(mi) = αk ◦ Fg(mj) = αj(mj)

so φ is well defined. To show φ is linear, we have

φ([(mi, i)] + [(mj , j)]) = φ([Ff(mi) + Fg(mj), k]) = αk(Ff(mi) + Fg(mj))

= αk ◦ Ff(mi) + αk ◦ Fg(mj) = αi(mi) + αj(mj) = φ([(mi, i)]) + φ([(mj , j)])

by the below commutative diagram:

W

lim−→I
Mi

Mi Mk Mj

∃!
αi

Ff Fg

αj

Additionally,

φ(a[(mi, i)]) = φ([(ami, i)]) = αi(ami) = aαi(mi) = aφ([(mi, i)])

which proves existence.
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Exercise 1.4.G

Proof. We take the index category to be the elements of S where there is an arrow s : s1 → s2 if and
only if s2 = ss1 for some s ∈ S. In this case, we define the map Fs : 1

s1
A→ 1

ss1
as

a

s1
7→ sa

ss1

Our index category is filtered as for any s1, s2 ∈ S, there is an arrow s1 → s1s2 and an arrow
s2 → s1s2. By construction, there is at most one arrow from any object to any other object, so the
second condition is trivially true. To show that lim−→

1
sA is isomorphic to S−1A, we will first show the

existence of a morphism φ : lim−→
1
sA→ S−1A. For each s ∈ S, we define a map ιs :

1
sA→ S−1A given

by a
s 7→

a
s . To induce the map φ, we want to show the following diagram commutes:

S−1A

1
ss1
A 1

s1
A

ιss1

F (s)

ιs1

We have
ιss1 ◦ F (s)(

a

s1
) = ιss1(

as

s1s
) =

as

s1s
=
a

s
= ιs(

a

s
)

which proves the diagram commutes, hence we obtain the induced morphism φ : lim−→
1
sA → S−1A.

Now to find the inverse morphism, we will use the universal property of S−1A. We construct a
map α : A → lim−→

1
sA given by α(a) = a

1 . To show that for any s ∈ S, multiplication by s is an

automorphism of lim−→
1
sA, if we take any a

s′ ∈ lim−→
1
sA such that

s
a

s′
= 0 ⇐⇒ sa

s′
= 0

if and only if there exists some F (r) such that F (r)( sas′ ) = 0, which by definition means

rsa

s′r
= 0

which is true if and only if there exists some r′ ∈ S such that

r′rsa = 0

Assuming that 0 /∈ S, using the fact that A is an integral domain and r′rs ∈ S implies

a = 0

Therefore multiplication is injective. To show multiplication by s is surjective, fix any a
s′ ∈ lim−→

1
sA.

Then
s
a

s′s
=
as

ss′
= (

as

ss′
) = F (s)(

a

s′
) = (

a

s′
) =

a

s′

so indeed multiplication by s is an automorphism. Therefore we use the following universal property
to get a map ϕ : S−1A→ lim−→

1
sA:

A S−1A

lim−→
1
sA

α
∃!

These can easily checked to be inverses of each other, which proves the isomorphism. Equivalently,
we could have just used the previous exercise to look at the structure of lim−→

1
sA, and observed that

the underlying sets are the same, and then proved the structures are isomorphic as well.
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Exercise 1.4.H

Proof. The commutativity of ⊕
i∈I Mi/ ∼

Mi Mj

ιi

F (n)

ιj

commutes by definition of ∼. Now suppose

W

Mi Mj

gi

F (n)

gj

commutes. If

W

⊕
Mi/ ∼

Mi Mj

∃!gi

ιi

F (n)

ιj

gj

the induced morphism φ would have to satisfy φ ◦ ιi = gi. By linearity, this determines φ completely
as

φ(
∑
i

ιi(mi)) =
∑
i

φ ◦ ιi(mi) =
∑
i

gi(mi)

because also every element of the direct sum is in the image of one of the ι’s. This proves uniqueness.
To show φ is well defined on equivalence classes, suppose F (n)(mi) = mj ⇐⇒ mj ∼ mi. Then

φ ◦ ιi(mi) = gi(mi) = gj ◦ F (n)(mi) = gj(mj) = φ ◦ ιj(mj)

so φ is well defined. φ is A-linear as

φ(
∑
i

ιi(mi) +
∑
j

ιj(nj)) = φ(
∑
i

ιi(mi + ni) =
∑
i

φ ◦ ιi(mi + ni) =
∑
i

φ ◦ ιi(mi) +
∑
j

φ ◦ ιj(nj)

and
φ(aιi(mi)) = φ(ιi(ami)) = gi(ami) = agi(mi) = aφ(ιi(mi))

Then indeed the construction is the colimit.

Section 1.5

Exercise 1.5.A

Proof. The diagram is below where g∗ = g◦ and Gg∗ = Gg◦:

MorB(F (A), B) MorB(F (A), B′)

MorA (A,G(B)) MorA (A,G(B′))

g∗

τAB τAB′

Gg∗
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Exercise 1.5.B

Proof. We define ηA to be τAF (A)(idF (A)) and ϵB as τ−1
FG(B)B(idG(B)). Tracking ηA on the bottom of

the diagram below:

MorB(F (A), F (A)) MorB(F (A), B)

MorA (A,GF (A)) MorA (A,G(B))

g∗

τAF (A) τAB

Gg∗

we see
Gg∗(ηA) = Gg ◦ ηA

while on the top we get

τAB ◦ g∗(idF (A)) = τAB(g ◦ idF (A)) = τAB(g)

By commutativity, the two must be equal, and g ∈ MorB(F (A), B) was arbitrary.

For ϵB , we will use the following diagram:

MorB(FG(B), B) MorB(F (A), B)

MorA (G(B), G(B)) MorA (A,G(B))

Ff∗

τG(B)B τAB

f∗

On one hand, we get
Ff∗(ϵB) = ϵB ◦ Ff

while on the other hand we have

τ−1
AB ◦ f

∗ ◦ τG(B)B(ηB) = τ−1
AB ◦ f

∗(idG(B)) = τ−1
AB(idG(B) ◦ f) = τ−1

AB(f)

and by commutativity the two are equal, where f ∈ MorA (A,G(B)) was arbitrary.

Exercise 1.5.C

Proof. We will use the following universal property:

M ×N M ⊗N

P

α ∃!

For an arbitrary ϕ ∈ Hom(M,Hom(N,P )), we let α(m,n) = ϕ(m)(n). Then

α(m1 +m2, n) = ϕ(m1 +m2)(n) = ϕ(m1)(n) + ϕ(m2)(n) = α(m1, n) + α(m2, n)

and
α(m,n1 + n2) = ϕ(m)(n1 + n2) = ϕ(m)(n1) + ϕ(m)(n2) = α(m,n1) + α(m,n2)

as well as
α(am, n) = ϕ(am)(n) = aϕ(m)(n) = ϕ(m)(an) = α(m, an)

which proves α is bilinear, hence we get our induced map βϕ ∈ Hom(M ⊗N,P ). Then we can define
a map φ : Hom(M,Hom(N,P ))→ Hom(M ⊗N,P ) as φ(ϕ) = βϕ.
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On the other hand, if we have some ϕ ∈ Hom(M⊗N,P ), we will define some γ ∈ Hom(M,Hom(N,P ))
where γ(m)(n) = ϕ(m⊗ n). Then indeed for any arbitrary m ∈M , γ(m) ∈ Hom(N,P ) because

γ(m)(n1 + n2) = ϕ(m⊗ n1 + n2) = ϕ(m⊗ n1) + ϕ(m⊗ n2) = γ(m)(n1) + γ(m)(n2)

and
γ(m)(an) = ϕ(m⊗ an) = aϕ(m⊗ n) = aγ(m)(n)

Also γ ∈ Hom(M,Hom(N,P )) because

γ(m1 +m2)(n) = ϕ(m1 +m2 ⊗ n) = ϕ(m1 ⊗ n) + ϕ(m2 ⊗ n) = γ(m1)(n) + γ(m2)(n)

and
γ(am)(n) = ϕ(am⊗ n) = aϕ(m⊗ n) = aγ(m)(n)

Therefore we can define a map φ̃ : Hom(M ⊗N,P )→ Hom(M,Hom(N,P )) given by φ̃(ϕ) = γϕ. To
show that φ is a bijection, we observe

φ ◦ φ̃(ϕ)(m⊗ n) = φ(γϕ)(m⊗ n) = γϕ(m)(n) = ϕ(m⊗ n)

and
φ̃ ◦ φ(ϕ)(m)(n) = φ̃(βϕ)(m)(n) = βϕ(m⊗ n) = ϕ(m)(n)

so indeed φ̃ = φ−1 and φ is a bijection.

Exercise 1.5.D

Proof. We fix arbitrary f ∈ Hom(A′, A) and g ∈ Hom(B,B′) and define
τAB : Hom(A ⊗N,B) → Hom(A,Hom(N,B)) as φ−1 in the previous exercise, which we proved was
a bijection. We first want to show that the following diagram commutes:

Hom(A⊗N,B) Hom(A′ ⊗N,B)

Hom(A,Hom(N,B)) Hom(A′,Hom(N,B))

f⊗N∗

τAB τA′B

f∗

Fixing any ϕ ∈ Hom(A⊗N,B) and any a′ ∈ A′ and n ∈ N , we get on one hand that

τA′B ◦ f ⊗N∗(ϕ)(a′)(n) = τA′B(ϕ ◦ f ⊗N)(a′)(n) = ϕ ◦ f ⊗N(a′ ⊗ n) = ϕ(f(a′)⊗ n)

On the other side of the diagram, we get

f∗ ◦ τAB(ϕ)(a′)(n) = τAB(ϕ) ◦ f(a′)(n) = ϕ(f(a′)⊗ n)

which proves the diagram does commute. Now we want to show the below diagram commutes as well:

Hom(A⊗N,B) Hom(A⊗N,B′)

Hom(A,Hom(N,B)) Hom(A,Hom(N,B′))

g∗

τAB τAB′

g∗∗

where g∗ is as usual and g∗∗ = (g∗)∗. Fixing any a ∈ A,n ∈ N and ϕ ∈ Hom(A ⊗ N,B), we get on
the top that

τAB′ ◦ g∗(ϕ)(a)(n) = τAB′(g ◦ ϕ)(a)(n) = g ◦ ϕ(a⊗ n)
On the bottom, we get

g∗∗ ◦ τAB(ϕ)(a)(n) = g∗ ◦ τAB(ϕ)(a)(n) = g ◦ τAB(ϕ)(a)(n) = g ◦ ϕ(a⊗ n)

which shows this diagram commutes as well, proving that ·⊗N and Hom(N, ·) are adjoint functors.
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Exercise 1.5.E

Proof. We want to first show that the following diagram commutes:

Hom(N ⊗B A,M) Hom(N ′ ⊗B A,M)

Hom(N,MB) Hom(N ′,MB)

f⊗A∗

τNM τN′M

f∗

To do this, we first need to define what τNM is. Given any ϕ ∈ Hom(N ⊗B A,M), let φ(ϕ) ∈
Hom(N,MB) act as

φ(ϕ)(n) = ϕ(n⊗ 1)

To show φ(ϕ) is actually B-linear, we observe

φ(ϕ)(n1 + n2) = ϕ(n1 + n2 ⊗ 1) = ϕ(n1 ⊗ 1) + ϕ(n2 ⊗ 1) = φ(ϕ)(n1) + φ(ϕ)(n2)

as well as
φ(ϕ)(bn) = ϕ(bn⊗ 1) = bϕ(n⊗ 1) = bφ(ϕ)(n)

On the other hand if we have some ϕ′ ∈ Hom(N,MB), let φ̃(ϕ
′) ∈ Hom(N ⊗B A,M) act as

φ̃(ϕ′)(n⊗ a) = aϕ′(n)

where we can consider elements ofM as elements ofMB and vice versa. To show φ̃(ϕ′) is well defined,
we define for ϕ′ an α : N ×A→M as α(n, a) = aϕ′(n). Then

α(n1 + n2, a) = aϕ′(n1 + n2) = aϕ′(n1) + aϕ′(n2) = α(n1, a) + α(n2, a)

and
α(n, a1 + a2) = (a1 + a2)ϕ

′(n) = a1ϕ
′(n) + a2ϕ

′(n) = α(n, a1) + α(n, a2)

as well as
α(bn, a) = aϕ′(bn) = baϕ′(n) = α(n, ba)

which demonstrates φ̃ satisfies the universal property below:

N ×A N ⊗B A

M

α ∃!

Now to show φ̃ = φ−1 and φ is a bijection, we have

φ ◦ φ̃(ϕ′)(n) = φ̃(ϕ′)(n⊗ 1) = ϕ′(n)

as well as
φ̃ ◦ φ(ϕ)(n⊗ a) = aφ(ϕ)(n) = aϕ(n⊗ 1) = ϕ(n⊗ a)

which proves the two are inverses and are bijective.

Therefore we define τNM as φ was above, so we’ve already shown τNM is a bijection. Now back
to the diagram below,

Hom(N ⊗B A,M) Hom(N ′ ⊗B A,M)

Hom(N,MB) Hom(N ′,MB)

f⊗A∗

τNM τN′M

f∗
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we fix any ϕ ∈ Hom(N ⊗B A,M) and any n′ ∈ N ′, then

τN ′M ◦ f ⊗A∗(ϕ)(n′) = f ⊗A∗(ϕ)(n′ ⊗ 1) = ϕ ◦ f ⊗A(n′ ⊗ 1) = ϕ(f(n′)⊗ 1)

On the bottom side, we get

f∗ ◦ τNM (ϕ)(n′) = τNM (ϕ) ◦ f(n′) = τNM (ϕ)(f(n′)) = ϕ(f(n′)⊗ 1)

so the diagram commutes. To show

Hom(N ⊗B A,M) Hom(N ⊗B A,M ′)

Hom(N,MB) Hom(N,M ′
B)

g∗

τNM τNM′

g∗

the above diagram commutes where the g∗ on the bottom is now considered to be B-linear, fix any
ϕ ∈ Hom(N ⊗B A,M) and any n ∈ N . Then

τNM ′ ◦ g∗(ϕ)(n) = τNM ′(g ◦ ϕ)(n) = g ◦ ϕ(n⊗ 1)

On the bottom,
g∗ ◦ τNM (ϕ)(n) = g ◦ τNM (ϕ)(n) = g ◦ ϕ(n⊗ 1)

This proves that ·B is right adjoint to · ⊗B A.

Exercise 1.5.F

Proof. If G is an abelian group, then we claim that the following diagram commutes for every map
of abelian semigroups φ and every abelian group H:

G G

H

idG

φ
∃!

If such a unique map ϕ were to exist, then it would satisfy

ϕ ◦ idG = φ⇒ ϕ = φ

This proves uniqueness. Existence is obvious since ϕ = φ gives existence.

Exercise 1.5.G

Proof. We will take the construction given in the problem for our construction, where

[(a, b)] + [(c, d)] = [(a+ c, b+ d)]

Suppose that (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′). Then there exists e1 and e2 ∈ S where

a+ b′ + e1 = b+ a′ + e1

and where
c+ d′ + e2 = d+ c′ + e2

It follows that (a+ c, b+ d) ∼ (a′ + c′, b′ + d′) because

a+ c+ b′ + d′ + (e1 + e2) = (a+ b′ + e1) + (c+ d′ + e2)

= (b+ a′ + e1) + (d+ c′ + e2) = a′ + c′ + b+ d+ (e1 + e2)
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Therefore addition is well defined. Also

[(a, b)] + [(c, d)] = [(a+ c, b+ d)] = [(c+ a, d+ b)] = [(c, d)] + [(a, b)]

so addition is commutative. In a similar fashion, addition is associate because it is in S. Because S
is nonempty, there exists some s ∈ S, so we claim that [(s, s)] is the identity on H(S). It’s clear that
this identity is independent of the choice of s ∈ S because for any s, r ∈ S,

s+ r + s = r + s+ s⇒ (s, s) ∼ (r, r)

To show [(s, s)] = 0, for any a, b ∈ S, we have

[(c, c)] + [(a, b)] = [(c+ a, c+ b)] = [(a, b)]

because
c+ a+ b+ a = a+ c+ b+ a⇒ (c+ a, c+ b) ∼ (a, b)

Also, we claim that [(a, b)]−1 = [(b, a)]. To show this,

[(a, b)] + [(b, a)] = [(a+ b, b+ a)] = [(a+ b, a+ b)] = 0

Therefore the abelian semigroup map is

s 7→ [(s+ s, s)]

To show this map φ is linear, we see

φ(a+ b) = [(a+ b+ a+ b, a+ b)] = [(a+ a, a)] + [(b+ b, b)] = φ(a) + φ(b)

Now to show that H is left-adjoint to the forgetful functor F , we first want to show the following
diagram commutes:

Hom(H(A), B) Hom(H(A′), B)

Mor(A,F (B)) Mor(A′, F (B))

Hf∗

τAB τA′B

f∗

where we define Hf([(a, b)]) = [(f(a), f(b))] and where we define τAB(ϕ)(a) = ϕ([(a + a, a)]) and
τ−1
AB(φ)([(a, b)]) = φ(a)−φ(b). To show τ−1

AB is well defined, suppose (a, b) ∼ (c, d). Then there exists
some e ∈ A such that

a+ d+ e = c+ b+ e

By linearity of φ, we get
φ(a) + φ(d) + φ(e) = φ(c) + φ(b) + φ(e)

Because now these are considered as objects of B, we have cancellation so

φ(a) + φ(d) = φ(c) + φ(b)

By subtraction in B, we get

φ(a)− φ(b) = φ(c)− φ(d)⇒ τ−1
AB(φ)([(a, b)]) = τ−1

AB(φ)([(c, d)])

Then for any φ ∈ Mor(A,F (B)) and any a ∈ A, we get

τAB ◦ τ−1
AB(φ)(a) = τ−1

AB(φ)([(a+ a, a)]) = φ(a+ a)− φ(a) = φ(a)
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and on the other hand

τ−1
AB ◦ τAB(ϕ)([(a, b)]) = τAB(ϕ)(a)− τAB(ϕ)(b) = ϕ([(a+ a, a)])− ϕ([(b+ b, b)])

= ϕ([(a+ a, a)]− [(b+ b, b)]) = ϕ([(a+ a, a)] + [(b, b+ b)]) = ϕ([(a+ a+ b, a+ b+ b)]) = ϕ([(a, b)])

This proves that our τ−1
AB is actually the inverse of τAB and that both are indeed bijections. To prove

the diagram commutes, we have for any a′ ∈ A′ and any ϕ ∈ Hom(H(A), B),

τA′B ◦Hf∗(ϕ)(a′) = Hf∗(ϕ)([(a′ + a′, a′)]) = ϕ ◦Hf([(a′ + a′, a′)])

= ϕ([f(a′) + f(a′), f(a′)])

On the other hand,

f∗ ◦ τAB(ϕ)(a′) = τAB(ϕ)(f(a
′)) = ϕ([f(a′) + f(a′), f(a′)])

so this diagram does indeed commute. Now we want to show the following diagram commutes:

Hom(H(A), B) Hom(H(A), B′)

Mor(A,F (B)) Mor(A,F (B′))

g∗

τAB τAB′

Fg∗

Then for any ϕ ∈ Hom(H(A), B) and any a ∈ A,

τAB′ ◦ g∗(ϕ)(a) = g∗(ϕ)([(a+ a, a)]) = g ◦ ϕ([(a+ a, a)])

while along the bottom,

Fg∗ ◦ τAB(ϕ)(a) = Fg ◦ τAB(ϕ)(a) = Fg ◦ ϕ([(a+ a, a)]) = g ◦ ϕ([(a+ a, a)])

since Fg(x) = g(x) for all x ∈ F (B). Therefore both diagrams commute, which proves that H is left
adjoint to F .

Exercise 1.5.H

Proof. To show this embedding is fully faithful, it suffices to show that every morphism f : M → N
in ModA defines a unique morphism f : S−1M → S−1N in ModS−1A because it’s clear that every
ModS−1A morphism defines a unique ModA morphism. By the universal property of M and N , if
f :M → N then we have the following commutative diagram:

M S−1M

N

f
∃!

because S−1M ∼=M when M is already an S−1A module. Also N ∼= S−1N yields the desired unique
f ′ : S−1M → S−1N . We could understand the action of the induced map f ′ : S−1M → S−1N by
noticing that

1 = f ′(
s

s
) = sf ′(

1

s
) = f ′(

1

s
)s

so that

f ′(
1

s
) =

1

s

which defines the desired S−1A module homomorphism which must act as

f ′(
m

s
) =

1

s

f(m)

1
=
f(m)

s
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Furthermore, the forgetful functor applied to this induced homomorphism is indeed the original map
f .
If we let L : ModA → ModS−1A be the localization functor, we claim that L is left adjoint to the
forgetful F : ModS−1A → ModA. For any objects X,Y ∈ ModA and W,Z ∈ ModS−1A and any
f : Y → X, we have

HomModS−1A
(L(X), Z) HomModS−1A

(L(Y ), Z)

HomModA
(X,F (Z)) HomModA

(Y, F (Z))

τXZ

Lf∗

τY Z

f∗

where τ is just the forgetful functor acting on homomorphisms, which commutes because

f∗ ◦ τXZ(g)(y) = τXZ(g) ◦ f(y) = g ◦ f(y)

and
τY Z ◦ Lf∗(g)(y) = τY Z(g ◦ Lf)(y) = g ◦ f(y)

where g ∈ HomModS−1A
(L(X), Z) and y ∈ Y were arbitrary. On the other hand,

HomModS−1A
(L(X),W ) HomModS−1A

(L(X), Z)

HomModA
(X,F (W )) HomModA

(X,F (Z))

τXW

g∗

τXZ

Fg∗

which commutes because

τXZ ◦ g∗(f)(x) = τXZ(g ◦ f)(x) = g ◦ f(x)

as well as
Fg∗ ◦ τXY (f)(x) = Fg ◦ τXY (f)(x) = g ◦ f(x)

where g :W → Z, f : L(X)→W and x ∈ X are arbitrary.
Then indeed L is left adjoint to F .

Section 1.6

Exercise 1.6.A

Proof. im f i
ιi

↪−→ Ai+1 by Lemma 0.1, so 0 → im f i
ιi−→ Ai+1 being exact is clear. Furthermore, if

πi : Ai+1 ↠ cok f i is the projection, kerπi = im ιi so im f i
ιi−→ Ai+1 πi

−→ cok f i is exact. Finally, πi is

epic by Lemma 0.2, which shows Ai+1 πi

−→ cok f i → 0 is exact as well, thus proving

0→ im f i
ιi−→ Ai+1 πi

−→ cok f i → 0

is exact.
For the second exact sequence, we first want a monomorphism Hi(A•) ↪→ cok f i−1. For notation, let
ji : ker f i ↪→ Ai be the canonical maps for each i. First, we obtain the following induced morphism
φi from the below commutative diagram:

Ai+1

cok f i−1

Ai−1 Ai

∃!

0

fi−1

fi
πi−1

61



Using this factorization of f i = φi ◦ πi−1, we obtain another induced morphism ϕi from the following
commutative diagram:

Ai+1

ker f i Ai

im di−1

ji

0
fi

ιi−1

∃!

where f i ◦ ιi−1 = 0 because f i = φi ◦ πi−1 so

f i ◦ ιi−1 = φi ◦ πi−1 ◦ ιi−1 = φi ◦ 0 = 0

Then we define Hi(A•) = ker f i/ im f i−1 as cokϕi, and let σi : ker f i ↠ Hi(A•) be the projection.
Then we obtain one last induced morphism χi from the following commutative diagram:

cok f i−1

Hi(A•)

im f i−1 ker f i Ai

∃!

0

ϕi

ιi−1

ji
σi

πi−1

where πi−1 ◦ ji ◦ ϕi = 0 because ji ◦ ϕi = ιi−1 and πi−1 ◦ ιi−1 = 0. We claim that χi is the desired
monomorphism. By Lemma 0.5, ker(πi−1 ◦ ji) = kerπi−1 = im f i−1, hence by commutativity of the
above diagram ker(χi ◦ σi) = im f i−1. By Lemma 0.12, since σi is epic and

ker(χi ◦ σi) = im f i−1 = kerσi

we obtain that χi is monic as desired. Thus 0→ Hi(A•)
χi

−→ cok f i−1 is exact.
For the map ωi : cok f i−1 → im f i, we will let it be the induced map from the following commutative
diagram:

im f i

cok f i−1

Ai−1 Ai

∃!

fi−1

0
πi−1 f̃i

It follows from Lemma 0.3 that ωi is epic, so that cok f i−1 ωi

−→ im f i → 0 is exact.
The last thing to show is that kerωi = imχi, which we can do by showing that cokχi = ωi. Because
χi is monic, we have

cokχi = cok f i−1/Hi(A•) = cok f i−1/(ker f i/ im f i−1)

= (Ai/ im f i−1)/(ker f i/ im f i−1)
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By Theorem 0.16 (or the 3IT) , we get that

(Ai/ im f i−1)/(ker f i/ im f i−1) = Ai/ ker f i

By the 1IT 0.15, we have that
Ai/ ker f i = im f i

which shows cokχi = im f i as desired. Therefore Hi(A•)
χi

−→ cok f i−1 ωi

−→ is also exact, proving the
following is exact:

0→ Hi(A•)
χi

−→ cok f i−1 ωi

−→ im f i → 0

Exercise 1.6.B

Proof. Because Hi(A•) = ker di/ im di−1, we get that hi(A•) = dim(ker di) − dim(im di−1) by basic
linear algebra. The rank-nullity theorem also gives us that

dim(im di) + dim(ker di) = dimAi

Therefore ∑
(−1)i dimAi =

∑
(−1)i[dim(im di) + dimker(di)]

We claim that the index i is even if and only if dim(ker di) and dim(im di) have a positive sign in∑
(−1)ihi(A•). For the dim(ker di) term, this is immediate. We also notice that the dim(im di) term

actually comes from hi+1(A•), which has a factor of (−1)i+1 = −1, so that

(−1)i+1hi+1(A•) = −(dimker di+1 − dim im di) = dim im di − dimker di+1

so indeed the sign of the dim im di is positive whenever i is even. A very similar proof shows that
the index i is odd if and only if dim(ker di) and dim(im di) have a negative sign in

∑
(−1)ihi(A•). It

follows that ∑
(−1)i dim im di =

∑
(−1)ihi(A•)

When A• is exact, then ker di = im di−1 for every i, so in particular dimker di − dim im di−1 = 0 for
every i. By the main result, we get that∑

(−1)i dimAi =
∑

(−1)ihi(A•) = 0

Exercise 1.6.C

Proof. We can define the addition structure of Hom(A•, B•) as (α + β)i = αi + βi for each i where
α, β ∈ Mor(A•, B•). This gives abelian group structure to Hom(A•, B•) because for each i, addition
commutes, associativity holds, and inverses and identities exist. This defines a morphism in ComC

because if for each i
αi+1 ◦ f i = gi ◦ αi

and something similar for β, then

(αi+1 + βi+1) ◦ f i = αi+1 ◦ f i + βi+1 ◦ f i = gi ◦ αi + gi ◦ βi = gi ◦ (αi + βi)

because C is an abelian category so composition distributes over addition. This shows that the sum
of morphisms in ComC are indeed commutative diagrams. We also need to show that addition
distributes over composition. If α, β : B• → C• in ComC and f, g : A• → B•, then

[α ◦ (f + g)]i = αi ◦ (f i + gi) = αi ◦ f i + αi ◦ gi = (α ◦ f)i + (α ◦ g)i
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as well as
[(α+ β) ◦ f ]i = (αi ◦ βi) ◦ f i = αi ◦ f i + βi ◦ f i = (α ◦ f)i + (β ◦ f)i

again by Ad1. in C . This shows that Ad1. holds for ComC .
We claim that the zero object 0 in ComC is the exact sequence

· · · → 0→ 0→ 0→ . . .

We can prove that 0 is initial because if we fix any

· · · → Ai−1 → Ai → Ai+1 → · · · ∈ ComC

then

. . . 0 0 0 . . .

. . . Ai−1 Ai Ai+1 . . .

clearly commutes, and because each arrow 0→ Ai is unique, it proves there is a unique morphism in
ComC from 0→ A• so indeed 0 is the initial object in ComC . A very similar argument shows that
0 is final in ComC , hence 0 is the zero object in ComC . This proves that Ad2. holds in ComC .
We define the product A• ×B• as the complex where

(A• ×B•)i = Ai ×Bi

and the morphism Ai × Bi → Ai+1 × Bi+1 is given by (Ai → Ai+1) × (Bi → Bi+1), which more
precisely is the induces morphism in the following commutative diagram:

Ai ×Bi

Ai+1 ×Bi+1

Ai Bi

Ai+1 Bi+1

∃!

and the projection A• ×B• → A• is the following commutative diagram:

. . . Ai−1 ×Bi−1 Ai ×Bi Ai+1 ×Bi+1 . . .

. . . Ai−1 Ai Ai+1 . . .

* which commutes by definition–the projection to B• is almost defined identically. It’s easy to show
that this is indeed the product in ComC . Therefore ComC satisfies Ad3., so ComC is additive.
To show ComC is abelian, we take any f : A• → B• and claim that ker f is the complex below:

. . . ker f i−1 ker f i ker f i+1 . . .

where for each i the arrow ker f i−1 → ker f i is the one induced in the following diagram:
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Bi

ker f i Ai

ker f i−1 Ai−1

0
fi

∃!

where if for each i we let gi : Ai → Ai+1 be the morphism of the complex A• and hi : Bi → Bi+1 be
the morphisms in the complex B• and let ιi : ker f i ↪→ Ai be the inclusion, we have by definition of
f being a morphism in ComC that the following diagram commutes:

Ai−1 Ai

Bi−1 Bi

fi−1

gi−1

fi

hi−1

Therefore
f i ◦ gi−1 ◦ ιi−1 = hi−1 ◦ f i−1 ◦ ιi−1 = hi−1 ◦ 0 = 0

proving that we do indeed get the desired induced morphisms. By construction, the following diagram
also commutes:

. . . Ai−1 Ai Ai . . .

. . . ker f i−1 ker f i ker f i+1 . . .

gi−1 gi

ιi−1 ιi ιi+1

We can define cokernels dually, and to be precise we should prove that these satisfy the universal
property we want them to, but we shall not to save space. It’s an easy exercise if you wish.
This shows that kernels and cokernels exist, and f is a monic if and only if each f i are monic, in
which case we get by our constructions and the fact that C is an abelian category that ker cok f = f .
Similarly, cok ker f = f whenever f is epic. This shows that indeed ComC is abelian.

Exercise 1.6.D

Proof. We will deal with the special case ModA for ease of proof, which suffices because of the Freyd-
Mitchell Theorem although in general I try not to invoke this theorem. If h ∈ Hom(A•, B•), then we
define a map Hi(h) : Hi(A•)→ Hi(B•) given by

a+ im f i−1 7→ hi(a) + im gi−1

where a ∈ ker f i. Notice that if a ∈ ker f i, then hi(a) ∈ ker gi because

gi ◦ h(a) = hi+1 ◦ f i(a) = hi+1(0) = 0

To show Hi(h) is well defined, we need to show it’s constant on representatives of im f i−1. To do this,
fix any a ∈ im f i−1 ⊂ ker f i and let f i−1(x) = a for some x ∈ Ai−1. Then

Hi(h)(a) = hi(a) + im gi−1 = hi ◦ f i−1(x) + im gi−1 = gi−1 ◦ hi−1(x) + im gi−1 = im gi−1

so indeed Hi(h) is constant on im f i−1 so it is well defined.
Then we can define Hi : ComC → C to be a functor. We can do this because Hi(idA•) acts on
elements a+ im f i−1 ∈ Hi(A•) as

a+ im f i−1 7→ idAi(a) + im f i−1 = a+ im f i−1
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which shows Hi(idA•) = idHi(A•). If we’re given f : A• → B• and g : B• → C• as morphisms in
ComC , then for any a ∈ ker f i

Hi(g ◦ f)([a]) = [g ◦ f(a)] = Hi(g)([f(a)]) = Hi(g) ◦Hi(f)([a])

Then indeed Hi is a covariant functor.

Exercise 1.6.E

Proof. Let f, g : C• → D• be homotopic through maps w : Ci → Di−1, i.e. f − g = dw + wd. Fixing
some index i, we have f i − gi = di−1

D wi + wi+1diC . We quickly observe di−1wi induces the trivial
map on homology since we mod out the image of di−1. In addition, wi+1di induces the trivial map
on homology since Hi(C•) = ker di/ im di−1, so applying di kills anything in Hi(C•). Then f i − gi
induces the trivial map on homology, i.e. Hi(f) = Hi(g).

Exercise 1.6.F

Proof. Suppose A′ f−→ A
g−→ A′′ is exact. If F : A → B is covariant, By Lemmas 0.22 and 0.21 we

have

imFf = F im f = F ker g = kerFg

Therefore F (A′)
Ff−−→ F (A)

Fg−−→ F (A′′) is exact as desired.
If F : A → B is contravariant, By Lemmas 0.21.1 and 0.23 we get that

imFg = F coim g = F cok ker g = F cok im f = kerF im f = ker coimFf = kerFf

Exercise 1.6.G

Proof. (a) To show the localization functor L : ModA → ModS−1A is left exact, suppose 0 →
M ′ f−→M

g−→M ′′ is exact. Then

0→ S−1M ′ Lf−−→ S−1M

is exact because we know f is injective, which we can use to demonstrate Lf is injective as
follows:

Lf(
m′

s
) = 0 ⇐⇒ f(m′)

s
= 0

if and only if there exists some t ∈ S such that tf(m′) = 0. But because f is A−linear, we
notice

tf(m′) = f(tm′)

Therefore tf(m′) = 0 if and only if f(tm′) = 0, and now using the fact that f is injective, we
get that tm′ = 0, which proves that indeed

m′

s
= 0

Therefore Lf is injective as desired. To show kerLg = imLf , fix any m
s ∈ imLf and let

Lf(m
′

s′ ) =
f(m′)
s′ = m

s . We want to show that Lg(ms ) = 0. To do this, we observe

Lg(
m

s
) = Lg(

f(m′)

s′
) =

g ◦ f(m′)

s′
=

0

s′
= 0
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because im f = ker g. This shows imLf ⊂ kerLg.

For the reverse inclusion, suppose Lg(ms ) =
g(m)
s = 0. Then there exists some r ∈ S such that

rg(m) = 0

If g(m) ̸= 0, then by A-linearity of g we get

g(rm) = 0⇒ rm ∈ ker g

Because ker g = im f , let f(m′) = rm. Then

Lf(
m′

rs
) =

f(m′)

rs
=
rm

rs
=
m

s

so indeed m
s ∈ imLf . Therefore kerLg ⊂ imLf , proving the following sequence is left exact:

0→ S−1M ′ Lf−−→ S−1M
Lg−−→ S−1M ′′

To show L is right exact, suppose

M ′ f−→M
g−→M ′′ → 0

is exact. By the second argument in the proof that L is left exact, we get thatM ′ →M →M ′′ is
exact. The last thing to show is that Lg is surjective given g is. To do this, fix any m′′

s ∈ S
−1M ′′.

Becausem′′ ∈M ′′ and g is surjective, there exists somem ∈M such that g(m) = m′′. Therefore

Lg(
m

s
) =

g(m)

s
=
m′′

s

which shows L is right exact.

(b) Check the solution to Exercise 1.3.H

(c) Suppose 0 → M ′ f−→ M
g−→ M ′′ is exact. To show f∗ is injective, suppose f∗(h) = 0 where

h ∈ Hom(C,M ′). By definition, then f ◦ h = 0. By Lemma 0.5 ker(f ◦ h) = kerh

M = ker 0 = ker(f ◦ h) = kerh

which implies that h = 0. Therefore f∗ is indeed injective.
Now suppose h ∈ ker g∗ or equivalently g ◦ h = 0. Then we get the following induced morphism
h′:

M ′′

ker g M

C

f

0 g

∃!
h

because f monic implies im f = M ′ and we know ker g = im f . Therefore h = f ◦ h′, or
equivalently that f∗(h

′) = h proving that im f∗ ⊂ ker g∗.
On the other hand, if h ∈ im f∗, then let h = f∗(h

′) or equivalently h = f ◦ h′. Then clearly
h ∈ ker g∗ because

g∗(h) = g ◦ h = g ◦ f ◦ h′ = 0 ◦ h′ = 0

since im f = ker g. This shows im f∗ = ker g∗, which proves the following is exact:
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0 Hom(C,M ′) Hom(C,M) Hom(C,M ′′)
f∗ g∗

If C is an abelian category, each hom-set is an abelian group, hence Hom(C, ·) defines a left
exact covariant functor into Ab.

(d) Suppose A
f−→ B

g−→ C → 0 is exact. To show 0→ Hom(C,M)
g∗−→ Hom(B,M) is exact, we want

to show that g∗ has a trivial kernel. If g∗(h) = 0, then h ◦ g = 0 But because C = im g ⊂ kerh,
then C = kerh so h = 0 so indeed g∗ has a trivial kernel.

To show Hom(C,M)
g∗−→ Hom(B,M)

f∗

−→ Hom(A,M) is exact, fix any h ∈ ker f∗. Then
h ◦ f = 0, and im f = ker g implies

cok f = B/ im f = B/ ker g = coim g = C

so we get the following commutative diagram:

M

C

A B

∃!

0

f

g h

If h′ : C →M is the induced morphism, we get h = h′ ◦ g = g∗(h′) so indeed h ∈ im g∗.
On the other hand, if h ∈ im g∗, let h = g∗(h′) = h′ ◦ g. It’s clear then that

f∗(h) = h ◦ f = h′ ◦ g ◦ f = h′ ◦ 0 = 0

so then h ∈ ker f∗, which proves along with the previous result that im f∗ = ker g∗. Then indeed
the following sequence is exact:

0→ Hom(C,M)
g∗−→ Hom(B,M)

f∗

−→ Hom(A,M)

Exercise 1.6.H

Proof. By the previous exercise we have that Hom(·, N) is left exact and that the localization L :
ModA →ModS−1A is exact. Therefore on one hand we have

A⊕q f−→ A⊕p g−→M → 0

exact implies

0→ HomA(M,N)
g∗−→ HomA(A

⊕p, N)
f∗

−→ HomA(A
⊕q, N)

is exact and so by left exactness of L we get that

0→ S−1 HomA(M,N)
L(g∗)−−−→ S−1 HomA(A

⊕p, N)
L(f∗)−−−−→ S−1 HomA(A

⊕q, N)

is exact. On the other hand by right exactness of L, we have

S−1A⊕q Lf−−→ S−1A⊕p Lg−−→ S−1M → 0
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is exact so by left exactness of Hom we get

0→ HomS−1A(S
−1M,S−1N)

Lg∗−−→ HomS−1A(S
−1A⊕p, S−1N)

Lf∗

−−→ HomS−1A(S
−1A⊕q, S−1N)

is exact.
If hs ∈ kerL(f∗) where h ∈ HomA(A

⊕p, N), then

0 = L(f∗)(
h

s
) =

f∗(h)

s
=
h ◦ f
s

Additionally, we notice that because

h

s
(
x

s′
) =

h(x)

ss′

and

Lf(
y

s′
) =

f(y)

s′

it follows that

Lf∗(
h

s
) =

h

s
◦ Lf =

h ◦ f
s

Then indeed kerL(f∗) ⊂ kerLf∗.
If now Lf∗(h) = 0 where h ∈ HomS−1A(S

−1A⊕p, S−1N),

0 = Lf∗(h) = h ◦ Lf

and

L(f∗)(h) = L(f∗)(
h

1
) =

f∗(h)

1
=
h ◦ f
1

It’s an easy exercise to verify that by S−1A linearity of h, indeed

h ◦ Lf(x
s
) =

h ◦ f(x)
s

=
h ◦ f
1

(
x

s
)

for arbitrary x
s ∈ S

−1A⊕q. This proves that kerLf∗ ⊂ kerL(f∗), so

kerLf∗ = kerL(f∗)

Therefore by exactness of the two sequence and by Lemma 0.11 applied to L(g∗) and Lg∗,

HomS−1A(S
−1M,S−1N) = imLg∗ = kerLf∗ = kerL(f∗) = imL(g∗) = S−1 HomA(M,N)

Exercise 1.6.I

Proof. For this proof, we will use notation from Exercise 1.6.A for the canonical and induced maps.
We will also use the notation that if f : A → B is a morphism, then f |im : A → im f is the induced
morphism.
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(a) By Exercise 1.6.A, the following sequence is exact:

0→ Hi(C•)
χi

−→ cok di−1 ωi

−→ im di → 0

By right exactness of F , the following is exact:

FHi(C•)
Fχi

−−→ F cok di−1 Fωi

−−→ F im di → 0

By Lemma 0.20, we have that F cok di−1 = cokFdi−1. By Exercise 1.6.A again, the following
sequence is exact as well:

0→ Hi(FC•)
χ−→ cokFdi−1 ω−→ imFdi → 0

By Exercise 1.6.A again, we have

0→ im di
ιi−→ Ci+1 πi

−→ cok di → 0

is exact, so by right exactness of F , the following is also exact:

F im di
F ιi−−→ FCi+1 Fπi

−−→ F cok di → 0

We claim that the following diagram commutes:

F cok di−1 F im di

cokFdi−1 imFdi

Fωi

= Fιi|im

ω

To show this, we just need to recall the definitions of our morphisms. Firstly, we have the
following commutative diagram:

F im di FCi+1

F cok di−1

FCi−1 FCi

F ιi

Fωi

0

Fdi−1

Fπi−1 F (di|im)

Fdi

as well as the commutative diagram below:

imFdi FCi+1

cokFdi−1

FCi−1 FCi

ι

ω

0

Fdi−1

Fπi−1 (Fdi)|im)

Fdi

We observe that by commutativity of the two diagrams,

ι ◦ ω ◦ Fπi−1 = ι ◦ (Fdi)|im = Fdi = Fιi ◦ F (di|im) = Fιi ◦ Fωi ◦ Fπi−1

Because Fπi−1 is epic, we obtain the following commutative diagram:
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F im di FCi+1

cokFdi−1 imFdi

F ιi

Fωi

ω

ι

Using Lemma 0.20 and the exactness of our sequences, we see

imFιi = kerFπi = kerF cok di = ker cokFdi = imFdi

Thus the following diagram commutes:

F im di FCi+1

cokFdi−1 imFdi

F ιi

Fιi|im
Fωi

ω

ι

Then by Lemma 0.8, we get the desired canonical inclusion θ : kerFωi ↪→ kerω which shows

FHi(C•)
Fχi|im
−−−−↠ imFχi = kerFωi

θ
↪−→ kerω = imχ = Hi(FC•)

(b) By Vakil (1.6.5.3), we have the short exact sequences below:

0→ im di−1 ji−→ ker di
ϕi

−→ Hi(C•)→ 0

0→ imFdi−1 j−→ kerFdi
ϕ−→ Hi(FC•)→ 0

By left exactness of F , we get from the first sequence the following exact sequence:

0→ F im di−1 Fji−−→ F ker di
Fϕi

−−→ FHi(C•)

and by Lemma 0.21 F ker di = kerFdi. We now observe the following commutative diagram:

F cok di−1

cokFdi−1

FCi−1 FCi

∃!

0

Fdi−1

π
Fπi−1

By Lemma 0.21, we have kerFπi−1 = F kerπi−1 = F im di−1. By Lemma 0.8 using the factor-
ization of Fπi−1 through π, we get the following commutative diagram:

F cok di−1

kerFπi−1 FCi

kerπ

0

Fιi−1

Fπi−1

∃!

ι

71



Letting α : imFdi−1 → F im di−1 be the induced monomorphism in the diagram above, we now
claim that j = Fji ◦ α. To see this, we need to recall how we obtained ji (a nearly identical
idea is used to define j):

Ci+1

cok di−1

Ci−1 Ci

φi

0

di−1

πi−1

di

implies that the following diagram commutes as well

Ci+1

ker di Ci

im di−1

κi

0
di

∃!ji

ιi−1

So we get that κi ◦ ji = ιi−1 and similarly κ ◦ j = ι. Then we have

ι = Fιi−1 ◦ α = Fκi ◦ Fji ◦ α

as well as

ι = κ ◦ j

Recalling that by Lemma 0.21, F ker di = kerFdi implies that κ = Fκi. Therefore

κ ◦ j = κ ◦ Fji ◦ α

implies, because κ is monic, that indeed j = Fji ◦ α. Thus we have the following commutative
diagram that is exact across rows:

0 F im di−1 F ker di FHi(C•)

0 imFdi−1 kerFdi Hi(FC•) 0

Fji Fϕi

j

α =

ϕ

We have two last morphisms to construct, and composing them will be the desired morphism.
The first is the induced morphism φ : cokFji → F cok ji from the following commutative
diagram:

F cok ji

cokFji

F im di−1 kerFdi

∃!φ

Fji

0
σ

Fϕi
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The second comes from Lemma 0.9, where we get an epimorphism λ : cok j ↠ cokFji such that
σ = λ ◦ ϕ. Then we have

cok j = Hi(FC•)
λ
−↠ cokFji

φ−→ F cok ji = FHi(C•)

(c) If F is exact, then ω = Fωi because by Lemma 0.22. Therefore θ, the canonical inclusion
from kerFωi ↪→ kerω is actually just idkerFωi . Additionally, Fχi|im = idFHi(C•) because by
left-exactness of F , Fχi = kerFωi.
Additionally, by right exactness of F , Fϕi = ϕ. By our constructions, we have

Fϕi = φ ◦ σ

and
σ = λ ◦ ϕ

Therefore
ϕ = φ ◦ σ = φ ◦ λ ◦ ϕ

which by the fact that ϕ is an epimorphism shows φ ◦ λ = idHi(FC•). This proves that indeed
φ◦λ and θ ◦Fχi|im are inverses of each other because they are both the identity on Hi(FC•) =
FHi(C•). Though it may feel strange that all of our maps just turned into the identity but
they were originally going from one object to another, it’s because each of the objects satisfies
the definition of the other when F is exact, so they are the same object.

Exercise 1.6.J

Proof. This exercise is a special case of Exercise 1.6.J below because kernels are limits of the following
diagram J :

•

• •

where F : I ×J → C is the product functor of the functors I → C and J → C and where
h = F (id, g) where g is the arrow on the bottom of J .

Exercise 1.6.K

Proof. Let F : I ×J → C be a covariant functor so that I ×J , the product category of I and
J , will be the index category of the desired limits. For the rest of the proof, let i, i′ ∈ I , j, j′ ∈J ,
f : i → i′ and g : j → j′ be arbitrary. To begin with, we notice we get a natural transformation
F (f, id) : F (i, ·)→ F (i′, ·) demonstrated below:

F (i, j) F (i, j′)

F (i′, j) F (i′, j′)

F (idi,g)

F (f,idj) F (f,idj′ )

F (idi′ ,g)

which commutes essentially by definition of the product category. Then we obtain an induced mor-
phism f̃ : limj F (i, j)→ limj F (i

′, j) from the commutative diagram below:
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limj F (i, j)

F (i, j) limj F (i
′, j) F (i, j′)

F (i′, j) F (i′, j′)

pij pij′
∃!

F (idi,g)

F (f,idj)

pi′j pi′j′

F (f,idj′ )
F (idi′ ,g)

With these induced morphisms f̃ , we can actually index the limj F (i, j)’s by I. This gives us our
definition of limi limj F (i, j) below:

limi limj F (i, j)

limj F (i, j) limj F (i
′, j)

τi τi′

f̃

Similar to above, we get an induced g̃ : limi F (i, j) → limi(F (i, j
′) from the following commutative

diagram for each g : j → j′:

limi F (i, j)

F (i, j) limi F (i, j
′) F (i′, j)

F (i, j′) F (i′, j′)

qij qi′j
∃!

F (f,idj)

F (idi,g)

qij′ qi′j′

F (idi′ ,g)F (f,idj′ )

Similarly, we can index the limi F (i, j)’s by J with these induced g̃’s, so we also obtain the following
construction for limj limi F (i, j) below:

limj limi F (i, j)

limi F (i, j) limi F (i, j
′)

σj σj′

g̃

We also observe the following diagram

limi limj F (i, j)

limj F (i, j) limi F (i, j) limj F (i
′, j)

F (i, j) F (i′, j)

τi τi′
∃!

f̃

pij

qij qi′j

pi′j
F (f,idj)

which commutes because

F (f, idj) ◦ pij ◦ τi = pi′j ◦ f̃ ◦ τi = pi′j ◦ τi′

Let φj : limi limj F (i, j) → limi F (i, j) be the induced morphism above. Now we want to show that
g̃ ◦ φj = φj′ . To do this, consider the following diagram:
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limi limj F (i, j)

limj F (i, j) limi F (i, j
′) limj F (i

′, j)

F (i, j′) F (i′, j′)

τi τi′
g̃◦φj

pij′

qij′ qi′j′

pi′j′
F (f,idj′ )

which commutes because

qij′ ◦ g̃ ◦ φj = F (idi, g) ◦ qij ◦ φj = F (idi, g) ◦ pij ◦ τi = pij′ ◦ τi

as well as

qi′j′ ◦ g̃ ◦ φj = F (idi′ , g) ◦ qi′j ◦ φj = F (idi′ , g) ◦ pi′j ◦ τi′ = pi′j′ ◦ τi′

Because the diagram commutes, by uniqueness of φj′ we get that indeed φj′ = g̃ ◦ φj . We claim now
that limi limj F (i, j) together with our morphisms φj are universal with respect to this diagram. To
prove this, suppose we have the following commutative diagram:

W

limi F (i, j) limi F (i, j
′)

χj χj′

g̃

Then by the below commutative diagram, we get an induced µi :W → limj F (i, j):

W

limi F (i, j) limj F (i, j) limi F (i, j
′)

F (i, j) F (i, j′)

χj χj′

∃!
g̃

qij

pij pij′

qij′
F (idi,g)

Now we claim that µi′ = f̃ ◦ µi. To show this, observe the following diagram:

W

limi F (i, j) limj F (i
′, j) limi F (i, j

′)

F (i′, j) F (i′, j′)

χj χj′

f̃◦µi

g̃

qi′j

pi′j pi′j′

qi′j′
F (idi′ ,g)

which commutes because

pi′j ◦ f̃ ◦ µi = F (f, idj) ◦ pij ◦ µi = F (f, idj) ◦ qij ◦ χj = qi′j ◦ χj

and

pi′j′ ◦ f̃ ◦ µi = F (f, idj′) ◦ pij′ ◦ µi = F (f, idj′) ◦ qij′ ◦ χj′ = qi′j′ ◦ χj′
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By uniqueness of µi′ , we get that indeed µi′ = f̃ ◦ µi. Thus we an induced θ : W → limi limj F (i, j)
from the following commutative diagram:

W

limi limj F (i, j)

limj F (i, j) limj F (i
′, j)

µi µi′∃!

τi τi′

f̃

Consider the following commutative diagram:

W

limi F (i, j)

F (i, j) F (i′, j)

χj φj◦θ

qij qi′j

F (f,idj)

We observe that

qij ◦ χj = pij ◦ µi = pij ◦ τi ◦ θ = qij ◦ φj ◦ θ

as well as

qi′j ◦ χj = pi′j ◦ µi′ = pi′j ◦ τi′ ◦ θ = qi′j ◦ φj ◦ θ

This proves, by uniqueness of the arrowW → limi F (i, j) that indeed χj = φj ◦θ. We need to consider
one final commutative diagram:

W

limi F (i, j
′)

F (i, j′) F (i′, j′)

χj′ φj′◦θ

qij′ qi′j′

F (f,idj′ )

We observe that

qij′ ◦ χj′ = pij′ ◦ µi = pij′ ◦ τi ◦ θ = qij′ ◦ φj′ ◦ θ

as well as

qi′j′ ◦ χj′ = pi′j′ ◦ µi′ = pi′j′ ◦ τi′ ◦ θ = qi′j′ ◦ φi′ ◦ θ

Again, by uniqueness of the arrow W → limi F (i, j
′), we get that χj = φj′ ◦ θ. Thus indeed θ is the

unique morphism making the following diagram commute:

W

limi limj F (i, j)

limi F (i, j) limi F (i, j
′)

χj χj′∃!

φj φj′

g̃

76



Therefore limi limj F (i, j) satisfies the universal property of limj limi F (i, j), proving the two are
equal.

Exercise 1.6.L

Proof. By Exercise 1.4.F, we know what colimits look like in ModA. Suppose that F,G,H : I →
ModA are the index functors and we have f ∈ Nat(F,G) and g ∈ Nat(G,H) such that the following
sequence is exact in the category of functors ModI

A :

0 F G H 0
f g

where in particular, the fi’s are from the natural transformation f : F → G. We want to show that
the following sequence is exact:

0 colimMi colimNi colimPi 0
colim f colim g

where colim f is induced by the following commutative diagram

colimNi

Ni colimMi Nj

Mi Mj

∃!

fi fj

and colim g is induced by a similar one. More explicitly, the map colim f and colim g acts as

colim f([mi, i]) = [fi(mi), i]

colim g([ni, i]) = [gi(ni), i]

Suppose that colim f([mi, i]) = 0. By definition, this means (fi(mi), i) ∼ 0, which, by definition of the
equivalence relation means there exists some κ : i → j such that G(κ)(fi(mi)) = 0 for some j ∈ I .
Then we observe the following commutative diagram, which commutes by naturality of f :

Ni Nj

Mi Mj

G(κ)

fi

F (κ)

fj

Therefore

0 = G(κ)(fi(mi)) = fj(F (κ)(mi))

implies that, because fj is injective since f is monic, that F (κ)(mi) = 0. By definition, this means
that [mi, i] = 0 so indeed colim f is monic.
To show colim g is epic –i.e. surjective – fix any [pi, i] ∈ colimPi. Then because gi is surjective, we
get some ni ∈ Ni such that gi(ni) = pi. Therefore

colim g([ni, i]) = [gi(ni), i] = [pi, i]
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so colim g is surjective as well.
The last thing to show is that ker colim g = imcolim f . If [ni, i] ∈ im colim f , then [ni, i] = [fi(mi), i]
for some mi ∈Mi. Then because im fi = ker gi,

colim g([ni, i]) = [gi(ni), i] = [gi ◦ fi(mi), i] = [0, i] = 0

shows that im colim f ⊂ ker colim g. On the other hand, fix any [ni, i] ∈ ker colim g. Because (ni, i) ∼
0, there exists some γ : i → j such that H(γ)gi(ni) = 0. We observe the following commutative
diagram

Pi Pj

Ni Nj

H(γ)

gi

G(γ)

gj

which shows then that

0 = H(γ)gi(ni) = gjG(γ)(ni)

Therefore G(γ)(ni) ∈ ker gj . Because ker gj = im fj , let fj(mj) = G(γ)(ni). This shows that
(ni, i) ∼ (fj(mj), j), proving

[ni, i] = [fj(mj), j] = colim f([mj , j])

so ker colim g ⊂ im colim f , which proves equality holds and that indeed

0 colimMi colimNi colimPi 0
colim f colim g

is exact.

Exercise 1.6.M

Proof. By Exercise 1.6.K, colimits are exact. Then we can use colimits as a functor from ModI
A , and

obtain by Exercise 1.6.H that

H colimC• = colimHC•

Exercise 1.6.N

Proof. Suppose the following is exact:

0 A• B• C• 0
f g

We observe that we get a morphism lim f from the commutative diagram below:

limAn

Ai limBn Ai+1

Bi Bi+1

∃!

fi

fi+1
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We get a morphism lim g : limBn → limCn similar to above. We obtain that these morphisms act as
follows:

lim f(a1, a2, . . . ) = (f1(a1), f2(a2), . . . )

lim g(b1, b2, . . . ) = (g1(b1), g2(b2), . . . )

To show lim f is injective, suppose lim f(a1, a2, . . . ) = 0. Then for each i, fi(ai) = 0, which because
each fi is injective, implies each ai = 0 so indeed lim f has trivial kernel.
To show lim g is surjective, fix any (c1, c2, . . . ) ∈ limCn. For each i, there exists a bi such that
gi(bi) = ci because each gi is surjective. Then

lim g(b1, b2, . . . ) = (g(b1), g(b2), . . . ) = (c1, c2, . . . )

as desired. Now to show ker lim g = im lim f , pick any (f1(a1), f2(a2), . . . ) ∈ im lim f . Because
ker gi = im fi for each i, we have

lim g(f1(a1), f2(a2), . . . ) = (g1f1(a1), g2f2(a2), . . . ) = (0, 0, . . . ) = 0

which shows im lim f ⊂ ker lim g. Now suppose (b1, b2, . . . ) ∈ ker lim g, i.e. gi(bi) = 0 for each i.
Because ker gi = im fi, we get that bi = f(ai) for every i. Then

lim f(a1, a2, . . . ) = (f1(a1), f2(a2), . . . ) = (b1, b2, . . . )

proves ker lim g ⊂ im lim f . This proves that indeed

0 limAn limBn limCn 0
lim f lim g

is exact. As a side note, I believe that we used the hypothesis that the transition maps of the left
term are surjective because this makes there only be one morphism from Ai → Aj with i > j, though
I’m not entirely sure.

Section 1.7

Chapter 2

Section 2.1

Exercise 2.1.A

Proof. Fix any (f, U) ∈ Op \ mp. Then f(p) ̸= 0 because (f, U) /∈ mp. Therefore 1
f ∈ O(V ) for a

sufficiently small neighborhood V ⊂ U of p such that f is non vanishing onW , and 1
f must be smooth

because f is and doesn’t vanish on V by continuity of f . We easily obtain that

1

f
(p) =

1

f(p)
̸= 0

Therefore ( 1f , V ) ∈ Op \ mp as well. By definition of the equivalence relation, we get that (f, U) =

(f, V ). Therefore we observe that

(f, V )(
1

f
, V ) = (

f

f
, V ) = (1, V )

is the multiplicative identity on Op. Because multiplication here is commutative –since it is on Rn
– we get that indeed (f, U) has an inverse. This shows that if we have some other ideal n ⊂ Op, it
cannot be maximal because it is either contained in mp, or it is the entire ring Op.
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Exercise 2.1.B

Proof. Here, we recall what the definition of the differential d : C∞(M)→ T ∗
pM given by

df(v) = v(f)

where f ∈ C∞(M) and v ∈ TpM , i.e. a linear map C∞(M)→ R that satisfies the product rule. Now
we will show that d is constant on m2. We recall that d is linear; therefore

d(
∑
i

figi)(v) =
∑
i

d(figi)(v) =
∑
i

v(figi) =
∑
i

fi(p)v(g) + g(p)v(f) =
∑
i

0 + 0 = 0

using the fact that fi, gi ∈ mp implies the vanish at p. Then we get the following unique map

d̃ : mp/m
2
p → T ∗

pM :

mp T ∗
pM

mp/m
2
p

d

∃!

This map is a homomorphism because d is linear. Now suppose df = 0 for some f ∈ C∞(M). Then
by definition,

v(f) = 0

for all v ∈ TpM , which implies that indeed f = 0 because if we take the derivation v = ∂
∂xi for each i

and
∂f

∂xi
= 0

then f is constant, but since f +m2
p(p) = 0 it must be that f = 0, proving d̃ has a trivial kernel. By

[3] Page 281, the dxi form a basis for T ∗
pM . Thus if we fix any

∑
i cidx

i ∈ T ∗
pM , we let f =

∑
i cix

i,
which is certainly in mp/m

2
p. Then

d̃(f +m2
p) =

∑
i

∂f

∂xi
dxi =

∑
i

cidx
i

proves d̃ is surjective as well, and hence an isomorphism.

Section 2.2

Exercise 2.2.A

Proof. We want for each open set U ⊂ X, a set F (U). This is given when F : Op(X) → Set is a
contravariant functor.
We want that for each inclusion U ↪→ V of open sets, a restriction map resV,U : F (V ) → F (U).
This is equivalent to F (U ↪→ V ) because F is contravariant, and the only maps on Op(X) are the
inclusions. We require that if

W V

U

commutes in Op(X), that also the following diagram commutes:
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F (W ) F (V )

F (U)

resW,V

resW,U resV,U

But this is exactly one of the requirement of F being a contravariant functor.
Finally, we require resU,U = 1, which again, is one of the requirements of F being a functor. Also
notice that U ↪→ V ↪→W is the arrow U ↪→W because every morphism inOp(X) is a monomorphism,
and there is an initial object in the category ∅. There are no other requirements that F is a
contravariant functor, so the two definitions coincide.

Exercise 2.2.B

Proof. Clearly the assignment of any open set in C to any set of functions of a given type defined
on that subset together with the natural restriction of functions satisfies the definitions because
(f |V )|U = f |U as well as f |U = f when f : U → C. Thus we will show that in both cases, the
definitions violate the Gluability axiom as well as satisfy restriction being well defined.

(a) If f : U → C is bounded, then by definition for every x ∈ U |f(x)| < N for some constant
N ∈ R. Then if V ⊂ U and y ∈ V , then

|f |V (y)| = |f(y)| < N

so indeed f |V is bounded. Now we show that the bounded functions violate the Gluability
axiom. For n = 1, 2, . . . define Un = D(0, n), the open disc of radius n about the origin and
define fn : Un → C as fn = 1. Then for arbitrary n and z ∈ Un, we observe

|fn(x)| = |x| < n

by definition of x ∈ Un. Then indeed every fn is bounded on Un. Now we observe that⋃∞
n=1 Un = C. If there were a global function f : C→ C such that f |Un = fn for every n, then

it must be that f = 1. But 1 is unbounded on C, which means the Gluability axiom fails.

(b) Restricting holomorphic functions is holomorphic, so again restriction is well defined. Now we
define the following open sets U1 := {reiθ ∈ Z : θ ∈ (−π, π)} and U2 := {reiθ ∈ C : θ ∈ (0, 2π)},
as well as the identity maps on each of them, which are clearly holomorphic. We let h1(re

iθ) =√
reiθ/2 and h2(re

iθ) =
√
reiθ/2 as well. We observe primarily that h1, h2 are holomorphic on

U1 and U2 respectively, and also that

h21 = 1U1

h22 = 1U2

Then 1U1
is a holomorphic function with holomorphic square root on U1 and 1U2

is a holomorphic
function with holomorphic square root on U2. In addition,

1U1
|U1∩U2

= 1U1∩U2
= 1U2

|U1∩U2

However, since U1 ∪ U2 = C, the global function f : C → C must be 1C. However, there is no
global square root function of 1C, so the Gluability axiom fails here as well.
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Exercise 2.2.C

Proof. We claim that a presheaf F is a sheaf if and only if F (
⋃
i∈I Ui) = limi,j∈I F (Ui), F (Ui ∩ Uj)

for every collection of open sets {Ui}i∈I . To be slightly more precise, the system of F (Ui), F (Ui∩Uj)
is where all of the F (Ui)’s are not connected by any arrows, and each F (Ui ∩ Uj) has the restriction
arrows going into it from F (Ui) and F (Uj). Note that this implicitly encodes the restriction arrows
going from F (Ui) to F (Uj) because then F (Ui ∩ Uj) = F (Uj), and indeed resUi,Ui

= idUi
.

For the forward direction, suppose F is a sheaf. Letting U :=
⋃
i∈I Ui, then for every i, j ∈ I , the

following diagram commutes by F being a presheaf:

F (U)

F (Ui) F (Uj)

F (Ui ∩ Uj)

where the arrows are the restrictions. We now wish to show F (U) is universal with respect to this
property. Notice that by definition of F being a presheaf, the middle arrow is implicit and will be
omitted. Now suppose a set W also makes the diagram commute. Notice that the arrows from W
into each F (Ui ∩Uj) is determined by the arrows from W to F (Ui) and the arrows from W to F (Uj),
because the following diagram must commute:

W

F (Ui) F (Uj)

F (Ui ∩ Uj)

pi pj

pij

Therefore we may forget about all of the arrows from W to F (Ui ∩Uj) and only consider those going
into each F (Ui). If W = ∅ then trivially the unique arrow exists, so we may consider W ̸= ∅, and
pick any x ∈ W . Define fi := pi(x) for each i ∈ I . Therefore, by definition of W making the
system commute, we have that fi|Ui∩Uj

= fj |Ui∩Uj
for each i, j. Then by gluablility, there exists some

f ∈ F (U) such that f |Ui = fi for every i ∈ I . Then we can define the map W → F (U) that sends
everything to f , which proves existence of the arrow going into F (U).
For uniqueness, suppose there exist two maps φ and ϕ from W → F (U) that make the following
diagram commute:

W

F (U)

F (Ui) F (Uj)

F (Ui ∩ Uj)

pi pj

If φ ̸= ϕ, then there exists some x ∈W such that φ(x) ̸= ϕ(x). However,

φ(x)|Ui = pi(x) = ϕ(x)|Ui
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for each i ∈ I by commutativity. By identity, this implies that φ(x) = ϕ(x), a contradiction. This
proves uniqueness, so F (U) is indeed the limit of the system.

Conversely, suppose F (U) is the limit of the system. To show F satisfies gluability, suppose there is a
collection of fi’s for each i such that fi|Ui∩Uj

= fj |Ui∩Uj
for each i, j. Now, let W be the final set and

define maps pi : W → F (Ui) that outputs fi for each i ∈ I . Then the following diagram commutes,
and induces a unique morphism φ :W → F (U) below:

W

F (U)

F (Ui) F (Uj)

F (Ui ∩ Uj)

∃!pi pj

Then we can take φ(∗) to be our map in F (U) that restricts to give us each of the maps fi, which
shows gluability. To show identity, suppose we have f1, f2 ∈ F (U) such that f1|Ui

= f2|Ui
for every

i ∈ I . If we define the set W := {f1, f2}, then W
ι
↪−→ F (U) naturally. Then the following diagram

commutes, so we obtain a unique arrow W → F (U) shown below:

W

F (U)

F (Ui) F (Uj)

F (Ui ∩ Uj)

∃!resU,Ui
◦ι resU,Uj

◦ι

However, we can define two such maps that work, namely φ(W ) = {f1}, as well as ϕ(W ) = {f2}.
This implies, by uniqueness, that φ = ϕ, so indeed f1 = f2, proving identity.

Exercise 2.2.D

Proof. (a) We will show smooth functions form a sheaf on a smooth manifold M , as this is the only
example in S2.1 that I can find. Clearly, this is a presheaf with the obvious restriction maps, so
we will just show gluability and identity.

To show gluability, suppose we have fi’s in C
∞(Ui) with fi|Ui∩Uj

= fj |Ui∩Uj
for every i, j in the

index. Define a function f : U → R as

f(x) = fi(x) if x ∈ Ui

where U =
⋃
i Ui. This is well defined by hypothesis. By the pasting lemma, this function is

continuous as well. In addition, because differentiability is a local property, we have that

∂nf

(∂xi)n
|x∈Ui =

∂nfi
(∂xi)n
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exists for every n ∈ N, proving that our function f ∈ C∞(U), so gluability holds.

Identity is rather trivial: if there exists f1, f2 ∈ C∞(M) such that f1|Ui = f2|Ui for every i, then
because every point in U is in some Ui and f1 agrees with f2 there, they must be the same at
every point, hence f1 = f2.

(b) Let X ∈ Top, and F be the functor sending an open set U to the set Mor(U,R), together
with the obvious restriction maps. Again, F is trivially a presheaf. To show gluability, let
fi ∈ Mor(Ui,R) be a family such that fi|Ui∩Uj = fj |Ui∩Uj for every i, j. Then define a map
f : U → R as

f(x) = fi(x) if x ∈ Ui

which is again well defined by hypothesis. This is also continuous by the pasting lemma. There-
fore f ∈ Mor(X,R), so gluability holds.

For exactly the same reasoning as above, identity follows trivially because any two maps that
agree pointwise are equal.

Exercise 2.2.E

Proof. Like usual, F is clearly a presheaf on X. To show F satisfies gluability, suppose {Ui} is
an open cover of U , and suppose we have a collection of fi ∈ Mor(Ui, S)’s for each i such that
fi|Ui∩Uj

= fj |Ui∩Uj
for every i, j. Then we can define f : U → S as f(x) = fi(x) if x ∈ Ui. This is

well defined and continuous by the pasting lemma, so gluability holds.
If We have f1, f2 : U → S such that f1|Ui

= f2|Ui
for each i, then for every x ∈ U , f1(x) = f1|Ui

(x) =
f2|Ui(x) = f2(x), so f1 agrees with f2 everywhere, hence the two are identical.

Exercise 2.2.F

Proof. Like usual, the presheaf axioms are readily verified by manipulation of definitions. To show
gluability, if we have a collection of continuous maps fi : Ui → Y such that fi|Ui∩Uj

= fj |Ui∩Uj
for

each i, j, then we can define f(x) = fi(x) if x ∈ Ui. This is well defined and agrees on the intersections
by assumption, so it is continuous by the pasting lemma. Then we have our candidate f : U → Y
that restricts to each fi.
To show identity, if we have f1, f2 : U → Y as continuous maps and f1|Ui = f2|Ui for every i, then
f1(x) = f1|Ui

(x) = f2|Ui
(x) = f2(x). Thus f1 and f2 agree everywhere, so they are identical.

Exercise 2.2.G

Proof. (a) This is clearly a presheaf by simply rearranging the definitions, as

µ ◦ (s|V ) = (µ ◦ s)|V = (1U )|V = 1V (1)

shows that indeed restricting sections gives more sections. To show gluability, if we have a
collection of sections si : Ui → Y such that si|Ui∩Uj

= sj |Ui∩Uj
for every i, j, then we can use

the pasting lemma – using our assumptions – to obtain a continuous map s : U → Y where
s(x) = si(x) if x ∈ Ui. Then indeed, for every x ∈ U , x ∈ Ui for some i, so

µ ◦ s(x) = µ ◦ si(x) = 1Ui
(x) = x
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proves µ ◦ s = 1U as desired. This shows gluability.
To show identity, if s1, s2 : U → Y are sections of µ such that s1|Ui = s2|Ui for every i, then for
arbitrary x ∈ U , there exists some Ui containing x, hence

s1(x) = s1|Ui
(X) = s2|Ui

(x) = s2(x)

Thus s1 agrees with s2 everywhere, so they are identical functions. This proves identity.

(b) This is a sheaf of sets by Exercise 2.2.F. Thus we want to show each F (U) has group structure.
Because Y is a topological group, for any f, g ∈ F (U), we may define the product fg to act as

fg(x) = f(x)g(x)

This is indeed a continuous map from U to Y because multiplication is required to be continuous
by Y being a topological group. It follows that the identity element is the map that takes
everything to the identity element of Y . This operation is associative because Y is a group, so

(fg)h(x) = (fg)(x)h(x) = f(x)g(x)h(x) = f(x)gh(x) = f(gh)(x)

Finally, every f ∈ F (U) has an inverse f−1, where f−1(x) := (f(x))−1, i.e. a pointwise inverse.
This is indeed a continuous map because inversion is required to be continuous since Y is a
topological group. Secondly, we easily verify that

ff−1(x) = f(x)f−1(x) = f(x)(f(x))−1 = 1

and
f−1f(x) = f−1(x)f(x) = (f(x))−1f(x) = 1

indeed proves each multiplication gives the constant map to the identity, so the notation we
gave f−1 is appropriate. Because F (U) satisfies all of the group axioms, it may be considered
to be a topological group with this structure.

Exercise 2.2.H

Proof. To show π∗F is a presheaf given F is a presheaf, take any open set V ∈ Op(Y ). Then
π−1(V ) ∈ Op(X) because π is continuous, hence π∗F is well defined. We can verify that if W ⊂
V ⊂ U , then indeed π−1(W ) ⊂ π−1(V ) ⊂ π−1(U), and the following diagram commutes with the
restrictions given by F being a presheaf:

F (π−1(W )) F (π−1(V ))

F (π−1(U))

This is how we may define our restrictions for π∗F , resU,V := resπ−1(U),π−1(V ), which is well defined
because V ⊂ U implies that π−1(V ) ⊂ π−1(U). Finally, with this definition of restriction, we observe
that

resV,V = resπ−1(V ),π−1(V ) = idπ−1(V ) = idπ∗F(V )

This indeed proves π∗F is a presheaf as desired.
Now, let’s suppose further that F is a sheaf. To show identity, suppose we have an open set

U ∈ Op(Y ) and an open cover {Ui}, as well as f1, f2 ∈ π∗F (U), or equivalently f1, f2 ∈ F (π−1(U))
such that f1|π−1(Ui) = f2|π−1(Ui) for every i. By identity of F , it must be that f1 = f2. This proves
identity.

To show gluability, suppose we have a collection of open sets Ui ∈ Op(Y ) covering an open set U ,
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and maps fi ∈ π∗F (Ui) such that fi|π−1(Ui)∩π−1(Uj) = fj |π−1(Ui)∩π−1(Uj) for every i, j. By gluability

of F , we obtain a map f ∈ Fπ−1(
⋃
π−1(Ui)) that restricts to each fi on π

−1(Ui). However, because
unions commute with preimages, we obtain that⋃

π−1(Ui) = π−1(U)

Thus f ∈ F (π−1(U)) = π∗F (U), and restricts accordingly, so gluability holds. Thus, π∗F is a sheaf
as well.

Exercise 2.2.I

Proof. If we take the definition of a stalk Fp = colimF (U) where each U is a neighborhood of p,
then we get the following commutative diagram

Fp

(π∗F )q

π∗F (U) π∗F (V )

∃!

res

because each π∗F (U) = F (π−1(U)), and each π−1(U) is a neighborhood of p since π(p) = q. Thus
we have the maps from F (π−1(U)) → Fp by considering every π∗F (U) to be a neighborhood of
p.

Exercise 2.2.J

Proof. Because we require the following diagram to commute

OX(V )×F (V ) F (V )

OX(U)×F (U) F (U)

action

resV,U × resV,U resV,U

action

we have a well defined action of germs by picking the action of a representative. More explicitly, given
a germ [f, U ] ∈ OX,p and [g, V ] ∈ Fp, then we may define [f, U ] · [g, V ] = [f |U∩V · g|U∩V , U ∩V ]. This
is well defined exactly because we require our diagram to commute.

Section 2.3

Exercise 2.3.A

Proof. By definition of stalks as colimits of neighborhoods of p, if ϕ : F → G is a morphism of
presheaves on X, then we get our unique induced morphism ϕp in the commutative diagram below:

Gp

G (U) Fp G (V )

F (U) F (V )

resU,V

∃!ϕp

resU,V

ϕ(U) ϕ(V )
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Exercise 2.3.B

Proof. By Exercise 2.2.H, we’ve already shown π∗ takes presheaves on X to presheaves on Y . If we’re
given a morphism ϕ : F → G of presheaves on X, then we obtain a morphism π∗ϕ : π∗F → π∗G as
morphisms of presheaves on Y , shown below:

π∗G (U) π∗G (V )

π∗F (U) π∗F (V )

resU,V

resU,V

ϕ(π−1(U)) ϕ(π−1(V ))

In other words, we define π∗ϕ(U) to be ϕ(π−1(U)), which is a morphism of presheaves on Y because
ϕ was a morphism of presheaves on X. By stacking the commutative diagrams, we can show π∗
distributes over composition below:

π∗H (U) π∗H (V )

π∗G (U) π∗G (V )

π∗F (U) π∗F (V )

resU,V

resU,V

π∗φ(U) π∗φ(V )

resU,V

π∗ϕ(U) π∗ϕ(V )

The last thing to show is that π∗ preserves identity morphisms of presheaves, which it does because
π∗idF is the natural transformation that acts as π∗idF (U) = idF (π−1(U)) = F (π−1(U)) = π∗F (U)
that is shown below:

π∗F (U) π∗F (V )

π∗F (U) π∗F (V )

resU,V

π∗idF (U)

resU,V

π∗idF (V )

This natural transformation is the identity morphism on π∗F , so as desired π∗ does preserve identities
and is thus a functor.

Exercise 2.3.C

Proof. It’s clear that Hom(F ,G ) : Op(X)→ Set is well defined. We may define the restriction maps
as follows: Given any U, V,W ∈ Op(X) such that W ⊂ V ⊂ U and any ϕ ∈ Hom(F ,G )(U), we
define ϕ|V as the natural transformation that acts as ϕ|V (W ) := ϕ(W ) – in other words, just forgets
its definitions on subsets not contained in V . This defines a natural transformation F |V → G |V
because ϕ is a natural transformation F |U → G |U , and V ⊂ U implies every open subset W of V
that ϕ|V must act on is already taken care of by ϕ. By this definition, it is clear that Hom(F ,G ) is
a presheaf.

To show Hom(F ,G ) satisfies identity, fix any U ∈ Op(X) and let {Ui} be an open cover of
U . Furthermore suppose we have two natural transformations ϕ1, ϕ2 ∈ Hom(F ,G )(U) such that
ϕ1|Ui = ϕ2|Ui for each i. For an arbitrary open subset V ⊂ U , we will show ϕ1(V ) = ϕ2(V ). Because
{Ui} covers U and V ⊂ U , we obtain the following open cover {Vi} of V :

{Vi} := {Ui ∩ V }
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Notice that each Vi ⊂ Ui by construction. Thus because ϕ1|Ui
= ϕ2|Ui

, it’s also true that ϕ1|Vi
= ϕ2|Vi

for each i. Recall that because ϕ1 and ϕ2 are natural transformations, the following diagram(s)
commute for j = 1, 2 and all i:

F (V ) G (V )

F (Vi) G (Vi)

resV,Vi

ϕj(V )

resV,Vi

ϕj(Vi)

Fixing an arbitrary x ∈ F (V ), we obtain by commutativity that resV,Vi
◦ϕj(V )(x) = ϕj(Vi) ◦

resV,Vi(x). However, since ϕ1(Vi) = ϕ1|Vi(Vi) = ϕ2|Vi(Vi) = ϕ2(Vi) for every i, we obtain that

resV,Vi
(ϕ1(V )(x)) = resV,Vi

(ϕ2(V )(x))

for each i. By identity of G , we obtain that indeed ϕ1(V )(x) = ϕ2(V )(x). But because V ⊂ U and
x ∈ F (V ) were arbitrary, we get that indeed ϕ1|U = ϕ2|U as desired.

To show gluability, suppose we have an open set U ∈ Op(X) and an open cover {Ui} of U . Suppose
further we have a collection {ϕi} where each ϕi ∈ Hom(F ,G )(Ui) are such that ϕi|Ui∩Uj = ϕj |Ui∩Uj

for each i, j, and pick an arbitrary open subset V ⊂ U . We will define a natural transformation
ϕ ∈ Hom(F ,G )(U) pointwise. First, define Vi := Ui∩V for each i, and notice that {Vi} form an open
cover of V . For each fixed section x ∈ FV , we obtain sections gi(x) := ϕi(Vi) ◦ resV,Vi

(x) ∈ G (Vi) for
each i. We will now show each resVi,Vi∩Vj

(gi(x)) = resVj ,Vi∩Vj
(gj(x)). By definition of each ϕi being

a natural transformation, the following diagram commutes for every i, j:

F (Vi) G (Vi)

F (Vi ∩ Vj) G (Vi ∩ Vj)

resVi,Vi∩Vj

ϕi(Vi)

resVi,Vi∩Vj

ϕi(Vi∩Vj)

which makes sense because Vi ⊂ Ui for each i, so we may indeed apply ϕi to these subsets. By
commutativity, we may observe that

resVi,Vi∩Vj
(gi(x))

= resVi,Vi∩Vj
◦ϕi(Vi) ◦ resV,Vi

(x)

= ϕi(Vi ∩ Vj) ◦ resVi,Vi∩Vj
◦ resV,Vi

(x)

= ϕi(Vi ∩ Vj) ◦ resV,Vi∩Vj
(x)

= ϕj(Vi ∩ Vj) ◦ resV,Vi∩Vj
(x)

= ϕj(Vi ∩ Vj) ◦ resVj ,Vi∩Vj
◦ resV,Vj

(x)

= resVj ,Vi∩Vj
◦ϕj(Vj) ◦ resV,Vj

(x)

= resVj ,Vi∩Vj
(gj(x))

Thus by gluability of G , we obtain a section gV (x) ∈ G (V ) such that resV,Vi
(gV (x)) = gi(x) =

ϕi(Vi) ◦ resV,Vi
(x) for every i. Then we define the natural transformation ϕ ∈ Hom(F ,G )(U) that

acts as ϕ(V )(x) := gV (x) for every x ∈ F (V ) and every V ⊂ U . We need to show that this ϕ
is a natural transformation, and that its restriction to Ui gives ϕi. To show that ϕ is a natural
transformation, we want to show the following diagram commutes for all W ⊂ V ⊂ U :

F (V ) G (V )

F (W ) G (W )

ϕ(V )

resV,W resV,W

ϕ(W )

88



We will use identity of G to prove this. For arbitrary x ∈ F (V ), defining an open cover {Wi} of W
where Wi :=W ∩ Ui, we compute that

resW,Wi
◦ϕ(W ) ◦ resV,W (x)

= resW,Wi
◦gW (resV,W (x))

= ϕi(Wi) ◦ resW,Wi
◦ resV,W (x)

= ϕi(Wi) ◦ resV,Wi
(x)

On the other hand, we compute that

resW,Wi
◦ resV,W ◦ϕ(V )(x)

= resW,Wi
◦ resV,W (gV (x))

= resVi,Wi
◦ resV,Vi

(gV (x))

= resVi,Wi
◦ϕi(Vi) ◦ resV,Vi

(x)

= ϕi(Wi) ◦ resVi,Wi
◦ resV,Vi

(x)

= ϕi(Wi) ◦ resV,Wi
(x)

Therefore identity of G gives us that, because ϕ(W ) ◦ resV,W (x) agrees with resV,W ◦ϕ(V )(x) on
restrictions to every Wi, that

resV,W ◦ϕ(V )(x) = ϕ(W ) ◦ resV,W (x)

Because W ⊂ V ⊂ U were arbitrary with x ∈ F (V ), we obtain that indeed ϕ ∈ Hom(F ,G )(U). The
last thing to show is that ϕ|Ui = ϕi for each i. Fix anyW ⊂ Ui and any x ∈ F (W ). Then, like before,
we have an open cover {Wi} of W . We will use identity of G one final time to show that ϕ|Ui = ϕi.
We compute that

resW,Wi ◦ϕ|Ui(W )(x)

= resW,Wi ◦ϕ(W )(x)

= resW,Wi ◦gW (x)

= ϕi(Wi) ◦ resW,Wi(x)

while on the other hand

resW,Wi
◦ϕi(W )(x) = ϕi(Wi) ◦ resW,Wi

(x)

Thus because ϕ|Ui(W )(x) agrees with ϕi(W )(x) on all restrictions each Wi, the two must be the same
by identity of G . Because W ⊂ V and x ∈ F (W ) were arbitrary, we obtain that indeed ϕ|Ui = ϕi
as desired, which proves gluability of Hom(F ,G ). Thus Hom(F ,G ) ∈ SetX for all F ∈ SetpreX and
G ∈ SetX .

Exercise 2.3.D

Proof. (a) Notice that because {p} is the terminal object in Top, there exists a unique continuous
map from every U ⊂ X into {p}, which we will denote as fU . In other words, {p}(U) = {fU}
for each U , and fU |V = fV for every V ⊂ U ⊂ X. We define φ ∈ Nat(Hom({p},F ) that acts
on ϕ ∈ Hom({p},F )(U) as

φ(U)(ϕ) = ϕ(U)(fU )

For ease of notation, we write ϕ(fV ) to denote ϕ(V )(fV ) for all V ⊂ U ⊂ X and ϕ ∈
Hom({p},F )(U). Notice that for each ϕ ∈ Hom({p},F )(U), ϕ(fU ) determines ϕ entirely be-
cause each {p}(V ) = {fV }, and ϕ being a natural transformation implies the following diagram
commutes for all V ⊂ U :
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{p}(U) F (U)

{p}(V ) F (V )

ϕ(U)

resU,V resU,V

ϕ(V )

and resU,V (fU ) = fV , so ϕ(fV ) = resU,V ◦ϕ(fU ). We will use this fact to define natural trans-
formations later and show that they are equal. To show φ is indeed a natural transformation,
we want to show the following diagram commutes for all V ⊂ U ⊂ X:

Hom({p},F )(U) F (U)

Hom({p},F )(V ) F (V )

φ(U)

resU,V resU,V

φ(V )

This commutes because for any ϕ ∈ Hom({p},F )(U), we compute that

φ(V ) ◦ resU,V (ϕ)
= resU,V (ϕ)(fV )

= ϕ(fV )

= ϕ ◦ resU,V (fV )
= resU,V (ϕ(fU ))

= resU,V ◦φ(U)(ϕ)

by our definition of restriction of natural transformations defined in Exercise 2.3.D. Now all
that’s left to show is that φ is an isomorphism, or equivalently, for every U ⊂ X, φ(U) is a
bijection. To show surjectivity, fix any s ∈ F (U). Then there exists ϕs ∈ Hom({p},F )(U) such
that ϕs(fV ) = resU,V (s) for every V ⊂ U . To show ϕs is a natural transformation, we observe
that

{p}(V ) F (V )

{p}(W ) F (W )

ϕs(V )

resV,W resV,W

ϕs(W )

commutes because

ϕs(W ) ◦ resV,W (fV )

= ϕs(W )(fW )

= resU,W (s)

= resV,W ◦ resU,V (s)
= resV,W ◦ϕs(fV )

Then because φ(U)(ϕs) = ϕs(fU ) = resU,U (s) = s, we get that indeed φ(U) is surjective.
To show φ(U) is injective, suppose ϕ1, ϕ2 ∈ Hom({p},F )(U) are such that

φ(U)(ϕ1) = φ(U)(ϕ2)

By definition, then ϕ1(fU ) = ϕ2(fU ). By our initial observations though, because ϕ(fU ) entirely
determines ϕ ∈ Hom({p},F )(U), then ϕ1 = ϕ2 so φ(U) is injective too. Thus φ is an isomorphism.

90



We may assume, without loss of generality, that X is connected, for if X =
∐
Xi and

Hom(Z,F )(Xi) ∼= F (Xi) for every i, then because G (X) =
∏

G (Xi) for every sheaf G on X, we can
lift these isomorphisms to obtain F ∼= Hom(Z,F ) as desired.
Recall that Z(U) is the set of all continuous maps U → Z where Z is endowed with the discrete
topology for each U ⊂ X. Notice we have a particular map cU : U → Z that sends everything to
the generator 1 ∈ Z. We claim that ⟨cU ⟩ = Z(U). To show this, suppose we have some continuous
map f : U → Z. Then because Z is endowed with the discrete topology, we obtain that f−1(n) is
open for every n ∈ Z. In addition, we directly observe that f−1(n) = f−1(m) if and only if n = m.
Thus {f−1(n)} form a disjoint open cover of U . But because U is connected, it must be that exactly
one f−1(n) is nonempty. Thus indeed f(x) = n for all x ∈ U and for some n ∈ Z. In other words,
f = ncU , because we are working with sheaves of abelian groups, so we may multiply sections by
values in Z. This proves our claim that Z(U) = ⟨cU ⟩ ∼= Z.
Therefore for any ϕ ∈ Hom(Z,F )(U), ϕ(U)(cU ), or using the same notation as in part (a), ϕ(cU )
determines ϕ entirely because cU generates Z(U) and

Z(U) F (U)

Z(V ) F (V )

ϕ(U)

resU,V resU,V

ϕ(V )

commutes, along with the fact that resU,V (cU ) = cV so that

ϕ(cV ) = resU,V (ϕ(cU ))

Now we may define a map φ ∈ Nat(Hom(Z,F ),F ) that acts as φ(U)(ϕ) = ϕ(cU ) for every U ⊂ X
and ϕ ∈ Hom(Z,F )(U). We want to show that the following diagram commutes for all V ⊂ U ⊂ W
to prove φ is a natural transformation:

Hom(Z,F )(U) F (U)

Hom(Z,F )(V ) F (V )

φ(U)

resU,V resU,V

φ(V )

To show this, fix any ϕ ∈ Hom(Z,F )(U), then

resU,V ◦φ(U)(ϕ) = resU,V (ϕ(cU )) = ϕ(resU,V (cU )) = ϕ(cV )

= resU,V (ϕ)(cV ) = φ(V ) ◦ resU,V (ϕ)

of course relying on the naturality of ϕ, and the fact that we define ϕV to act just as ϕ does. Now
we wish to show that for every U ⊂ X, φ(U) is a bijection. To show surjectivity, fix any section
s ∈ F (U). We may define ϕs ∈ Hom(Z,F )(U) that acts as ϕs(V )(cV ) = resU,V (s). Then by
construction, φ(U)(ϕs) = ϕs(cU ) = resU,U (s) = s. To show that ϕs is actually natural, we want to
show the following diagram commutes for all W ⊂ V ⊂ U :

Z(V ) F (V )

Z(W ) F (W )

ϕs(V )

resV,W resV,W

ϕs(W )

We may compute that

resV,W ◦ϕs(cV ) = resV,W ◦ resU,V (s) = resU,W (s)

= ϕs(W )(cW ) = ϕs(W ) ◦ resV,W (cV )
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which suffices because again Z(V ) = ⟨cV ⟩ for every V ⊂ X. Thus φ(U) is surjective.
To show φ(U) is injective, suppose φ(U)(ϕ1) = φ(U)(ϕ2) for some ϕ1, ϕ2 ∈ Hom(Z,F )(U). Then
ϕ1(cU ) = ϕ2(cU ). By our previous observations regarding how ϕ(cU ) determines ϕ entirely, it follows
that ϕ1 = ϕ2 as desired. Thus φ(U) is a bijection, hence φ is an isomorphism.

Define φ ∈ Nat(Hom(OX ,F ),F ) that acts as φ(U)(ϕ) = ϕ(1U ) for any ϕ ∈ Hom(OX ,F )(U), where
1U ∈ OX(U) is the multiplicative identity. To show φ is natural, fix any V ⊂ U ⊂ X. We claim the
following diagram commutes:

Hom(OX ,F )(U) F (U)

Hom(OX ,F )(V ) F (V )

φ(U)

resU,V resU,V

φ(V )

Letting ϕ ∈ Hom(OX ,F )(U) be arbitrary, we compute that

resU,V ◦φ(U)(ϕ) = resU,V (ϕ(1U )) = ϕ(resU,V (1U ))

= ϕ(1V ) = resU,V (ϕ)(1V ) = φ(V ) ◦ resU,V (ϕ)

This comes from the fact that ϕ is assumed to be natural, together with the fact that since each
resU,V : OX(U)→ OX(V ) is a ring homomorphism, it must preserve multiplicative identities.
Then indeed φ is natural. To show φ is an isomorphism, it suffices to show each φ(U) is a bijection.
First, we claim that every natural transformation ϕ ∈ Hom(O,F )(U) is uniquely determined by its
action on 1U . To see this, if we take any V ⊂ U and any x ∈ O(U), we observe that by definition the
following diagram commutes:

OX(U) F (U)

OX(V ) F (V )

ϕ(U)

resU,V resU,V

ϕ(V )

For ease of notation, let ϕ(1U ) := ϕ(U)(1U ) for each open U . Because resU,V (1U ) = 1V , we obtain
that

ϕ(V )(x) = ϕ(V )(x · 1V ) = x · ϕ(V )(1V ) = x · resU,V ◦ϕ(1U )

because we have that ϕ is a ModOX
homomorphism. To show φ(U) is surjective, fix any section

s ∈ F (U). Define ϕs ∈ Hom(OX ,F )(U) that acts as

ϕs(V )(1V ) = resU,V (s)

for any V ⊂ U . By our previous observation, this defines ϕs entirely. To show ϕs is natural, we want
to show the following diagram commutes for all W ⊂ V ⊂ U :

OX(V ) F (V )

OX(W ) F (W )

ϕs(V )

resV,W resV,W

ϕs(W )

To see this, by our previous observations it suffices to show both paths action on 1V agrees. We
observe

ϕs(W ) ◦ resV,W (1V ) = ϕs(1W ) = resU,W (s) = resV,W ◦ resU,V (s) = resV,W ◦ϕs(1V )
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as desired. We also have that, by construction,

φ(U)(ϕs) = ϕs(1U ) = resU,U (s) = s

so φ(U) is surjective.
φ(U) is injective because if φ(U)(ϕ1) = φ(U)(ϕ2) for some ϕ1, ϕ2 ∈ Hom(OX ,F )(U), then by defini-
tion ϕ1(1U ) = ϕ2(1U ). But by our previous observations, this action determines ϕ1 and ϕ2 to be the
same. Thus φ(U) is injective, and hence φ is an isomorphism as desired.

Exercise 2.3.E

Proof. We use the following diagram to define resU,V for every V ⊂ U ⊂ X:

F (U) F (V ) G (V )

kerϕ(V )

kerϕ(U)

resU,V ϕ(V )

0ιV

ιU

∃!

Indeed,

ϕ(V ) ◦ resU,V ◦ιU = resU,V ◦ϕ(U) ◦ ιU = resU,V ◦0 = 0

so we obtain the induced morphism resU,V : kerϕ(U) → kerϕ(V ) that makes the diagram commute.
By this construction, it is clear that resU,U = idkerϕ(U) by uniqueness of resU,U and the fact that
resU,U : F (U) → F (U) = idF(U). The last thing to show is that for all W ⊂ V ⊂ U ⊂ X, we
have that resU,W = resV,W ◦ resU,V . Notice that by our constructions of the restrictions, the following
diagram commutes:

F (U) F (V ) F (W )

kerϕ(U) kerϕ(V ) kerϕ(W )

resU,V resV,W

resU,V

ιU ιV

resV,W

ιW

By this diagram, it is clear that

ιW ◦ reskerV,W ◦ reskerU,V = resFV,W ◦ιV ◦ reskerU,V = resFV,W ◦ resFU,V ◦ιU = resFU,W ◦ιU = ιW ◦ reskerU,W

where here we use superscripts to denote which presheaf the restriction is occuring in. Now, using the
fact that ιW is a monomorphism, we obtain that indeed

reskerV,W ◦ reskerU,V = reskerU,W

so kerpre ϕ is a presheaf.

Exercise 2.3.F

Proof. Let π : G ↠ cokpre ϕ be the projection defined on each open set U ⊂ X as

πU = cokϕ(U)

Dually to how we defined the restriction maps in Exercise 2.3.E, we obtain natural restriction maps
for π. As shown in the commutative diagram below, we may observe that indeed π ◦ ϕ is the zero
morphism in Modpre

OX
because it is on each open V ⊂ U ⊂ X:
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cokpre ϕ(U) cokpre ϕ(V )

G (U) G (V )

F (U) F (V )

res

πU

res

πV

ϕ(U)

res

0

ϕ(V )

0

Now suppose we have the following commutative diagram in Modpre
OX

:

H

F G

0

ϕ

ψ

Then, in particular, on each open U ⊂ X, we get the following commutative diagram:

H (U)

cokpre ϕ(U)

F (U) G (U)

∃!hU

0

ϕ(U)

πU

ψ(U)

Now we define the morphism h : cokpre ϕ → H given on each open set U as hU . We now need to
show that h is in fact a natural transformation by showing the following diagram commutes for all
open V ⊂ U ⊂ X:

H (U) H (V )

cokpre ϕ(U) cokpre ϕ(V )

resH

rescok

hU hV

The good news is that π is an epimorphism, so we can compute the following equalities:

resH ◦hU ◦ πU
= resH ◦ψ(U)

= ψ(V ) ◦ resG

= hV ◦ πV ◦ resG

= hV ◦ rescok ◦πU

Because πU is an epimorphism, we get that

resH ◦hU = hV ◦ rescok

as desired. Then indeed h is a natural transformation, and by construction h ◦ π = ψ.
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Exercise 2.3.G

Proof. We obtain a functor taking F 7→ F (U) and taking ϕ : F → G to ϕ(U). This preserves identity

morphisms by definition, and if we have F
ϕ−→ G

ψ−→H , then we take ψ◦ϕ to (ψ◦ϕ)(U) = ψ(U)◦ϕ(U)
by definition, proving this is a functor.

Now, to show that this functor is exact, we will show that if F
ϕ−→ G

ψ−→ H is exact, then

F (U)
ϕ(U)−−−→ G (U)

ψ(U)−−−→ H (U) is also exact. Supposing the first sequence is exact, then kerpre ψ =
impre ϕ by definition. By definition of kerpre and cokpre (and hence impre), we obtain that

kerψ(U) = kerpre ψ(U) = impre ϕ(U) = imψ(U)

Thus F (U)
ϕ(U)−−−→ G (U)

ψ(U)−−−→H (U) is exact as desired. To be completely thorough, we would need
to show that our functor preserves the additive structures of the hom-sets, but this is simply because
the additive structure of hom-sets in Abpre

X is defined by addition on each open set.

Exercise 2.3.H

Proof. The forward direction is clear; to convince yourself, look at Exercise 2.3.G. For the reverse
direction, because kerpre and cokpre (and hence impre) are defined ”pointwise”, meaning on each open
set, we immediately obtain that 0 → F1(U) → · · · → Fn(U) → 0 exact for every open U implies
0→ F1 → · · · → Fn → 0 is also exact.

Exercise 2.3.I

Proof. Because the category of sheaves is a full subcategory of the category of presheaves, the universal
property is satisfied by a dual argument to Exercise 2.3.F. Thus it suffices to show that kerpre ϕ satisfies
identity and gluability.

Suppose U ⊂ X is open, and {Ui} is an open cover of U . Now suppose that we have a collection
of fi : kerpre ϕ(Ui) such that

fi|Ui∩Uj
= fj |Ui∩Uj

for each i, j. If ι : kerpre ϕ→ F is the inclusion, consider {ιUi(fi)}. Then for each i, j, ιUi(fi)|Ui∩Uj =
ιUj

(fj)|Ui∩Uj
because

resF ◦ι = ι ◦ reskerpre ϕ

so
ιUi(fi)|Ui∩Uj = ιUi∩Uj (fi|Ui∩Uj ) = ιUi∩Uj (fj |Ui∩Uj ) = ιUj (fj)|Ui∩Uj

Then by gluability of F , there exists some f ∈ F (U) such that f |Ui
= ιUi

(fi) for each i. To show
f ∈ im ι(U) ∼= kerpre ϕ(U), we will show ϕ(U)(f) = 0, where here 0 is the identity element of G (U).
Notice that

0|Ui
= 0 = ϕ(Ui)(ιUi

(fi)) = ϕ(Ui)(f |Ui
) = ϕ(U)(f)|Ui

for each i, where again 0 here denotes the identity element(s), we obtain by identity of G that indeed
0 = ϕ(U)(f). Thus f ∈ im ι(U) as desired, so we take ι−1

U (f) to be the desired map in kerpre ϕ(U).
We compute that

ι−1
U (f)|Ui

= ι−1
Ui

(f |Ui
) = ι−1

Ui
(ιUi

(fi)) = fi

so gluability holds for kerpre ϕ.
To show identity, using the same open set and open cover as before, suppose we have f1, f2 ∈

kerpre ϕ(U) such that f1|Ui
= f2|Ui

for each i. Then

ιU (f1)|Ui
= ιUi

(f1|Ui
) = ιUi

(f2|Ui
) = ιU (f2)|Ui

for each i. By identity of F , we get that ιU (f1) = ιU (f2). Then by injectivity of ι, we get f1 = f2 as
desired.
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Exercise 2.3.J

Proof. Recall that Z takes an open set to the abelian group of continuous maps U → Z, where Z
is given the discrete topology. There is a natural inclusion of Z into OX , because locally constant
functions are holomorphic and Z ⊂ C. Thus

0→ Z ι−→ OX

is exact. For the exactness at F , any function f ∈ F (U) by definition has some holomorphic
g ∈ OX(U) such that exp(g) = f . Thus the holomorphic function g

2πi is sent to f , proving

OX
π−→ F → 0

is also exact. To show im ι ⊂ kerπ, for any f ∈ Z(U), we have exp(2πif) = c1, where c1 is the
constant function to 1 ∈ C, because all integer multiples of 2πi are sent to 1 by exp. This is the
identity on F (U), as the abelian group structure of F is pointwise multiplication.

To show kerπ ⊂ im ι, suppose exp(2πif) = c1. We obtain immediately that for every z ∈ U , f(z) ∈
Z because these are the only values of C for which the exponential evaluates to 1. In addition, we may
pick any small ϵ, and notice that

⋃
n∈Z D(n, ϵ) is a disjoint open cover of Z, hence

⋃
n∈Z f

−1(D(n, ϵ))
is a disjoint open cover of U . Therefore f must be locally constant, so f ∈ Z(U) as desired. Thus

Z→ OX → F

is exact.
Now, we will show F is not a sheaf. Consider the following open cover of C∗: U := {eit : 0 < t <

2π} and V := {eit : π < t < 3π}. Then idU and idV both have holomorphic logarithms, because U, V
by construction have made a branch cut along R≥0 and R≤0 respectively. If F satisfied gluability,
then idC∗ would have a logarithm, so there would be a global logarithm on C∗; this is a contradiction
because there is no such global logarithm. Thus F is not a sheaf.

Section 2.4

Exercise 2.4.A

Proof. The natural map sends f ∈ F (U) to ([f, U ])p∈U , the element that projects to the germ [f, U ]
for each p ∈ U . To show this map is injective, suppose f, g ∈ F (U) have the same image under our
map. Then for every p ∈ U , we have that [f, U ] = [g, U ]. By definition, this means that there exists
some open neighborhood Vp ⊂ U of p such that f |Vp = g|Vp . Notice that {Vp}p∈U is an open cover of
U , and f |Vp = g|Vp for every p implies, by identity of F , that f = g.

Exercise 2.4.B

Proof. Let (sp)p∈U ∈
∏
p∈U Fp be a compatible germ. Then there exists some open cover {Ui} of U

and sections fi ∈ F (Ui) such that for every p ∈ U , if p ∈ Ui then [fi, Ui] = sp. We claim that for any
i, j, on Ui ∩ Uj it holds that fi|Ui∩Uj

= fj |Ui∩Uj
. To show this, for any p ∈ Ui ∩ Uj ,

[fi, Ui] = sp = [fj , Uj ]

Then by definition, there exists some open neighborhood Vp ⊂ Ui ∩ Uj of p such that fi|Vp = fj |Vp .
Letting p range freely over Ui ∩ Uj , we get an open cover {Vp} of Ui ∩ Uj . Because fi and fj restrict
to the same thing on each Vp, by identity of F we get that fi|Ui∩Uj

= fj |Ui∩Uj
. With this result, by

gluability of F , there exists some f ∈ F (U) such that f |Ui
= fi for each i.

Then f 7→ ([f, U ])p∈P . By construction, for every p ∈ U ,

sp = [fi, Ui] = [f, U ]

because again f |Ui
= fi. Thus indeed f maps to (sp), so the set of compatible germs is contained in

the image.
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Exercise 2.4.C

Proof. We want to show that for arbitrary f ∈ F (U), ϕ1(U)(f) = ϕ2(U)(f) given that ϕ1 and ϕ2
induce the same maps of stalks. Recall that the induced map of stalks by ϕ : F → G is given by

[f, U ] 7→ [ϕ(U)(f), U ]

Fix an arbitrary p ∈ U . Then because the induced maps of ϕ1, ϕ2 agree, we get that

[ϕ1(U)(f), U ] = [ϕ2(U)(f), U ]

By definition, there exists some open neighborhood Vp ⊂ U of p such that ϕ1(U)(f)|Vp
= ϕ2(U)(f)|Vp

.
Because p was arbitrary, we get an open cover {Vp}p∈U for U . But because ϕ1(U)(f)|Vp

= ϕ2(U)(f)|Vp

for every p, we get by identity of G that ϕ1(U)(f) = ϕ2(U)(f) as desired. Thus ϕ1(U) = ϕ2(U) because
f was arbitrary, hence ϕ1 = ϕ2 as U was also arbitrary.

Exercise 2.4.D

Proof. For the forward direction, suppose ϕ : F → G is an isomorphism of sheaves in SetX . We want
to show that the induced map ϕp : Fp → Gp is an isomorphism. We observe

ϕp ◦ ϕ−1
p ([g, U ]) = ϕp([ϕ

−1(U)(g), U ]) = [ϕ(U) ◦ ϕ−1(U)(g), U ] = [g, U ]

and
ϕ−1
p ◦ ϕp([f, U ]) = ϕ−1

p ([ϕ(U)(f), U ]) = [(ϕ−1(U) ◦ ϕ(U))(f), U ] = [f, U ]

so indeed the induced maps ϕp and ϕ−1
p are inverses, so ϕp is an isomorphism.

For the reverse direction, suppose ϕ : F → G induces isomorphisms (natural bijections) of all
stalks. To shown that ϕ is injective, suppose ϕ(U)(f1) = ϕ(U)(f2) for any two f1, f2 ∈ F (U). Then
for each p ∈ U ,

ϕp([f1, U ]) = [ϕ(U)(f1), U ] = [ϕ(U)(f2), U ] = ϕp([f2, U ])

By injectivity of ϕp, we get [f1, U ] = [f2, U ]. Then there exists some neighborhood Vp ⊂ U of p such
that f1|Vp

= f2|Vp
. But because p ∈ U was arbitrary, we have an open cover {Vp} of U such that

f1|Vp
= f2|Vp

for all p, so by identity of F we get that f1 = f2 as desired; thus ϕ is injective.
To show surjectivity, fix any g ∈ G (U), and we want to show that there exists some f ∈ F (U)

such that ϕ(U)(f) = g. For each p ∈ U , [g, U ] ∈ Gp; by surjectivity of each ϕp, let

ϕp([fp, Up]) = [g, U ]

Then the {Up} forms an open cover of U . We now claim that the fp together with the {Up} is a
compatible germ. To show this, we want to show that if p ∈ Uq, that [fq, Uq] = [fp, Up] as stalks at p.
We notice that

ϕp[fq, Uq] = [ϕ(Uq)(fq), Uq] = [ϕ(Up ∩ Uq)(fq|Up∩Uq ), Up ∩ Uq]
= [g|Up∩Uq , Up ∩ Uq] = [g|Up , Up] = [ϕ(Up)(fp), Up] = ϕp[fp, Up]

By injectivity of ϕp, we get that [fq, Uq] = [fp, Up] as desired. By Exercise 2.4.B, this choice of
compatible germs is the image of some section f of F over U . We claim now that ϕ(U)(f) = g, which
will come from identity on G . We have that for every p ∈ U ,

f |Up = fp

and
ϕ(U)(f)|Up

= ϕ(Up)(f |Up
) = ϕ(Up)(fp)

which agrees with g on some neighborhood Vp ⊂ U . In other words, ϕ(U)(f) agrees with g on the
open cover {Vp}, so that, by identity of G , ϕ(U)(f) = g. This concludes the proof as we’ve shown ϕ
is injective and surjective, hence an isomorphism.
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Exercise 2.4.E

Proof. (a) As suggested, let X = {p, q} be the two point space with the discrete topology. Below is
the diagram describing the presheaf – i.e. contravariant functor from Op(X)→ Set –

F (X) = {0, 1}

F ({p}) = {0} F ({q}) = {1}

F (∅) = {∗}

resX,{p} resX,{q}

res{p},∅ res{q},∅

It’s easy to check this is a presheaf by the functor definition. However, 0|{p} = 0 = 1|{p} and
0|{q} = 1 = 1|{q}, so this is where identity fails. Thus a and b have identical germs at each
point. Therefore, under the natural map F (X)→

∏
x∈X Fx, we observe

0 7→ ([0|{p}, {p}], [0|{q}, {q}]) = ([0, {p}], [1, {q}])

and
1 7→ ([1|{p}, {p}], [1|{q}, {q}]) = ([0, {p}], [1, {q}])

so injectivity fails.

(b) Let F be defined as above, let ϕ1 : F → F be the identity, and ϕ2 : F → F be defined by
ϕ2(X) being the constant function to 0 ∈ F (X). This defines ϕ2 entirely because the other
values of ϕ2 are uniquely determined since the sheaf F evaluates every other set to be the final
object in Set. We notice that, as before, there is only one element in Fp and one element in
Fq. Therefore ϕ1 and ϕ2 induce the same maps on each stalk as ϕ1(0) = ϕ2(0), and

[ϕ1(1), X]p = [1, X]p = [0, {p}]p = [0, X]p = [ϕ2(1), X]p

where the subscript indicates the stalk we are looking at. Similarly

[ϕ1(1), X]q = [1, X]q = [1, {q}]q = [0, X]q = [ϕ2(1), X]q

proves that, because ϕ1 agrees with ϕ2 on every other open set, that the two endomorphisms of
F induce the same maps on each stalk, but are not equal.

(c) Let F be as above, and let G be defined by the commutative diagram below:

G (X) = {2}

F ({p}) = {0} F ({q}) = {1}

F (∅) = {∗}

resX,{p} resX,{q}

res{p},∅ res{q},∅

Now let ϕ : F → G be the unique morphism of presheaves into G , because G is the final object
in SetpreX . Similarly to F , there is only one element in Gp as there is in Gq. Thus, ϕ induces
bijections (isomorphisms in Set) on each stalk. However, ϕ : F → G is not an isomorphism
because G is not the final object, while G is, so indeed there cannot be an isomorphism between
them.
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Exercise 2.4.F

Proof. Suppose F is a presheaf, and ϕ : F → G and φ : F → H are two sheaves satisfying the
universal property of the sheafification F sh of F . Then, by the universal property of G , the following
diagram commutes:

F G

H

ϕ

φ
∃!φ̃

On the other hand, by the universal property of H , the following diagram commutes:

F H

G

φ

ϕ
∃!ϕ̃

Now, consider the following commutative diagram induced by G :

F G

G

ϕ

ϕ
∃!

The identity morphism satisfies this unique arrow, as does ϕ̃ ◦ φ̃ because

ϕ̃ ◦ φ̃ ◦ ϕ = ϕ̃ ◦ φ = ϕ.

By uniqueness, the two are equal. Similarly, the unique arrow in the commutative diagram below

F H

H

φ

φ ∃!

is satisfied by both the identity morphism and φ̃ ◦ ϕ̃, so the two are equal. This proves φ̃ and ϕ̃ are
inverses, and thus G ∼= H as sheaves.

Also, if F is already a sheaf, then we claim F with the identity is the sheafification of F . Indeed,
for every other sheaf G and f : F → G , then the following diagram commutes:

F F

G

idF

f
∃!

because the unique arrow is f itself, and f is a morphism of sheaves because SetX is a full subcategory
of SetpreX .

Exercise 2.4.G

Proof. Suppose we have ϕ : F → G where F and G are presheaves. Then we have the following
commutative diagram by the universal property of F sh:

F F sh

G G sh

ϕ

shF

∃!ϕsh

shG
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To show sheafification is a functor, we need to show that it preserves identity morphisms and respects
composition of morphisms. We observe that, by the commutative diagram above defining the in-
duced morphism, that sheafification preserves identities. To show sheafification respects composition,
suppose we have

F
f−→ G

g−→H

The following commutative diagram defines (g ◦ f)sh:

F F sh

H H sh

g◦f

shF

∃!

shH

By uniqueness of (g ◦ f)sh, it suffices to show that gsh ◦ f sh satisfies this commutative diagram. We
compute that, by definition of gsh and f sh,

gsh ◦ f sh ◦ shF = gsh ◦ shG ◦ f = shH ◦ g ◦ f

as desired, so sheafification indeed preserves composition of morphisms and identities, and is thus a
functor.

Exercise 2.4.H

Proof. This construction is easily seen to be a presheaf, so we will just prove it satisfies identity and
gluability.

For identity, suppose we have two sections (fp ∈ Fp)p∈U and (gp ∈ Fp)p∈U and and open cover
{Ui} of U such that (fp)p∈U and (gp)p∈U restrict to the same section on each Ui, i.e.

(fp)p∈Ui
= (gp)p∈Ui

for each i. But then indeed, since the Ui’s form an open cover for U , for each p ∈ U , p ∈ Ui for some
i implies fp = gp. Then indeed the two sections are equal because they project to the same sections
at each point, so identity holds.

For gluability, suppose we have a set of sections {(f ip)p∈Ui
}i for an open cover {Ui} of U such that

on each Ui ∩ Uj ,
(f ip)p∈Ui∩Uj = (f jp )p∈Ui∩Uj

where I am using the superscript as an index notation for the sections. Let (fp)p∈U be a choice of
sections such that for each p ∈ U , fp is f ip for some neighborhood Ui of p. Notice that this is not
actually a “choice” because of the sections agreeing on their intersections, so that

f ip = f jp

for every p ∈ Ui∩Uj where we would need to make a choice. We claim that (fp)p∈U is indeed a section
of F sh over U . By the compatibility condition that for all p ∈ Ui, there exists an open neighborhood
Vi ⊂ Ui of p, and s ∈ F (Vi) such that sq = f iq for all q ∈ Vi an all i, we obtain that Vi ∩Vj is an open
neighborhood of p contained in Ui ∩ Uj . Fixing p ∈ U to be arbitrary, we know p ∈ Ui for some i.
Then there exists an open neighborhood Vi ⊂ Ui and s ∈ F (Vi) such that f iq = sq for every q ∈ Vi.
By construction of (fp)p∈U , we decided that fq is f iq for every q ∈ Ui, hence fq = sq for every q ∈ Vi.
Then indeed (fp)p∈U consists of compatible germs of U , so (fp)p∈U ∈ F sh(U). Finally, restricting
this section to each Ui gives

(fp)p∈Ui
= (f ip)p∈Ui

by construction, so gluability holds.
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Exercise 2.4.I

Proof. The natural map sh : F → F sh is defined by

sh(U)(f) = (fp)p∈U

Clearly the output consists of compatible germs. Furthermore, if V ⊂ U ⊂ X, we observe that for
any f ∈ F (U),

sh(U)(f)|V = (fp)p∈V = (f |V p)p∈V = sh(V )(f |V )
where the middle equality comes from the fact that germs are local, so the germs of f |V are equal to
the germs of f at points in V . This shows that sh is a natural transformation, and is thus a map of
presheaves.

Exercise 2.4.J

Proof. Suppose we have a sheaf G and a map of presheaves ϕ : F → G . Then for any section
(fp ∈ Fp)p∈U consisting of compatible germs, for each p ∈ U , let Vp ⊂ U denote the open neighborhood
of p and sp ∈ F (Vp) be the section such that spq = fq for every q ∈ Vp. We define ϕsh(U) to
take (fp)p∈U to the unique section of G over U obtained by gluability applied to the collection of
{ϕ(Vp)(sp) ∈ G (Vp)}. Gluability is applicable here because on any Vp ∩ Vq, we observe

ϕ(Vp)(s
p)|Vp∩Vq

= ϕ(Vp ∩ Vq)(sp|Vp∩Vq
) = ϕ(Vp ∩ Vq)(sq|Vp∩Vq

) = ϕ(Vq)(s
q)|Vp∩Vq

The reason ϕ(Vp ∩ Vq)(sp|Vp∩Vq ) = ϕ(Vp ∩ Vq)(sq|Vp∩Vq ) is because by Exercise 2.4.A, sections of a
sheaf is determined by its germs, and we know that for all r ∈ Vp ∩ Vq,

spr = fr = sqr

In other words, for every r ∈ Vp ∩ Vq, there exists some neighborhood Wr ⊂ Vp ∩ Vq of r such that
sp|Wr

= sq|Wr
. Therefore

ϕ(Vp ∩ Vq)(sp|Vp∩Vq )|Wr = ϕ(Vp ∩ Vq)(sp|Wr ) = ϕ(Vp ∩ Vq)(sq|Wr ) = ϕ(Vp ∩ Vq)(sq|Vp∩Vq )|Wr

so indeed the two sections have equal germs everywhere, which shows they are equal by Exercise 2.4.A.
Notice that our function ϕsh(U) is well defined by identity of G , because our choice of gluability

is the unique section with this property. Now we have to show that ϕsh is natural. If we take V ⊂ U ,
we want to show that

ϕsh(U)(fp)p∈U |V = ϕsh(V )(fp)p∈V (2)

To do this, it suffices by identity of G to show that ϕsh(U)(fp)p∈U |V agrees with ϕsh(V )(fp)p∈V on
some open cover of V . By definition, we have that

ϕsh(U)(fp)p∈U |Vp
= ϕ(Vp)(s

p)

Now let Wp := V ∩ Vp for each p ∈ V , so that {Wp} forms an open cover of V . Then

ϕsh(U)(fp)p∈U |Wp
= ϕ(Vp)(s

p)|Wp
= ϕ(Wp)(s

p|Wp
) = ϕsh(V )(fp)p∈V |Wp

To show the final equality, we use the fact that the choice of sections whose stalks yield any choice
of compatible germs is independent. This follows from Exercise 2.4.A, because if we pick some other
choice of representing sections , then we use the fact that sections of G are determined by their germs.
This will be made precise as follows: for each p ∈ V , take Up ⊂ V to be a neighborhood of p and tp

to be a section such that for all q ∈ Up, tpq = fq. Then Wp ∩ Up is a neighborhood of p contained in
V such that each germ of tp and sp are equal. This would enforce that

ϕ(Wp ∩ Up)(tp) = ϕ(Wp ∩ Up)(sp)
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because their germs are the same everywhere by Exercise 2.4.A. Then we would replace our open
cover {Wp} by {Wp ∩ Up}, and everything would be the same.

Now we have shown that ϕsh(U)(fp)p∈U restricts the same as ϕsh(V )(fp)p∈V on the open cover
{Wp}, which by identity shows they are equal. Thus ϕsh is a map of sheaves.

To show ϕsh satisfies the desired universal property, we take any U ⊂ X and any f ∈ F (U). Then
we observe that the following diagram commutes

F (U) F sh(U)

G (U)

sh(U)

ϕ(U)
ϕsh(U)

because
ϕsh(U) ◦ sh(U)(f) = ϕsh(U)(fp)p∈U = ϕ(U)(f).

The last equality holds because (fp)p∈U has the representative section f on the open cover {U} of U .
Then gluability of ϕ(U)(f) on the open cover {U} of U trivially gives ϕ(U)(f) back. Then because
the diagram commutes for every open subset and is natural, existence is proven.

The last thing to show is that ϕsh is unique. Suppose we had another map of sheaves φ : F sh → G
satisfying the universal property. To show φ = ϕsh, it suffices to show for arbitrary U ⊂ X and
(fp)p∈U ∈ F sh(U), that φ(U)(fp)p∈U = ϕsh(U)(fp)p∈U . Let {Vp}p∈U be an open cover of U and
sp ∈ F (Vp) be a section such that for each q ∈ Vp, fq = spq . By the universal property that φ satisfies,
we obtain that

φ(U)(fq)q∈U |Vp
= φ(Vp)(fq)q∈Vp

= φ(Vp) ◦ sh(Vp)(sp)
= ϕ(Vp)(s

p) = ϕsh(Vp) ◦ sh(Vp)(sp) = ϕsh(Vp)(fq)q∈Vp
= ϕsh(U)(fq)q∈U |Vp

Because the {Vp} form an open cover of U , and we just showed that φ(U)(fq)q∈U restricts the same
as ϕsh(U)(fq)q∈U on each Vp, thus proving by identity of G that ϕsh(U)(fq)q∈U = φ(U)(fq). This
proves that, because U was arbitrary and (fq)q∈U was as well, that φ = ϕsh, so uniqueness holds as
well.

Exercise 2.4.K

Proof. We want to show that for any presheaves F and G , any sheaves H and T , ϕ : H → T , and
φ : G → F the following diagrams commute:

Hom(F sh,H ) Hom(F sh,T )

Hom(F ,H ) Hom(F ,T )

τF,H

ϕ∗

τF,T

ϕ∗

Hom(F sh,H ) Hom(G sh,H )

Hom(F ,H ) Hom(G ,H )

τF,H

(φsh)∗

τG ,H

φ∗

where in addition the τ ’s are bijections. By the universal property of sheafification, we define f̂ :=
τ−1
F ,H (f), where f : F →H ; more explicitly, f̂ is the unique morphism induced by the commutative
diagram below:

F F sh

H

sh

f
∃!

On the other hand, given a morphism f̃ : F sh →H , then we define a morphism τF ,H (f̃) : F →H
given by

τF ,H (f̃) = f̃ ◦ sh
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By uniqueness of the arrow induced by the universal property of F sh, we obtain that

τ−1
F ,H ◦ τF ,H (f̃) = τ−1

F ,H (f̃ ◦ sh) = f̃

and that also
τF ,H ◦ τ−1

F ,H (f) = τF ,H (f̂) = f̂ ◦ sh = f.

Now that the τ ’s are bijections, we need to check that the first diagram commutes. We check that

τF ,T ◦ ϕ∗(f) = τF ,T (ϕ ◦ f) = ϕ ◦ f ◦ sh

and that

ϕ∗ ◦ τF ,H (f) = ϕ∗(f ◦ sh) = ϕ ◦ f ◦ sh

so the first diagram does commute. To show the second diagram commutes, we see

τG ,H ◦ (φsh)∗(f) = τG ,H (f ◦ φsh) = f ◦ φsh ◦ shG = f ◦ shF ◦φ

while on the other hand

φ∗ ◦ τF ,H (f) = φ∗(f ◦ shF ) = f ◦ shF ◦φ

so both diagrams commute, thus proving that sheafification is left-adjoint to the forgetful functor from
sheaves to presheaves.

Exercise 2.4.L

Proof. Fix p ∈ X as an arbitrary point, and consider the induced map shp : Fp → F sh
p . To show shp

is injective, suppose shp(xp) = shp(yp) for x, y ∈ Fp. Using the constructive definitions, we have that
on some open neighborhood U of p, the germs of x agree with the germs of y at every point in U . In
particular, xp = yp so shp is injective. To show shp is surjective, if we fix any [(fq)q∈U , U ] ∈ F sh

p , we
know that by construction there exists some open neighborhood V ⊂ U of p such that for every q ∈ V ,
fq = sq for some s ∈ F (V ). We claim that sh(s) = (fq)q∈V . Indeed, (fq)q∈V = (sq)q∈V = sh(s).
Therefore

shp([s, V ]) = [sh(s), V ] = [(fq), V ] = [(fq), U ]

proves the induced map is surjective as well.

Exercise 2.4.M

Proof.

(b⇒ a) Suppose we have morphisms of sheaves φ,ψ : G →H such that ϕ ◦ φ = ϕ ◦ ψ. Our approach
will be to show that φ and ψ induce the same maps on stalks. Notice that induced maps of stalks
distributes over composition, so we get that on each stalk Fp,

ϕp ◦ φp = ϕp ◦ ψp.

By injectivity of ϕp, we get that for every p ∈ X

φp = ψp.

By Exercise 2.4.C, morphisms are determined by stalks implies that φ = ψ, so indeed ϕ was a
monomorphism.
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(a⇒ c) Let x, y ∈ F (U) be such that ϕ(U)(x) = ϕ(U)(y), and let φ,ψ : IU → F be morphisms from
the indicator sheaf IU at U such that φ(U)(∗) = x while ψ(U)(∗) = y, thus determining φ,ψ entirely
by the nature of them being natural transformations from IU . By definition, we obtain that

ϕ ◦ φ = ϕ ◦ ψ

because IU (V ) = {∗} if V ⊂ U and ∅ otherwise, so for V ⊂ U we have

ϕ(V ) ◦ φ(V )(∗) = ϕ(U) ◦ φ(U)(∗)|V = ϕ(x)|V = ϕ(y)|V = ϕ(U) ◦ ψ(U)(∗)|V = ϕ(V ) ◦ ψ(V )(∗).

By ϕ being a monomorphism, we obtain that ϕ = ψ, which implies

x = ϕ(U)(∗) = ψ(U)(∗) = y

so ϕ(U)(x) = ϕ(U)(y) implies x = y, or ϕ(U) is injective.

(c⇒ b) Suppose ϕp(xp) = ϕp(yp) for some xp, yp ∈ Fp. Then there exists some neighborhood V of p
such that ϕ(Ux)(x)|V agrees with ϕ(Uy)(y)|V , where we take xp = [x, Ux] and yp = [y, Uy]. By our
assumptions and the naturality of ϕ, we get that

ϕ(V )(x|V ) = ϕ(Ux)(x)|V = ϕ(Uy)(y)|V = ϕ(V )(y|V )

Because ϕ is assumed to be injective on the level of open sets, we get that x|V = y|V . Therefore

xp = [x, Ux] = [x|V , V ] = [y|V , V ] = [y, Uy] = yp

so that indeed ϕp is injective.

Exercise 2.4.N

Proof.

(b⇒ a) Suppose ψ ◦ ϕ = φ ◦ ϕ for some maps of sheaves ψ,φ : G →H . Then on each stalk at p ∈ X,

ψp ◦ ϕp = (ψ ◦ ϕ)p = (φ ◦ ϕ)p = φp ◦ ϕp
Because ϕp is surjective, also known as an epimorphism in Set, we get that ψp = ϕp. By Exercise
2.4.C, since p ∈ X was arbitrary we get that ψ = φ, so ϕ is an epimorphism.

(a⇒ b) We will show that each ϕp is an epimorphism in Set, also known as a surjective map. Suppose
there is some set S and maps of sets φ,ψ : Gp → S such that φ ◦ ϕp = ψ ◦ ϕp. These maps of sets
induce maps of sheaves into the skyscraper sheaf ιp,∗S uniquely defined by

Φ(U)(x) = φ([x, U ])

and
Ψ(U)(x) = ψ([x, U ])

for any neighborhood U of p, and are otherwise determined since ιp,∗S(U) = {∗} otherwise. Indeed,
these are natural because for any V ⊂ U both neighborhoods of p,

Φ(U)(x)|V = φ([x, U ])|V = φ([x, U ]) = φ([x|V , V ]) = Φ(V )(x|V )

and similarly for Ψ because the restriction maps on the skyscraper sheaf are just the identity on
neighborhoods of p. If V is not a neighborhood of p, then the restriction is the unique map onto the
empty section ∗ ∈ ιp,∗(V ). Notice then that

Φ(U)◦ϕ(U)(x) = φ([ϕ(U)(x), U ]) = φ◦ϕp([x, U ]) = ψ◦ϕp([x, U ]) = ψ([ϕ(U)(x), U ]) = Ψ(U)◦ϕ(U)(x)

by construction of Φ and Ψ. This shows that indeed Φ◦ϕ = Ψ◦ϕ, which, by ϕ being an epimorphism,
proves that Φ = Ψ. In particular,

φ([x, U ]) = Φ(U)(x) = Ψ(U)(x) = ψ([x, U ])

so indeed φ = ψ, proving the result.
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Exercise 2.4.O

Proof. We will check that O∗
X is a quotient sheaf of OX by looking at the level of stalks. At any point

z ∈ C, we claim that for any [f, U ] ∈ O∗
X,z, there is some gz ∈ OX,z such that

exp(g)z = fz

In U , we may take some small simply connected neighborhood V of z contained in U . Then on V ,
since f is non-vanishing, there exists a logarithm g of f |V [6], explicitly given by

g(w) = b+

∫ w

z

f ′(ξ)

f(ξ)
dξ

for any choice of a branch of logarithm b of f(z). Then indeed

expp([g, V ]) = [exp(g), V ] = [f |V , V ] = [f, U ]

which shows, because z ∈ C was arbitrary, that exp is an epimorphism of sheaves by Exercise 2.4.N.
However, exp is not surjective on the level of open sets. Consider U := C \ {0}, and consider the

identity function idU on U . Then indeed idU is nowhere 0, and is holomorphic, so idU ∈ O∗
X(U).

However, because there is no branch cut in U , idU does not admit a logarithm on U , so idU is not in
the image of exp(U).

Section 2.5

Exercise 2.5.A

Proof. Suppose we have a sheaf F on X, and a basis {Bi} for the topology of X. To show we
can recover F entirely from what it does to the basis, let U ⊂ X be open, and U =

⋃
j Bj . We

claim that F (U) = S := {gluability applied to every{fj ∈ F (Bj) : fj |Bj∩Bj
= fk|Bj∩Bk

}. We see
that F (U) ⊂ S because each section s ∈ F (U) restricts to sections of each F (Bj) with the desired
property, and by the identity applied to s and gluability of {s|Bj

}, then s ∈ S. It is clear by definition
that S ⊂ F (U), so we have recovered F (U) from the data of F on the base of the topology.

First, we need to define what it means for a section to restrict to a basis element from U . Let
{Bi} be an open cover of U , and fix any Bj ∈ {Bi}. By the previous part, let s ∈ F (U) be gluability
of some collection of {si ∈ Bi}. We then define s|Bj

= sj . Our choice of open cover doesn’t matter
by identity.

For arbitrary restriction maps, suppose we have some V ⊂ U where U is as before. Let {Bj} be an
open cover of V . We then define s|V to be gluability applied to {s|Bj

}. By identity, our construction
yields the same result as the original s|Bj because our definition of s|V restricts the same as the original
s|V to the open cover {Bj} of V . Thus we can also recover the data of the restriction maps.

Exercise 2.5.B

Proof. The natural map ϕ : F (B) → F (B) is given by s 7→ (sp)p∈B . For injectivity, suppose
s, t ∈ F (B) are such that their germs agree everywhere on B. Then for each point p ∈ B, there exists
a base element U of p contained in B such that s|U = t|U . By identity of F , we get s = t.

For surjectivity, if (sp)p∈B is a family of compatible germs with corresponding neighborhoods Bp
for each p such that sq = fpq for every q ∈ Bp, we apply gluability to {fp ∈ F (Bp)}p∈B to get a section
f ∈ F (B) such that f |Bp

= fp for each p ∈ B. Then

ϕ(f) = (fp)p∈B = (fpp )p∈B = (sp)p∈B .
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Exercise 2.5.C

Proof. (a) Suppose φ, ϕ : F → G are morphisms of sheaves such that φ(Bi) = ϕ(Bi) for every i.
Now, fixing U ⊂ X to be an arbitrary open set, let U =

⋃
j Bj , and choose any s ∈ F (U).

Letting glue be the gluability operation of G , notice we have

φ(U)(s) = glue{φ(U)(s)|Bj} = glue{φ(Bj)(s|Bj )} = glue{ϕ(Bj)(s|Bj )} = glue{ϕ(U)(s)|Bj} = ϕ(U)(s)

where the first and last equalities come from identity of G .

(b) If ϕ : F → G is a morphism of sheaves on the base, define ϕ̃ : F → G by (fp)p∈U 7→ (ϕp(fp))p∈U .
Our image is indeed a choice of compatible germs because for every p ∈ U , there exists a
neighborhood B ⊂ U of p and ϕ(B)(s) ∈ G(B) such that for every q ∈ B, ϕq(fq) = ϕ(B)(s)q.
We used the compatibility of the germs in F to obtain the section s ∈ F (B) such that for every
q ∈ B, sq = fq, so in other words, for each q ∈ B, there exists some A ⊂ B containing q such
that

fq|A = s|A
so that

[ϕ(B)(s), B] = [ϕ(B)(s)|A, A] = [ϕ(A)(s|A), A] = [ϕ(A)(fq|A)] = ϕq(fq).

Our map ϕ̃ is natural because

resU,V ◦ϕ̃(fp)p∈U = (ϕp(fp))p∈V = ϕ̃ ◦ resU,V (fp)p∈U .

Exercise 2.5.D

Proof. By Exercise 2.4.N, a morphism of sheaves ϕ : F → G is an epimorphism if and only if it is
surjective on the level of stalks. Let φ : F → G be the morphism of sheaves on the base inducing F
and G . If φ̃ : F → G is the induced morphism of sheaves, we want to show that every (gq)q∈U ∈ Gp is
in the image of φ̃p. Because (gq)q∈U is a choice of compatible germs, let B ⊂ U be the neighborhood
of p and s ∈ G(B) be such that for every q ∈ B, sq = gq. By hypothesis, there exists some t ∈ F (B)
such that φ(B)(t) = s, so in particular, for each q ∈ B,

φq(tq) = φq([t, B]) = [φ(B)(t), B] = [s,B] = sq.

Then we observe

φ̃p(tq)q∈B = [φ̃(tq)q∈B , B] = [(φq(tq))q∈B , B] = [(sq)q∈B , B] = [(gq)q∈B , B] = [(gq)q∈U , U ]

which proves φ̃p is surjective, finishing the proof.

Exercise 2.5.E

Proof. We will first define a sheaf F on the base of open sets contained in at least one of the Ui. This
is indeed a base because for any open set U ⊂ X, we have {U ∩ Ui} is an open cover of U , and each
U ∩ Ui ⊂ Ui implies that each is some proposed base element. For any open set U that is contained
in at least one Ui, define l(U) to be the least index such that U ⊂ Ui, which is well defined by the
well-ordering theorem (equivalent to the axiom of choice). Then we define

F (U) := Fl(U)(U).

To define restriction for any V ⊂ U ,

resFU,V := ϕl(U)l(V )(V ) ◦ resFl(U)

U,V
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which makes sense because V ⊂ U ⊂ Ul(U) and V ⊂ Ul(V ) implies V ⊂ Ul(U) ∩ Ul(V ). To show our
construction is indeed a sheaf on the base, we will first show identity.

Suppose B is a base element covered by {Bj} of other base elements, and f, g ∈ F (B) are such
that f |Bj

= g|Bj
for each j. By definition,

ϕl(B)l(Bj)(Bj) ◦ res
Fl(B)

B,Bj
(f) = ϕl(B)l(Bj)(Bj) ◦ res

Fl(B)

B,Bj
(g).

Because each of the ϕij are isomorphisms, we get that

res
Fl(B)

B,Bj
(f) = res

Fl(B)

B,Bj
(g)

for each j. By identity of Fl(B), we have that indeed f = g, proving identity holds for F .

To prove gluability holds for F , suppose we have a collection of fj ∈ F (Bj) with Bi :=
⋃
Bj be a

basis element as well such that for each j, k, we have

ϕl(Bj)l(Bj∩Bk)(Bj ∩Bk) ◦ res
Fl(Bj)

Bj ,Bj∩Bk
(fj) = ϕl(Bk)l(Bj∩Bk)(Bj ∩Bk) ◦ res

Fl(Bk)

Bk,Bj∩Bk
(fk).

Notice that we then have isomorphisms

ϕl(Bj)l(Bi) : Fl(Bj)|Ul(Bj)
∩Ul(Bi)

→ Fl(Bi)|Ul(Bj)
∩Ul(Bi)

so in particular ϕl(Bj)l(Bi)(Bj) : F (Bj)→ Fl(Bi)(Bj) is an isomorphism because Bj ⊂ Bi implies that
Bj ⊂ Ul(Bj) and Bj ⊂ Ul(Bi) as well. In addition, its inverse is ϕl(Bi)l(Bj) by the cocycle condition.
By commutativity of the below diagram

Fl(Bi)|Bj∩Bk
Fl(Bj)|Bj∩Bk

Fl(Bk)|Bj∩Bk
Fl(Bj∩Bk)|Bj∩Bk

ϕl(i)l(j)

ϕl(Bi)l(Bj∩Bk)ϕl(Bi)l(Bk) ϕl(Bj)l(Bj∩Bk)

ϕl(Bk)l(Bj∩Bk)

we obtain that

ϕl(Bi)l(Bj∩Bi)(Bj ∩Bk) ◦ ϕl(Bj)l(Bi)(Bj ∩Bk) ◦ res
Fl(Bj)

Bj ,Bj∩Bk
(fj)

= ϕl(Bi)l(Bj∩Bi)(Bj ∩Bk) ◦ ϕl(Bk)l(Bi)(Bj ∩Bk) ◦ res
Fl(Bk)

Bk,Bj∩Bk
(fk)

or equivalently by naturality

ϕl(Bi)l(Bj∩Bi)(Bj ∩Bk) ◦ res
Fl(Bi)

Bj ,Bj∩Bk
◦ϕl(Bj)l(Bi)(Bj)(fj)

= ϕl(Bi)l(Bj∩Bi)(Bj ∩Bk) ◦ res
Fl(Bi)

Bk,Bj∩Bk
◦ϕl(Bk)l(Bi)(Bk)(fk).

Now we use the fact that the morphisms on the left of each side of the equation are isomorphisms (so
in particular monomorphisms) to get

res
Fl(Bi)

Bj ,Bj∩Bk
◦ϕl(Bj)l(Bi)(Bj)(fj)

= res
Fl(Bi)

Bk,Bj∩Bk
◦ϕl(Bk)l(Bi)(Bk)(fk).

Now we consider the family {ϕl(Bj)l(Bi)(Bj)(fj) ∈ Fl(Bi)(Bj)}. We can apply gluability of Fl(Bi) to
this family by the previous observation. Let f ∈ Fl(Bi)(Bi) be the result of this gluing. Then we
observe

resFBi,Bj
(f) = ϕl(Bi)l(Bj)(Bj) ◦ res

Fl(Bi)

Bi,Bj
(f) = ϕl(Bi)l(Bj)(Bj)(ϕl(Bj)l(Bi)(fj)) = fj
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which proves that gluability holds for F as well.

Now that F is a sheaf on a base, we get our induced sheaf F on X. By Theorem 2.5.1, we have
that F extends F up to isomorphism, so F (Ui) ∼= F (Ui), and F (Ui) = Fl(Ui)(Ui)

∼= Fi(Ui) because
even if l(Ui) ̸= i, then Ui ⊂ Ul(Ui), then by the cocycle condition we obtain Fl(Ui)|Ui

∼= Fi because

ϕl(Ui),i : Fl(Ui)|Ul(Ui)

∼−→ Fi|Ui = Fi.

Section 2.6

Exercise 2.6.A

Proof. Suppose ϕ : F → G is a morphism of sheaves, and ϕp : Fp → Gp is the induced map on stalks.
To show (kerϕ)p ∼= kerϕp,

ϕp([f, U ]) = 0

⇐⇒ [ϕ(U)(f), U ] = 0

⇐⇒ ϕ(V )(f |V ) = 0 for some open V ⊂ U
⇐⇒ f |V ∈ kerϕ(V )

⇐⇒ [f |V , V ] ∈ (kerϕ)p.

Then our map φ : kerϕp → (kerϕ)p is given by [f, U ] 7→ [f |V , V ] where V is some neighborhood
of p such that [f |V , V ] ∈ (kerϕ)p. φ is well defined because if V ′ is another such neighborhood,
then [f |V , V ] = [f |V ′ , V ′] because [f |V , V ] = [f |V ∩V ′ , V ∩ V ′] = [f |V ′ , V ′] so our choice of V doesn’t
matter, and furthermore if [f, U ] = [f ′, U ′], then f |V = f ′|V for some V ⊂ U ∩ U ′, then we can take
[f, U ] 7→ [f |V ′ , V ′] where V ′ is again some neighborhood of p contained in V so that f |V ′ ∈ kerϕ(V ′)
ensures that also φ([f, U ]) = [f |V ′ , V ′] = [f ′|V ′ , V ′] = φ([f ′, U ′]).

φ can also be seen to be a homomorphism because

φ([f, U ] + [g, V ])

= φ([f |U∩V + g|U∩V ])

= [f |W + g|W ,W ]

= [f |W ,W ] + [g|W ,W ]

= φ([f, U ]) + φ([g, V ]).

To prove φ is injective, suppose φ([f, U ]) = [f |V , V ] = 0. Then for some neighborhood W of p
contained in V , f |W = 0. This implies that [f, U ] = 0. To prove surjectivity, if [f, U ] ∈ (kerϕ)p is
arbitrary f ∈ kerϕ(U) implies that [f, U ] ∈ kerϕp, so φ([f, U ]) = [f, U ]. Then φ is an isomorphism.

Exercise 2.6.B

Proof. If ϕ : F → G is a morphism of sheaves, we will show cokϕp ∼= (cokϕ)p by showing (cokϕ)p
satisfies the universal property of cokϕp. Suppose the following diagram commutes:

A

Fp Gp.
ϕp

0
θ
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We consider the constant sheaf A, and let σU : G (U)→ Gp be the map sending a section to its germ
and τU : F (U) → Fp do the same. Then for x ∈ G (U), we let fx : U → A be the constant function
to θ ◦ σU (x). Clearly fx is continuous (where A is given the discrete topology), so we may define a
morphism φ : G → A given by φ(U)(x) = fx. We verify that φ is natural because for x ∈ G (U),
φ(V )(x|V ) = fx|V , sending everything to θ ◦ σV (x|V ) = θ ◦ σU (x), which is the same function as
φ(U)(x) restricted to V . We also check that φ ◦ ϕ = 0 because if x ∈ F (U), then φ ◦ ϕ(U)(x) sends
everything in U to θ ◦ σU ◦ϕ(U)(x) = θ ◦ϕp ◦ τU (x) = 0 ◦ τU (x) = 0. By the universal property of the
cokernel presheaf, we get the below commutative diagram:

A

cokpre ϕ

F G .

∃!α

ϕ

0 π

φ

Because A is a sheaf, α = β ◦ sh for a unique map β : cokϕ → A. Notice Ap
∼= A by taking a germ

to its value at p, so we have a natural map βp : (cokϕ)p → A which we claim makes the following
diagram commute:

A

(cokϕ)p

Fp Gp

βp

ϕp

0 µp

θ

where µ = sh ◦π : G → cokϕ is the map to the cokernel sheaf. Unraveling our definitions, we recall
β ◦ µ = α ◦ π = φ. This is of interest because the below diagram commutes

A(U) A

cokϕ(U) (cokϕ)p

G (U) Gp,

evp

β(U) βp

σU

µ(U) µp

so we take any σU (x) ∈ Gp, and get βp ◦ µp(σU (x)) = evp ◦φ(x) = θ(σU (x)) as desired, which proves
existence. To show βp is unique, suppose some γ has γ ◦ µp = θ. Because µ is an epimorphism in the
category of sheaves by Proposition 2.6.1, Exercise 2.4. tells us that µp is an epimorphism, hence we
get βp ◦ µp = θ = γp ◦ µp implies γ = βp as desired.

Exercise 2.6.C

Proof. We will first show the sheafification satisfies the universal property of the coimage sheaf. Let
ϕ : F → G be a map of sheaves, i : kerϕ ↪→ F be the kernel, and q : F ↠ coimpre ϕ be the cokernel
of i in Abpre

X . It’s clear to see the following diagram commutes in AbX :

(coimpre ϕ)
sh

kerϕ F .i

0
sh ◦q
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Now suppose H is a sheaf and ψ : F →H is a map such that ψ ◦ i = 0. By the universal property
of coimpre ϕ, we get the below commutative diagram:

H

coimpre ϕ

kerϕ F .

∃!α

i

0 q ψ

Note that we have used the fact that the kernel presheaf is the kernel sheaf. Now, by the universal
property of the sheafification, the below diagram commutes:

coimpre ϕ H

(coimpre ϕ)
sh.

α

sh
∃!β

Thus the below diagram commutes:

H

(coimpre ϕ)
sh

kerϕ F .

β

i

0
sh ◦q ψ

This shows existence. If there were another map γ : (coimpre ϕ)
sh →H making the diagram commute,

since q is an epimorphism we have γ ◦ sh ◦q = ψ = β ◦ sh ◦q implies that γ ◦ sh = α = β ◦ sh, which
implies γ = β by uniqueness of the arrow in the sheafification diagram, proving (coimpre ϕ)

sh satisfies
the universal property of coimϕ in AbX . However, coimages are the same as images in abelian
categories by Theorem 0.15, and Theorem 2.6.2 and Section 2.3 tell us AbX and Abpre

X are abelian
categories.

In addition, Exercises 2.6.A and 2.6.B say that stalks commute with kernels and cokernels, hence

(imϕ)p = (ker cokϕ)p = ker(cokϕ)p = ker cokϕp = imϕp.

Exercise 2.6.D

Proof. For one direction, suppose F
α−→ G

β−→H is exact, and let p ∈ X be arbitrary. Exercise 2.3.A
tells us that taking stalks at p is functorial so we have a sequence

Fp
αp−−→ Gp

βp−→Hp

and Exercises 2.6.A and 2.6.C give exactness since kernels and images commute with stalks.

For the other direction, suppose Fp
αp−−→ Gp

βp−→ Hp is exact for all p ∈ X. Exercise 2.6.C tells us
that since imα and kerβ induce the same maps on stalks, they are equal by Exercise 2.4.C.
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Exercise 2.6.E

Proof. If

0→ F
ϕ−→ G

ψ−→H → 0

is exact, Exercise 2.3.A tells us that taking stalks at p is functorial so we have a sequence

0→ Fp
ϕp−→ Gp

ψp−−→Hp → 0

and Exercises 2.6.A and 2.6.C give exactness since kernels and images commute with stalks.

Exercise 2.6.F

Proof. To show

0→ Z ·2πi−−→ OC
exp−−→ O∗

C → 0

is exact, we will first show ·2πi is a monomorphism by checking this on the level of open sets. If
U ⊂ C is an open set with connected components Ui, then an arbitrary element of Z(U) is a choice of
ni’s with each ni ∈ Z. Then (ni) · 2πi = (2πini) is trivial only if each ni = 0, proving exactness at Z.

Exercise 2.4.O gives exactness at O∗
C. To show exactness at OC, we first claim that impre ·2πi is

a sheaf, which will then show impre ·2πi = im ·2πi by Exercise 2.6.C. Because we have shown ·2πi
is a monomorphism, we use the fact that Abpre

C is an abelian category and apply Corollary 0.5.1
along with the 1IT to get an isomorphism between impre ·2πi and Z, proving the required statement.
Now that impre ·2πi = im ·2πi and kerpre exp = ker exp, we need to show im ·2πi = ker exp, which
we will do on the level of stalks by Exercise 2.4.D. Let z ∈ C and [f, U ] ∈ ker expz be arbitrary, so
[exp(f), U ] = [1, U ]. It’s clear that im ·2πiz ⊂ ker expz, so we will just show the reverse inclusion. The
fact that [exp(f), U ] = [1, U ] tells us that there is some open V ⊂ U containing z such that exp(f |V )
is identically 1. This implies that f |V is some integer multiple of 2πi, so [f, U ] = [2πin, V ] for some
n ∈ Z, so [f, U ] ∈ im ·2πiz as desired.

Exercise 2.6.G

Proof. We suppose

0→ F
ϕ−→ G

ψ−→H

is an exact sequence of sheaves. Exercise 2.4.M gives that since ϕ is a monomorphism, ϕ(U) : F (U)→
G (U) is also a monomorphism. To show imϕ(U) ∼= kerψ(U), we have

kerψ(U)

we have an isomorphism α : imϕ → kerψ with inverse α−1 : kerψ → imϕ which, in particular,
gives the desired isomorphisms α(U), α−1(U).

To show the section functor need not be exact, again consider the exponential exact sequence

0→ Z ϕ−→ OC
ψ−→ O∗

C → 0.

However, ψ(C) is not surjective because 1C ∈ O∗
C, but not in the image of ψ because the C does not

admit a global logarithm.

Exercise 2.6.H

Proof. Let

0→ F
ϕ−→ G

ψ−→H
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be exact. First, we will show that π∗ commutes with kernels. If φ is some map of sheaves, then

π∗ kerφ(U) = kerφ(π−1(U)) = kerπ∗φ(U),

which relies on the fact that the kernel sheaf is the kernel presheaf. Indeed the restriction maps are
the same, which proves the claim. To show exactness at π∗F , we use our result to see

kerπ∗ϕ = π∗ kerϕ = π∗0 = 0.

For exactness at π∗G , we first notice that π∗ kerψ = kerπ∗ψ by our previous observations. Then by
hypothesis and AbY is an abelian category (we identify the image of a monomorphism with its source
by the 1IT and Corollary 0.5.1 ),

kerπ∗ψ = π∗ kerψ = π∗ imϕ = π∗F = imπ∗ϕ.

Alternatively, we could have used Exercise 2.7. together with the fact that right adjoint functors are
left-exact as stated in 1.6.12.

Exercise 2.6.I

Proof. Suppose F ∈ AbX , and

0→ A
ϕ−→ B

ψ−→ C

is exact in AbX , so we need to show

0→ Hom(F ,A )
ϕ∗−→ Hom(F ,B)

ψ∗−−→ Hom(F ,C )

is exact. By Exercise 2.4.M, it suffices to show ϕ∗(U) is injective for exactness at Hom(F ,A ). Let
η : F |U → A |U be a natural transformation. We note ϕ|U is a monomorphism because it is injective
on the level of sections, both claims following from Exercise 2.4.M. Then 0 = ϕ∗(U)(η) = ϕ|U ◦ η
implies that, since ϕ|U is a monomorphism, η = 0 so ϕ∗(U) is indeed injective.

To show kerψ∗ = imϕ∗, now that we’ve shown ϕ∗ is a monomorphism, we get imϕ∗ ∼= Hom(F ,A )
which is in particular a sheaf, so imϕ∗ = impre ϕ∗. Then we need to show kerpre ψ∗ = impre ϕ∗ as
subsheaves of Hom(F ,B), which we can do by checking equality on the level of sections (both are
subsheaves of the same sheaf). For arbitrary open U ⊂ X, we have

kerψ∗(U) = {η ∈ Nat(F |U ,B|U ) | ψ|U ◦ η = 0}
imϕ∗(U) = {η ∈ Nat(F |U ,B|U ) | ∃η′ ∈ Nat(F |U ,A |U ) where η = ϕ|U ◦ η′}.

Its clear that the image is contained in the kernel. For the reverse inclusion, we pick any η : F |U →
B|U such that ψ|U ◦ η = 0. Since A ∼= kerψ and ker(ψ|U ) = (kerψ)|U (seen because again the kernel
sheaf is the kernel presheaf), we get the below commutative diagram

C |U

A |U B|U

F |U .

ϕ|U

0
ψ|U

∃!η′

η

Then η = ϕ|U ◦ η′, so the kernel is contained in the image.

Now suppose

A
ϕ−→ B

ψ−→ C → 0
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is exact, so we need to show

0→ Hom(C ,F )
ψ∗

−−→ Hom(B,F )
ϕ∗

−→ Hom(A ,F )

is exact. It suffices to show ψ∗
p is injective for exactness at Hom(C ,F ) by Exercise 2.4.M. If [η, U ]

is such that [η ◦ ψ|U , U ] = 0, then there is some open V ⊂ U containing p such that η|V ◦ ψ|V = 0.
Fixing p ∈ X, we use Exercise 2.4. to get ψp : Bp ↠ Cp, so ηp ◦ ψp = 0 implies ηp = 0. By Exercise
2.4., η being a map of sheaves inducing trivial maps on all stalks means η = 0.

To show kerϕ∗ = imψ∗, now that we’ve shown ψ∗ is a monomorphism, we get imψ∗ ∼= Hom(C ,F )
which is in particular a sheaf, so imψ∗ = impre ψ

∗. Then we need to show kerpre ϕ
∗ = impre ψ

∗ as
subsheaves of Hom(B,F ), which we can do by checking equality on the level of sections (both are
subsheaves of the same sheaf). For arbitrary open U ⊂ X, we have

kerϕ∗(U) = {η ∈ Nat(B|U ,F |U ) | η ◦ ϕ|U = 0}
imψ∗(U) = {η ∈ Nat(B|U ,F |U ) | ∃η′ ∈ Nat(C |U ,F |U ) where η = η′ ◦ ψ|U}.

Its clear that the image is contained in the kernel. For the reverse inclusion, we pick any η : B|U →
F |U such that η ◦ ϕ|U = 0. We have

C = coimψ = cok kerψ = cok imϕ = cokϕ.

We define a sheaf F̃ over X where F̃ (V ) = F (U ∩ V ) for open V ⊂ X with the natural restriction
maps x|W := x|U∩W (the left side is the definition of restriction in F̃ , and the right occurs in F ),
and let η̃ : B → F̃ be given as η̃(V )(x) = η(U ∩ V )(x|U∩V ). That F̃ is a sheaf follows from F being
a sheaf, and η̃ is easily checked to be natural:

η̃(V )(x)|W = η(U ∩ V )(x|U∩V )|U∩W = η(U ∩W )(x|U∩W ) = η̃(W )(x|W ).

We claim that η̃ ◦ ϕ = 0 so that we can use our result that C = cokϕ to get a desirable factorization.
To see this, we let V ⊂ X be an open set, and see

η̃(V ) ◦ ϕ(V )(x) = η(U ∩ V )(ϕ(V )(x)|U∩V ) = η(U ∩ V ) ◦ ϕ|U (U ∩ V )(x|U∩V ) = 0

by our assumption that η ◦ ϕ|U = 0. Then the below diagram commutes:

F̃

C

A B.

∃!µ̃

ϕ

0 ψ
η̃

We now notice that F̃ |U = F |U and that η̃|U = η by our constructions, and thus we have a map
η′ := µ̃|U such that η = η′ ◦ ψ|U as desired.

Exercise 2.6.J

Proof. Let A ,B,C be OX modules with α, α′ : A → B and β, β′ : B → C , and V ⊂ U ⊂ X be
open sets. We will be using the fact that the category of OX(U) modules is an abelian category itself
implicitly.

First we will check additivity by showing hom-sets are abelian groups and composition distributes
over addition. We define α+ α′ to be the morphism such that (α+ α′)(U) = α(U) + α′(U), which is
easily checked to be natural. We also observe that β ◦ (α+ α′) = β ◦ α+ β ◦ α′ because this equality
holds on the level of sections. Similarly (β + β′) ◦ α = β ◦ α+ β′ ◦ α.
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The zero object is the zero sheaf, which clearly has OX -module structure.
We define A ×B as the sheaf where (A ×B)(U) = A (U) ⊕B(U), and where the restriction

maps are the direct sums of the restriction maps. That A ×B is a sheaf (not just a presheaf) follows
from A and B being sheaves. In addition, A ×B is canonically an OX module by

OX(U)

A (U)⊕B(U)

A (U) B(U).

actionaction action

This action commutes with restriction to V because the actions on A and B do.
We already know that kernels and cokernels exist in the category of sheaves, so we just need to

show kerβ and cokα are OX modules as well. Recall that cokα is the sheafification of the cokernel
presheaf, so an arbitrary element of cokα(U) looks like (xip)p∈U for some collection of compatible
germs xip ∈ Bp. Exercise 2.2.J, we have a natural action of OX,p on Bp for each p ∈ U , which induces
an action of OX(U) on (cokpre α)

sh because the sheafification consists of choices of compatible germs.
OX gets a canonical action on kerβ, since this is a subsheaf of B.

The last two axioms of every monomorphism being the kernel of its cokernel and every epimor-
phism being the cokernel of its kernel follow from our previous results, along with the fact that
monomorphisms and epimorphisms in AbX already have this property.

Exercise 2.6.K

Proof. Categorically, if F ,G are OX modules, F ⊗OX
G should be an OX module equipped with an

OX -bilinear map from F × G where we say ϕ is an OX -bilinear map if ϕ(U) is an OX(U)-bilinear
map of OX(U) modules for every open U ⊂ X. Moreover, for any OX module H with a OX -bilinear
map ϕ : F × G →H , the below diagram commutes:

F × G F ⊗OX
G

H .
ϕ

∃!

As usual, this universal property defines our object up to isomorphism. To show existence, we
first define the “presheaf tensor product”. If F ,G are OX modules, we let (F ⊗OX

G )pre(U) :=
F (U)⊗OX(U) G (U) be the presheaf with restriction maps given by

F (U)× G (U) F (U)⊗OX(U) G (U)

F (V )× G (V )

F (V )⊗OX(V ) G (V ).

res× res
∃!

Then for OX modules F ,G , we define the tensor product of F and G over OX as (F ⊗OX
G )shpre. It’s

clear our construction is a sheaf, so now we must show it is an OX module. We will call (F ⊗OX
G )shpre

F ⊗OX
G for ease of notation, keeping in mind that we have not shown this object satisfies the

universal property we originally defined. (F ⊗OX
G )pre(U) is clearly an OX(U)-module. Then for

p ∈ U , we claim there is an action of OX(U) on (F ⊗OX
G )p given by
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r[x, V ] = [r|U∩V x|U∩V , U ∩ V ]. To show this is well defined, if we picked some other representative
where [x, V ] = [y,W ], so there is some open S ⊂ V ∩W with x|S = y|S , we have

r[y,W ] = [r|U∩W y|U∩W , U∩W ] = [r|U∩Sy|U∩S , U∩S] = [r|U∩Sx|U∩S , U∩S] = [r|U∩V x|U∩V , U∩V ] = r[x, V ].

Then if (xp) ∈
∏
p∈U (F ⊗OX

G )pre,p is a choice of compatible germs, we define r(xp)p∈U = (rxp)p∈U
which defines an action of OX on F ⊗OX

G (being the sheafification of (F ⊗OX
G )pre). This action

commutes with restrictions because

(r([xp, Up])p∈U ) |V =
(
([r|U∩Up

xp|U∩Up
, U ∩ Up])p∈U

)
|V = ([r|U∩Up

xp|U∩Up
, U ∩ Up])p∈V

= ([r|V ∩Up
xp|V ∩Up

, V ∩ Up])p∈V = (r|V [xp, Up])p∈V = r|V (([xp, Up])p∈U ) |V .

Then indeed F ⊗OX
G is an OX module.

We now need to show F ⊗OX
G satisfies the universal property by supposing H is an OX module

and ϕ : F×G →H is OX -bilinear. Then for each open U ⊂ X, if there were a factor α : F⊗OX
G →

H through which ϕ factored, we would see that for (f, g) ∈ F (U)× G (U),

α(U)(([f ⊗ g, U ]p)p∈U ) = ϕ(U)(f, g)

and we extend this linearly. By the universal property of tensor products, for each open U ⊂ X we
get a map β(U) : F (U)⊗OX(U) G (U)→H (U) given by

F (U)× G (U) F (U)⊗OX(U) G (U)

H (U)
ϕ(U)

∃!β(U)

by assumption that ϕ is OX -bilinear. We claim that β : (F ⊗OX
G )pre →H is a natural transforma-

tion. If V ⊂ U is open, we see(
β(U)(

∑
fi ⊗ gi)

)
|V =

(∑
ϕ(U)(fi, gi)

)
|V =

∑
ϕ(V )(fi|V , gi|V ) =

∑
β(V )(fi|V ⊗ gi|V ) = β(V )(

(∑
fi ⊗ gi

)
|V )

as desired. Because H is a sheaf, we get a map α : F ⊗OX
G →H given below:

(F ⊗OX
G )pre F ⊗OX

G

H

sh

β
∃!α

By our constructions, this shows existence for our universal property. To show uniqueness, suppose
we had another map ψ : F ⊗OX

G → H through which ϕ factors. By hypothesis, for any open set
U , we have

ψ(U)([
∑

fi ⊗ gi, U ]p)p∈U =
∑

ψ(U) (([fi ⊗ gi, U ]p)p∈U ) =
∑

ϕ(U)(fi, gi).

Our approach in showing that α = ψ will be to show that for every p ∈ X, αp = ψp which suffices
by Exercise 2.4.C. Fix z ∈ U ⊂ X, and let [([

∑
fi,p ⊗ gi,p, Up])p∈U , U ] be an arbitrary element of

(F ⊗OX
G )z. Because ([

∑
i fi,p ⊗ gi,p, Up]p)p∈U is a compatible choice of germs, for each p ∈ U there

exists an open set Vp containing p and
∑
i xi,p ⊗ yi,p such that

[
∑
i

xi,p ⊗ yi,p, Vp]q = [
∑
i

fi,q ⊗ gi,q, Uq]q
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for all q ∈ Vp. Then

ψz

(
[([
∑

fi,p ⊗ gi,p, Up]p)p∈U , U ]
)
= ψz

(
[([
∑

fi,p ⊗ gi,p, Up]p)p∈Vz , Vz]
)

= ψz

(
[
∑

xi,z ⊗ yi,z, Vz]p)p∈Vz , Vz]
)
= [ψ(Vz)

(
([
∑

xi,z ⊗ yi,z, Vz]p)p∈Vz

)
, Vz]

=
∑

[ϕ(Vz)(xi,z, yi,z), Vz].

But since

α(U)([
∑

fi ⊗ gi, U ]p)p∈U =
∑

α(U) (([fi ⊗ gi, U ]p)p∈U ) =
∑

ϕ(U)(fi, gi)

for any open set U as well, we derive that

αz

(
[([
∑

fi,p ⊗ gi,p, Up]p)p∈U , U ]
)
=
∑

[ϕ(Vz)(xi,z, yi,z), Vz]

as well, so αz = ψz as desired.
Lastly, we want to show that (F⊗OX

G )p ∼= Fp⊗OX,p
Gp. We can reinterpret the universal property

defining F ⊗OX
G as the colimit indexed by the final category (the final object in the category Cat)

inside a category whose objects are pairs (H , ϕ) where H is an OX module and ϕ : F × G → H
is OX -bilinear, and whose morphisms are maps of sheaves making the diagrams commute. Explicitly
if (A , ϕ) and (B, ψ) are objects of this category, then α : A → B is a morphism of our category
whenever α◦ϕ = ψ. In the language of category theory, our category is the coslice category of ModOX

over F × G . By the dual of Exercise 1.6.K or Vakil (1.6.14), colimits commute with colimits, and as
taking the stalk at p ∈ X is a colimit, we get our result.

Section 2.7

Exercise 2.7.A

Proof. If U ⊂ U ′ ⊂ U ′′ are all open, we need to show existence of restriction maps so that

π−1
preG (U ′′) π−1

preG (U ′)

π−1
preG (U)

commutes. First of all, for arbitrary open V ⊂ U , we have π(V ) ⊂ π(U), hence every W ∈ Op(Y )
containing π(U) also contains π(V ). In other words, we have the below commutative diagram:

colimW⊃π(V ) G (W )

G (W ) colimW⊃π(U) G (W ) G (W ′)

G (W ) G (W ′).

∃! resU,V

id id

The uniqueness of the restriction maps ensure that resU ′,U ◦ resU ′′,U ′ = resU ′′,U as both maps satisfy
the unique arrow below:
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colimW⊃π(U) G (W )

G (W ) colimW⊃π(U ′′) G (W ) G (W ′)

G (W ) G (W ′).

∃!

id id

Lastly, we need to show that π−1
pre preserves identity maps: this is clear by uniqueness of the restriction

maps, since the identity makes the diagram commute.
To see that π−1

pre need not be a sheaf, let X = C, and Y = {∗}, G = Z be the sheaf associating Z
to {∗}, and let π : C→ {∗}. Then for any nonempty open U ⊂ C, the only open V containing π(U)
is V = {∗}, so π−1

pre(U) = Z (also π−1
pre(∅) = 0). In addition, the restriction maps are all the identity.

If we take disjoint open sets U, V in C and let 0, 1 be sections of π−1
pre over U, V respectively, we try

to glue 0 and 1 together on U ⊔ V (which we should be able to do if π−1
pre were a sheaf). If n ∈ Z was

the glued section, then it would restrict to 0 and 1 on U and V respectively. However, as was shown
earlier, the restriction maps are the identity, so n would have to simultaneously be equal to 0 and 1,
impossible.

Exercise 2.7.B

Proof. Following the notation in the hint, we will show each hom-set is in bijective correspondence
with MorY X(G ,F ). First, we note that for every open set U ⊂ X and V ⊂ Y , π(π−1(V )) ⊂ V and
π−1(π(U)) ⊃ U , two facts we will use repeatedly throughout the proof.

Fix ψ : G → π∗F , and for each open U ⊂ X and V ⊃ π(U), we let ϕV U = resπ−1(V ),U ◦ψ(V ). We
claim our defined set of ϕV U ’s are natural, hence define an element of MorY X(G ,F ). To show this,
fix open V ′ ⊂ V ⊂ Y and U ′ ⊂ U ⊂ X such that V ⊃ π(U) and V ′ ⊃ π(U ′). We want to show the
below diagram commutes:

G (V ) F (U)

G (V ′) F (U ′).

ϕV U

resV,V ′ resU,U′

ϕV ′U′

To see this, fix x ∈ G (V ). Then

ϕV U (x)|U ′ = resπ−1(V ),U ′ ◦ψ(V )(x) = resπ−1(V ′),U ′ ◦ψ(V ′)(x|V ′) = ϕV ′U ′(x|V ′)

as desired. Thus we have a map α : Mor(G , π∗F )→ MorY X(G ,F ) given by our above construction.
To show α is injective, suppose α(ψ) = {ϕV U} = α(ψ′). Then for any open U ⊂ X and V ⊂ Y with
V ⊃ π(U), we have ψ(V )(x)|U = ψ′(V )(x)|U for any x ∈ G (V ). Letting p ∈ Y be arbitrary, ψp = ψ′

p

because if we take any germ [x, V ], we let U = π−1(V ) so that V ⊃ π(U). We then compute

ψp[x, V ] = [ψ(V )(x), V ] = [ψ(V )(x)|U , U ] = [ψ′(V )(x)|U , U ] = [ψ′(V )(x), V ] = ψ′
p[x, V ].

Then by Exercise 2.4.C, we see ψ = ψ′ as desired. Now we claim α is surjective. Fix {ϕV U} ∈
MorY X(G ,F ). For each open V ⊂ Y , we let U = π−1(V ) so V ⊃ π(U), and then define ψ(V ) =
ϕV U : G (V ) → F (U) = π∗F (V ). We now claim ψ is a map of sheaves. For any open V ′ ⊂ V ⊂ Y ,
we let U = π−1(V ) and U ′ = π−1(V ′), so the following diagram commutes by naturality of {ϕV U}:
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G (V ) π∗F (V )

G (V ′) π∗F (V ′).

ψ(V )

resV,V ′ resV,V ′

ψ(V ′)

Thus α is indeed a bijection.
Now fix ϕ = {ϕV U} ∈ MorY X(G ,F ). We will show there exists a unique element of Mor(π−1

preG ,F )
corresponding to ϕ. Fix open U ⊂ X, so for each open V ⊃ V ′ ⊃ π(U) we get the below commutative
diagram:

F (U)

π∗F (V ) π−1
preG (U) π∗F (V ′)

G (V ) F (V ′).

resV,V ′
∃!φ(U)

resV,V ′
ϕV,π−1(V )

µV µV ′

ϕ
V ′,π−1(V ′)

Indeed, the φ(U)′s are natural: if U ′ ⊂ U , then both resU,U ′ ◦φ(U) and φ(U ′) ◦ resU,U ′ satisfy the
unique arrow in the below commutative diagram:

F (U)

π∗F (V ) π−1
preG (U) π∗F (V ′)

G (V ) F (V ′).

resV,V ′
∃!

resV,V ′
ϕV,π−1(V )

µV µV ′

ϕ
V ′,π−1(V ′)

Thus we have a unique map of presheaves φ (uniqueness is because each map of sections is uniquely
determined), which induces a unique ψ : π−1G → F by the universal property of sheafification. We
let β(ϕ) = ψ, so by uniqueness β is injective. For surjectivity, fix ψ : π−1G → F . By precomposing
with sh : π−1

preG → π−1G , we get a collection of ϕV U ’s by ϕV U = ψ(U)◦sh(U)◦τV where µV : G (V )→
π−1
preG (U). These ϕV U ’s define an element ϕ ∈ MorY X(G ,F ) by naturality of ψ, and we will now

see that β(ϕ) = ψ. This is because on the level of sections, the unique arrow φ(U) is satisfied by
ψ(U) ◦ sh(U), so φ = ψ ◦ sh, i.e. β(ϕ) = ψ.

We now need to show the bijections τ = β ◦ α are functorial. First, let ϕ : H → G be a map of
sheaves, and we need to show

Mor(G , π∗F ) Mor(H , π∗F )

Mor(π−1G ,F ) Mor(π−1H ,F )

τG F

ϕ∗

τH F

(π−1ϕ)∗

commutes. We fix ψ : G → π∗F , and notice that the below four commutative diagrams summarize
all of the constructions in play for any open U ⊂ X with π(U) ⊂ V ′ ⊂ V :
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F (U)

π∗F (V ) π−1
preG (U) π∗F (V ′)

G (V ) G (V ).

res
ψ̃(U)

res

resV,V ′
ψ(V )

µV µV ′

ψ(V ′)

π−1
preG π−1G

F

sh

ψ̃

τG F (ψ)

π−1
preG (U)

G (V ) π−1
preH (U) G (V ′)

H (V ) H (V ).

µV

resV,V ′
π−1
preϕ

µV ′

resV,V ′
ϕ(V )

σV σV ′

ϕ(V ′)

π−1
preH π−1H

π−1
preG π−1G .

π−1
preϕ

sh

π−1ϕ

sh

Our strategy in showing commutativity will be checking equality on the level of stalks, which suffices
by Exercise 2.4.C. For p ∈ Y , we want to show

τG F (ψ)p ◦ (π−1ϕ)p ◦ sh
π−1
preH
p = τH F (ψ ◦ ϕ)p ◦ sh

π−1
preH
p

because sh
π−1
preH
p is an isomorphism by Exercise 2.4.L. For the left-hand side, we compute for an

arbitrary germ [σV (x), U ] that

τG F (ψ)p ◦ (π−1ϕ)p ◦ sh
π−1
preH
p ([σV (x), U ]) = τG F (ψ)p ◦ sh

π−1
preG
p ◦(π−1

preϕ)p([σV (x), U ])

= ψ̃p([µV ◦ ϕ(V )(x), U ]) = [ψ(V ) ◦ ϕ(V )(x)|U , U ].

For the right-hand side, we compute

τH F (ψ ◦ ϕ)p ◦ sh
π−1
preH
p ([σV (x), U ]) = ψ̃ ◦ ϕp([σV (x), U ]) = [ψ(V ) ◦ ϕ(V )|U , U ].

Now let φ : F →H be a map of sheaves, so we need to show the below diagram commutes:

Mor(G , π∗F ) Mor(G , π∗H )

Mor(π−1G ,F ) Mor(π−1G ,H ).

τG F

(π∗φ)∗

τG H

φ∗

Fix ψ : G → π∗F . In a similar vein, we want to show τG H (π∗φ ◦ψ) = φ ◦ τG F (ψ) by checking stalks.
Again, it suffices to show

τG H (π∗φ ◦ ψ)p ◦ sh
π−1
preG
p = φp ◦ τG F (ψ)p ◦ sh

π−1
preG
p .

For an arbitrary germ [µV (x), U ], we compute that

τG H (π∗φ ◦ ψ)p ◦ sh
π−1
preG
p ([µV (x), U ]) = ˜π∗φ ◦ ψp([µV (x), U ]) = [π∗φ(V ) ◦ ψ(V )(x)|U , U ]

= [φ(π−1(V )) ◦ ψ(V )(x)|U , U ] = φp ◦ τG F (ψ)p ◦ sh
π−1
preG
p [µV (x), U ] = φp ◦ ψ̃p([µV (x), U ])

= φp([φ(V )(x)|U ]) = [φ(U) ◦ resπ−1(V ),U ◦ψ(V )(x), U ] = φp([ψ(V )|U , U ])

= φp ◦ ψ̃p([µV (x), U ]) = φp ◦ τG F (ψ)p ◦ sh
π−1
preG
p ([µV (x), U ]).
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Lemma 2.1. If X
f−→ Y

g−→ Z, then (gf)∗ = g∗f∗ as functors.

Proof. This is clear: if F is a sheaf over X and U ⊂ Z is open, then

g∗f∗F (U) = f∗F (g−1(U)) = F (f−1(g−1(U)))

while simultaneously
(gf)∗F (U) = F ((gf)−1(U)) = F (f−1(g−1(U))).

Lemma 2.2. If X
f−→ Y

g−→ Z, then (gf)−1 = f−1g−1 as functors.

Proof. Recall that being an adjoint defines a functor up to natural isomorphism. In particular, the
left adjoint of (gf)∗ is defined up to natural isomorphism. By Exercise 2.7.B, (gf)−1 is a left-adjoint,
so to prove the claim it suffices to show f−1g−1 is also a left-adjoint of (gf)∗. Again by Exercise
2.7.B, we have functorial bijections

Mor(f−1g−1H ,F )
∼−→ Mor(g−1H , f∗F )

∼−→ Mor(H , g∗f∗F )

for arbitrary sheaves H over Z and F over X. By Lemma 2.1, Mor(H , g∗f∗F ) = Mor(H , (gf)∗F )
which completes the claim.

Lemma 2.3. Let i : {∗} ↪→ X have image p, and let F be a sheaf over X. Then i−1F ({∗}) = Fp.

Proof. By definition, i−1
pre({∗}) = colimV⊃{p} F (V ) = Fp. Then it just remains to show i−1F ({∗}) =

Fp, i.e. the set of all compatible germs over {∗} is just Fp. Since {∗} is a single point, a choice of
compatible germs is just a single germ at ∗. But (i−1

preF )∗ = colim∗∈V i
−1
preF (V ) = i−1

preF ({∗}) = Fp

as desired.

Exercise 2.7.C

Proof. Fix p ∈ X and let q = π(p), and choose G to be a sheaf over Y . We then have the chain of
continuous maps

{p} i
↪−→ X

π−→ Y.

By Lemma 2.2, we get (πi)−1G ∼= i−1π−1G . In particular, (πi)−1G ({p}) ∼= i−1π−1G ({p}). We notice
πi has image q and i has image p, so we apply Lemma 2.3 to get that (πi)−1G ({p}) = Gq, whereas
i−1π−1G ({p}) = (π−1G )p as required.

Exercise 2.7.D

Proof. We will show that G |U = i−1
preG , which completes the result because the restriction of a sheaf

is again a sheaf. We can do this by showing G |U (V ) = colimW⊃i(V ) G (W ) = colimW⊃V G (W ) for an
arbitrary open V ⊂ U , where the index is over all open V ⊂W ⊂ U . By definition, G |U (V ) = G (V ).
But indeed because G (V ) is in the index and every G (W ) has a unique restriction map to G (V ), we
can easily see our requirement

A

G (V )

G (V ) G (W )

∃!

id

res

res

is satisfied. It’s also easy to see the induced restriction maps are the same as those of G |U .
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Exercise 2.7.E

Proof. Suppose 0 → F → G → H → 0 is an exact sequence of sheaves. By Exercise 2.6.E, 0 →
Fq → Gq → Hq → 0 is exact. Then by Exercise 2.7.C, 0 → (π−1F )p → (π−1G )p → (π−1H )p → 0
is exact. Then Exercise 2.6.D gives that, since p ∈ X was arbitrary and q = π(p), that indeed
0→ π−1F → π−1G → π−1H → 0 is exact.

Setting 1. Let A be a category and B be a 2-category. Assume R : A → B and L : A op → B
are functors such that for each f : X → Y in C , LX = RX and (Lf , Rf ) is an adjoint pair, i.e.
there are a 2-morphisms ηf : idY ⇒ RfLf and ϵf : LfRf ⇒ idX such that Rf ϵ

f ◦ ηfRf = idRf

and ϵfLf ◦ Lfηf = idLf
where a 1-morphism next to a 2-morphism denotes whiskering. We let ◦

denote vertical composition and ∗ denote horizontal composition of 2-morphisms. We slightly abuse
notation and omit explicit notation denoting composition of 1-morphisms. However, whiskering is
still distinguishable from composition of 1-morphisms. Finally, 1M denotes the identity 2-morphism
of idM for an object M ∈ B.

Lemma 2.4. As in Setting 1, if X
f−→ Y

g−→ Z in C , the below diagrams of 2-morphisms commute:

LgRg RfLfLgRg

idLY RfLf

ϵg

ηfLgRg

RfLf ϵ
g

ηf

LgRg RfLfLgRg

idLY RfLf .

ϵg

LgRgη
f

ϵgRfLf

ηf

Proof. We have

ηf ◦ ϵg = (ηf ∗ 1LY ) ◦ (1LY ∗ ϵg) = (ηf ◦ 1LY ) ∗ (1LY ◦ ϵg) = (idRfLf
◦ ηf ) ∗ (ϵg ◦ idLgRg

)

= RfLf ϵ
g ◦ ηfLgRg

because horizontal composition by 1 does nothing, as does vertical composition by identities by [4].
Commutativity of the second diagram is analogous. To see diagrammatically what we are doing for
commutativity of the second diagram, we observe

LY LY LZ LY

LY LX LY LZ LY

LY LX LY LY

id Rg Lg

id

Lf

id

Rf

ηf

Rg Lg

Lf Rf id

ϵg

is the same as

LY LY LY LZ LY

LY LX LY ∗ LY LZ LY

LY LX LY LY LY

id Rg Lg

id

Lf

id

Rf

ηf

Rg Lg

Lf Rf id

ϵg
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is the same as

LY LY LY LZ LY

LY LY ∗ LY LY

LY LX LY LY LY

id Rg Lg

id id

Lf Rf

ηf

id

ϵg1LY

1LY

is the same as

LY LY LZ LY

LY LY LY

LY LX LY LY

id Rg Lg

id id

Lf Rf

ηf

id

ϵg1LY

1LY

is the same as

LY LY LZ LY

LY LY LY

◦

LY LY LY

LY LX LY LY

id Rg Lg

id id

1LY

id id

Lf Rf

ηf

id

ϵg

1LY

is the same as

LY LZ LY

LY LY

◦

LY LY

LY LX LY

Rg Lg

id

id

Lf Rf

ηf

ϵg

which is simply ηf ◦ ϵg.

Lemma 2.5. As in Setting 1, if X
f−→ Y

g−→ Z in C , then ϵgf = ϵf ◦Lf ϵgRf and ηgf = Rgη
fLg ◦ ηg.
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Proof. By uniqueness of the unit and counit, it suffices to show that ϵf ◦ Lf ϵgRf (as a counit ϵ) and
Rgη

fLg ◦ηg (as a unit η) satisfy the triangle identities, namely ϵLgf ◦Lgfη = idLgf
and Rgf ϵ◦ηRgf =

idRgf
. Using Lemma 2.4, we see

Lf ϵ
gRfLgf ◦ LgfRgηfLg = Lf ϵ

gRfLfLg ◦ LfLgRgηfLg
= Lf (ϵ

gRfLf ◦ LgRgηf )Lg = Lf (η
f ◦ ϵg)Lg = Lfη

fLg ◦ Lf ϵgLg.

Using this observation, we compute

(ϵf ◦ Lf ϵgRf )Lgf ◦ Lgf (RgηfLg ◦ ηg) = ϵfLgf ◦ Lf ϵgRfLgf ◦ LgfRgηfLg ◦ Lgfηg

= ϵfLfLg ◦ LfηfLg ◦ Lf ϵgLg ◦ LfLgηg = (ϵfLf ◦ Lfηf )Lg ◦ Lf (ϵgLg ◦ Lgηg)
= (idLf

)Lg ◦ Lf (idLg
) = idLgf

.

Again using Lemma 2.4, we observe

RgRfLf ϵ
gRf ◦RgηfLgRgRf = Rg(RfLf ϵ

g ◦ ηfLgRg)Rf = Rg(η
f ◦ ϵg)Rf = Rgη

fRf ◦RgϵgRf

Using this, we compute that on the other hand,

Rgf (ϵ
f ◦ Lf ϵgRf ) ◦ (RgηfLg ◦ ηg)Rgf = RgRf ϵ

f ◦RgRfLf ϵgRf ◦RgηfLgRgRf ◦ ηgRgRf
= RgRf ϵ

f ◦RgηfRf ◦RgϵgRf ◦ ηgRgRf = Rg(Rf ϵ
f ◦ ηfRf ) ◦ (Rgϵg ◦ ηgRg)Rf

= Rg(idRf
) ◦ (idRg

)Rf = idRgf
.

Corollary 2.5.1. As in Setting 1, if βα′ = αβ′ : W → Z in C , the below diagram of 2-morphisms
commutes in B:

Lβα′Rβα′ Lα′Rα′

Lβ′Rβ′ idLW .

Lα′ ϵβRα′

Lβ′ ϵαRβ′ ϵα
′

ϵβ
′

Proof. Immediate from Lemma 2.5.

Lemma 2.6. As in Setting 1, if βα′ = αβ′ : W → Z in C , the below diagram of 2-morphisms
commutes in B:

LβRα LβRαβ′Lβ′

Rα′Lβα′Rα Rα′Lβα′Rβα′Lβ′ .

LβRαη
β′

ηα
′
LβRα ηα

′
LβRβα′Lβ′

Rα′Lβα′Rαη
β′

Proof. In a similar vein as the proof of Lemma 2.4, we compute

ηα
′
LβRαRβ′Lβ′ ◦ LβRαηβ

′
= (ηα

′
◦ 1LY ) ∗ idLβRα

∗ (idRα′Lβ′ )

= (idRα′Lα′ ◦ ηα
′
) ∗ idLβRα

∗ (ηβ
′
◦ 1LX) = Rα′Lα′LβRαη

β′
◦ ηα

′
LβRα.

Lemma 2.7. Suppose

W X

Y Z

β′

α′ α

β

commutes in C . As in Setting 1, the below diagram of 2-

morphisms commutes in B:
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LβRα Rα′Lβα′Rα

LβRαβ′Lβ′ Rα′Lβ′ .

ηα
′
LβRα

LβRαη
β′ Rα′Lβ′ ϵα

ϵβRα′Lβ′

Proof. By the above Lemmas and Corollary, we get the below commutative diagram of 2-morphisms
in B:

LβRα Rα′Lβα′Rα Rα′Lβ′

LβRαβ′Lβ′ Rα′Lβα′Rβα′Lβ′ Rα′Lβ′Rβ′Lβ′

Rα′Lβ′ Rα′Lα′Rα′Lβ′ Rα′Lβ′

ηα
′
LβRα

LβRαη
β′

Rα′Lβ′ ϵα

Rα′Lβα′Rαη
β′

Rα′Lβ′ηβ
′

ϵβRα′Lβ′

ηα
′
LβRβα′Lβ′

Rα′Lβ′ ϵβRα′Lβ′

Rα′Lβ′ ϵαRβ′Lβ′

Rα′ ϵβ
′
Lβ′

ηα
′
Rα′Lβ′ Rα′ ϵα

′
Lβ′

where the bottom left and top right boxes commute by Lemma 2.4, the bottom right box commutes
by Corollary 2.5.1, and the top right box commutes by Lemma 2.6. By the triangle identities, we
realize the bottom row and the rightmost column are both the identity 2-morphisms by the triangle
identities, which concludes the result.

Exercise 2.7.F

Proof. The result is now immediate by Lemma 2.7, since Lemmas 2.1 and 2.2 tell us that we have
functors L : Topop → Cat and R : Top → Cat each assigning a topological space to the category
of sheaves over it, and where Lπ = π−1 and Rπ = π∗, which satisfy Setting 1 by Exercise 2.7.B.
To be explicit, the composition running across the bottom and left of the commutative diagram is
Vakil’s construction, whereas the composition running across the top and right is the dual construction
mentioned in the exercise.

Exercise 2.7.G

Proof. The claim is equivalent to showing supp s contains all of its limit points, so suppose q ∈ X is
a limit point of supp s, i.e. for every neighborhood U of q, there is a point p ∈ U such that sp ̸= 0.
Towards a contradiction, suppose sq = 0. Then there is some neighborhood U of q such that s|U = 0.
By hypothesis, there is some p ∈ U with sp ̸= 0, so in particular s|U ̸= 0. This is a contradiction .

Exercise 2.7.H

Proof. (a) First, we show that if q /∈ Z, then (i∗F )q = 1. Because Z is closed and q /∈ Z, then q
is not a limit point of Z, hence there is some neighborhood V of q such that V ∩ Z = ∅. Then
i∗F (V ) = F (V ∩ Z) = F (∅) = 1 because 1 is the terminal object in Grp and F is a sheaf.
Let U ⊂ Y be a neighborhood of q and let s ∈ i∗F (U) be an arbitrary section. We observe
resU,U∩V : i∗F (U) → i∗F (U ∩ V ) = F (U ∩ V ∩ Z) = F (∅) = 1 gives that s|U∩V = 1, so
sq = 1. As s was an arbitrary section, we conclude (i∗F )q = 1.

Now suppose q ∈ Z. Then the neighborhoods U ⊂ Y of q are in bijective correspondence with
the neighborhoods V ⊂ Z of q given by V ↭ U ∩ Z, hence

(i∗F )q = colimY⊃U∋q i∗F (U) = colimZ⊃V ∋q F (V ) = Fq.

(b) By Exercise 2.4., it suffices to show the natural map induces isomorphisms on the level of stalks.
Fix q ∈ Y . If q /∈ Z, then q /∈ suppG , so Gq = 1, and (i∗i

−1G )q = 1 by (a). Then any morphism
induces an isomorphism of stalks outside of Z.
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Now suppose q ∈ Z, and let [s, U ]q ∈ Gq. For each open V containing U ∩ Z, let µV : G (U) →
i−1
preG (U ∩ Z) be the map sending a section to its equivalence class, and similarly define νV :

G (U) → i−1
preG (V ∩ Z) for any open V containing V ∩ Z. Then if our natural map sends [s, U ]

to 1, by definition of the map we have [µU (s), U ∩ Z] = 1, i.e. there exists some neighborhoods
V of q such that µU (s)|V = 1, i.e. νU (s) = 1. By this definition, there exists an open W
containing V ∩ Z such that s|W = 1. This demonstrates our germ was trivial to begin with,
showing injectivity.

For surjectivity, an arbitrary element of i∗i
−1G (U) is a choice of compatible germs of i−1

preG .
Thus picking an arbitrary element of (i∗i

−1G )q, we can take the compatible germ at q and
restrict to its open neighborhood, so an arbitrary germ can be taken to be [µU (s), U ∩Z], which
is exactly the image of s under our natural map.

Since G is naturally isomorphic to i∗i
−1G , we don’t lose any data by just considering i−1G ,

because we can always push-forward this sheaf over Z and recover G .

Chapter 3

Section 3.1

Exercise 3.1.A

Proof. By [3], we need to show that for every p ∈ X, there are smooth charts (U,φ) containing p and
(V, ψ) containing q = π(p) where π(U) ⊂ V and ψ ◦ π ◦ φ−1 : φ(U)→ ψ(V ) is smooth.

Fix p ∈ X, and choose a smooth chart (V, ψ) containing q. By assumption, ψ ◦π : π−1(V )→ ψ(V )
is smooth, hence for every point in π−1(V ) there is a smooth chart (U,φ) containing the point such
that ψ ◦ π ◦ φ : φ(U)→ ψ(V ) is smooth. This gives the desired result, taking the point to be p.

Exercise 3.1.B

Proof. Define π#(fq) = (f ◦ π)p. To show this is well defined, if gq = fq, there is some neighborhood
W of q with f |W = g|W . Noticing g ◦ π = f ◦ π on π−1(W ), we see the map is well defined. Let ∗ be
either multiplication or addition. We compute

π#(f ∗ g)q = ((f ∗ g) ◦ π)p = (f ◦ π ∗ g ◦ π)p = (f ◦ π)p ∗ (g ◦ π)p = π#(fq) ∗ π#(gq).

It’s clear π#(0) = 0 and π#(1) = 1, which proves π# is a morphism of stalks.
In addition, fq ∈ mY,q if and only if f(q) = 0, i.e. f ◦ π(p) = 0, so π#(fq) = (f ◦ π)p is in mX,p as

well. Thus π# is a local ring homomorphism as well.

Section 3.2

Exercise 3.2.A

Proof. (a) Prime ideals of k[ϵ]/ϵ2 are the same as prime ideals in k[ϵ] containing (ϵ2). Such a prime
p containing ϵ2 then contains ϵ. Thus if f ∈ p, we do the division algorithm and write f = gϵ+m
for some m ∈ k, so we see m ∈ p implies m = 0. Then ϵ | f , and as f ∈ p was arbitrary, we get
p = (ϵ). Thus Spec k[ϵ]/ϵ2 = {(ϵ)}.

(b) Prime ideals of a localized ring are the same as prime ideals not intersecting the multiplicative
subset by Exercise 3.2.K. Thus the elements of Spec k[x](x) are the same as prime ideals contained
in (x). Because k[x] is a PID, let (f) be an arbitrary prime contained in (x). If f ̸= 0, then x | f
means we can write f = g · x for some g ∈ k[x]. As deg g < deg f , we see g /∈ (f), so x ∈ (f) by
assumption of being prime. Thus (f) = (x), hence Spec k[x](x) = {0, (x)}.

125



Exercise 3.2.B

Proof. Using the fact that C = R̄, we get a tower of extensions

C

k

R

2

2

where the numbers indicate the degree of the field extensions, and where k = R[x]/(x2 + ax + b).
Because extension degrees are multiplicative, we see [C : k] = 1, i.e. C ∼= k.

An explicit isomorphism k → C could be given by x 7→ −a2 + i
√
b− a2

4 , but will not be checked in

this proof.

Exercise 3.2.C

Proof. Q[x] is a PID, so primes of Q[x] are the same as irreducible polynomials over Q. Because
irreducible polynomials in Q are uniquely determined by their roots in Q (an irreducible polynomial
splits in Q), we get a bijective correspondence between orbits of Galois conjugates and prime ideals
of Q[x]. Thus we may view SpecQ[x] as Q̄ modulo the orbits of the Gal Q̄/Q.

Exercise 3.2.D

Proof. Suppose, aiming for a contradiction, that f1, . . . , fn is a complete list of all of the nonzero
primes in k[x], i.e. irreducible polynomials since k[x] is a PID. Then set g = 1 +

∏
i fi, and notice

g ≡ 1 mod p for each p ∈ Spec k[x], so g is indivisible by each fi. However, we then see that g cannot
be written as a product of irreducibles as we have a complete list f1, . . . , fn, which is a contradiction
because PID implies UFD.

Exercise 3.2.E

Proof. We claim that every p ∈ SpecC[x, y] is principally generated by an irreducible polynomial or
of the form (x − a, y − b) for some a, b ∈ C. It’s clear that if a prime ideal is principally generated,
its generator must be irreducible, so we fix a nonprincipally generated prime p and first suppose for
a contradiction that for every f, g ∈ p, there is a nonconstant common factor in C[x, y]. We will
make some inductive constructions here. p must contain two elements f1, g1 such that (f1, g1) is not
principal because C[x, y] is Noetherian by the Hilbert-basis theorem. We then set I1 = (f1, g1) and
I0 = 0.

Now we inductively have some In = (fn, gn) that is not principally generated, is contained in p,
and properly contains In−1. By hypothesis, we can find some nonconstant factor h of fn and gn, so
we can write fn = ph and gn = qh for some polynomials p, q. Since p is prime, either h ∈ p or p, q ∈ p.
If h ∈ p, we see (h) ⊊ p, so there exists some h′ ∈ p \ (h). Then we set In+1 = (h, h′), which satisfies
our hypothesis. If h /∈ p, then both p and q are in p. If (p, q) = (h) for some h ∈ p, we are able to
find some h′ ∈ p \ (h), and let In+1 = (h, h′), which again satisfies our hypothesis. If (p, q) is not
principal, we set In+1 = (p, q). The only non-immediate condition to check is that (fn, gn) ⊊ (p, q).
If the containment is not proper, we replace (fn, gn) with (p, q), and do the same case division. After
a finite number of case divisions, the containment either becomes proper or we move into one of the
other outlined cases. This is because each common factor is nonconstant, and if we always were able
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to write (fn, gn) = (p, q)h = (p, q), we observe that (p, q) have either smaller x or y-degree than fn
and gn, so we cannot do this procedure for infinity. Then the induction hypothesis holds.

We have now constructed an infinite ascending chain of proper ideals in C[x, y], which is impossible
by the Hilbert basis theorem.

Now we can find some f, g ∈ p which have no non-constant common factor in C[x, y]. Considering
these polynomials as elements of C(x)[y], which is a Euclidean domain, there is a greatest common
factor h′ ∈ C(x)[y] and may write h′ = a′f + b′g for some a′, b′ ∈ C(x)[y]. Since h′ is defined up to
unit, we may take h′ ∈ C[x, y]. We will now show that h′ ∈ C[x]. Since C[x, y] is a UFD, we write

f =
∏m
i=1 fi, g =

∏n
i=1 gi, and h

′ =
∏l
i=1 hi where each fi, gi, hi is irreducible in C[x, y]. We rearrange

the indices to be such that fi = hi for 1 ≤ i ≤ m′, and gi = hi for m
′ + 1 ≤ i ≤ n′. It then follows

that

a =
fm′+1fm′+2 . . . fm
hm′+1hm′+2 . . . hl

and
b =

g1g2 . . . gm′gn′+1gn′+2 . . . gn
h1h2 . . . hm′hn′+1hn′+2 . . . hl

.

But because the denominators of b can only be in the variable x, we see each hi must be in the variable
x only. Thus h′ ∈ C[x] as desired. Now that

h′ = a′f + b′g

we may clear the denominators of both a′ and b′ (remember, the denominators are in C[x]) to get
some expression

h = αf + βg

for some α, β ∈ C[x, y] and h ∈ C[x]. Thus h ∈ (f, g) ⊂ p, and as C is algebraically closed, h splits
into a product of linear factors, one of which, say x− a, must be in p because p is prime.

An identical proof, swapping the roles of x and y, shows that some y − b is in p as well. However,
as (x− a, y − b) is maximal (C[x, y]/(x− a, y − b) ∼= C is a field), we get p = (x− a, y − b).

A very short proof can also be given assuming two powerful results, being the weak Nullstellensatz
and that the dimension of k[x1, . . . , xn] is n for every field k. If we take a nonprincipal prime ideal
p ∈ C[x, y], we can find some irreducible element f ∈ p. Then we get the ascending chain

0 ⊊ (f) ⊊ p.

We see p must be maximal since dimC[x, y] = 2, and by the weak Nullstellensatz, since C is alge-
braically closed, p = (x− a, y − b) for some a, b ∈ C.

Exercise 3.2.F

Proof. Suppose Hilbert’s Nullstellensatz, stating that for any field k, every maximal ideal of k[x1, . . . , xn]
has residue field a finite extension of k. To prove the weak Nullstellensatz, let k be an algebraically
closed field. It’s clear that each ideal of the form (x1 − a1, x2 − a2, . . . , xn − an) is a maximal ideal
because its residue field is isomorphic to k, a field. Conversely, we fix an arbitrary maximal ideal m of
k[x1, . . . , xn]. By the Nullstellensatz, we have k[x1, . . . , xn]/m is a finite extension of k, and thus an
algebraic extension of k. However, since k is algebraically closed, the inclusion k ↪→ k[x1, . . . , xn]/m
must then be an isomorphism. Thus for each index i, there is some ai ∈ k such that xi ≡ ai mod m.
Then xi − ai ≡ 0 mod m, i.e. xi − ai ∈ m. Then m contains the ideal (x1 − a1, . . . , xn − an), which
is also a maximal ideal, hence m = (x1 − a1, . . . , xn − an).
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Exercise 3.2.G

Proof. It’s a general fact in dimension theory that if A is a finitely generated k-algebra that is also
a domain, then dimA = tr.degk(FracA). In our case, A is finite dimensional over k means A is
algebraic over k, thus dimA = 0. Then A being Noetherian and dimension 0 is the same as A being
Artinian, and A a domain implies that A is reduced. Because reduced Artinian rings are the same
thing as fields, we see A is a field as well.

Exercise 3.2.H

Proof. The maximal ideal of Q[x, y] corresponding to (
√
2,
√
2) is the ideal (x2 − 2, x− y) because in

modding out by this ideal, we get that x = y and that x =
√
2.

The maximal ideal corresponding to (
√
2,−
√
2) is (x2 − 2, x+ y) so that x = −y and x =

√
2.

It’s easy to see both residue fields are isomorphic to Q(
√
2).

Exercise 3.2.I

Proof. With a slight generalization to the proof of Exercise 3.2.E (replacing C by an arbitrary field k),
we see every non-principal prime ideal p in Spec k[x, y] contains some irreducible f(x) and g(y). How-
ever, k[x, y]/(f, g) ∼= k shows that (f, g) is maximal, and as p ⊃ (f, g), equality holds. To summarize,
every non-principal p ∈ Spec k[x, y] can be written as (f(x), g(y)) with f, g both irreducible.

(a) We claim ϕ(π, π2) = (x2 − y), with one containment clear. Suppose for a contradiction that
ϕ(π, π2) were non-principally generated. By our lemma, we would then be able to find some
f(x) ∈ ϕ(π, π2), which implies π is algebraic over Q, impossible. Then ϕ(π, π2) contains the
prime x2 − y and is principal, so indeed ϕ(π, π2) = (x2 − y).

(b) First, we show that 0 ∈ SpecQ[x, y] is equal to ϕ(π, 0). Similarly to (a), if there were some
nontrivial f ∈ ϕ(π, 0), then π would be algebraic over Q, contradiction, so ϕ(π, 0) = 0.

Now we take p = (f) for some irreducible f ∈ Q[x, y]. We consider f mod x−π, i.e. substituting
π for x in f which gives us a polynomial in C[y]. Because C is algebraically closed, there is some
root α of this polynomial in C. We then claim ϕ(π, α) = (f), where it’s clear by construction
that (f) ⊂ ϕ(π, α). If ϕ(π, α) were non-principal, we would get some g(x) ∈ ϕ(π, α), again
contradicting that π is transcendental over Q. Thus ϕ(π, α) is principal and contains the prime
(f), hence must equal (f).

For the last case, we take p to be non-principal. Our lemma then tells us that p = (f(x), g(y))
for some irreducible f, g. Let α ∈ C be a root of f(x) and β ∈ C be a root of g(y). We then
claim ϕ(α, β) = (f, g) = p. This is easy to see as (f, g) ⊂ ϕ(α, β), and (f, g) is maximal since
Q[x, y]/(f, g) ∼= Q(α, β) is a field.

Exercise 3.2.J

Proof. Fix p ∈ SpecA/I, and first we show ϕ−1(p) is an ideal of A. If x, y ∈ ϕ−1(p), then ϕ(x− y) =
ϕ(x)−ϕ(y) ∈ p by hypothesis, so x− y ∈ ϕ−1(p). In addition, if r ∈ A, we have ϕ(rx) = ϕ(r)ϕ(x) ∈ p
so rx ∈ ϕ−1(p).

Next, we show that ϕ−1(p) contains I. This is simply because preimages are inclusion preserving,
and ϕ−1(0) = I.

Now we show ϕ−1(p) is prime. Suppose xy ∈ ϕ−1(p). Then ϕ(x)ϕ(y) ∈ p implies that either
ϕ(x) ∈ p or ϕ(y) ∈ p, i.e. one of x or y is in ϕ−1(p).

It remains to show ϕ−1 is a bijection. Suppose p, q are two prime ideals of A/I such that ϕ−1(p) =
ϕ−1(q). Fixing x+ I ∈ p, we have x ∈ ϕ−1(p) = ϕ−1(q). Then x+ I ∈ q by definition, so p ⊂ q. The
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reverse inclusion is completely analogous, so indeed p = q. For surjectivity, fix a prime ideal q ∈ SpecA
containing I. We claim that ϕ(q) is prime. In general, images of ideals under ring homomorphisms
are not ideals, so we have to show ϕ(q) is an ideal of A/I. For x, y ∈ q (so that x + I and y + I
are arbitrary elements of ϕ(q)), we have x − y ∈ q, so ϕ(x) − ϕ(y) = ϕ(x − y) ∈ ϕ(q) as well. For
r+ I ∈ A/I, (r+ I)(x+ I) = rx+ I = ϕ(rx) is in ϕ(q) because rx ∈ q. Thus ϕ(q) is an ideal of A/I.
Suppose xy + I ∈ ϕ(q), so there is some element z ∈ I such that xy + z ∈ q. Because z ∈ I ⊂ q, we
also get xy ∈ q. By q being prime, one of x or y is in q, so one of x + I or y + I is in ϕ(q). Now we
claim ϕ−1(ϕ(q)) = q. By general set theory, ϕ−1(ϕ(q)) contains q. If x ∈ ϕ−1(ϕ(q)), i.e. x+ I ∈ ϕ(q),
again there exists some z ∈ I such that x+ z ∈ q. Since z ∈ q, x ∈ q, which shows equality holds.

Exercise 3.2.K

Proof. As usual, the map ϕ : A → S−1A induces a map ϕ−1 : SpecS−1A → SpecA by Exercise
3.2.M. In addition, if q ∈ SpecS−1A, ϕ−1(q) cannot intersect S. To see this, if some x were in the
intersection, by definition ϕ(x) = x

1 ∈ q, and as x ∈ S, we have 1
x ∈ S

−1A, so 1
x ·

x
1 = 1 ∈ q, implying

q is not prime. By general set theory, ϕ−1 is also inclusion preserving.
Next, we will show ϕ−1 is injective by supposing ϕ−1(p) = ϕ−1(q) for some p, q ∈ SpecS−1A. Fix

a
s ∈ p. Then by multiplying by s

1 ∈ S
−1A, we get a

1 ∈ p as well. Then a ∈ ϕ−1(p) = ϕ−1(q), so a
1 ∈ q.

Then upon multiplication by 1
s ∈ S−1A, we get a

s ∈ q, so p ⊂ q. The reverse inclusion is entirely
analogous, so p = q and thus ϕ−1 is injective.

For surjectivity, fix p ∈ SpecA with p∩S = ∅. We define q = {as ∈ S
−1A | a ∈ p}. Indeed, we can

make this definition, i.e. if as = b
t , then

a
s having numerator in p is equivalent to b

t having numerator
in p. This is because by assumption, there is some r ∈ S such that r(at− bs) = 0, i.e. art = brs. By
assuming a ∈ p, the left hand side is in p, so brt ∈ p. By p being prime, b ∈ p or rt ∈ p. But because
rt /∈ p (S ∩ p = ∅), by primeness b ∈ p. That b ∈ p implies a ∈ p is completely analogous, so our
definition makes sense. Next we will show q ∈ SpecS−1A.

If as ,
b
t ∈ q, then a

s −
b
t =

at−bs
st ∈ q because at− bs ∈ p by assumption that a, b ∈ p. If rt ∈ S

−1A,

then r
t ·

a
s = ra

st ∈ q because ra ∈ p since a ∈ p. To show q is prime, suppose a
s ·

b
t ∈ q. Then ab ∈ p

by definition, and by primeness of p, we get a ∈ p or b ∈ p, so a
s ∈ q or b

t ∈ q.
Now, we claim that ϕ−1(q) = p, which would show ϕ−1 is surjective onto {p ∈ SpecA | p∩S = ∅}.

It’s clear ϕ−1(q) ⊂ p by construction (an element x ∈ A sent to x
1 in q implies x ∈ p). The reverse

inclusion is also easy (fix x ∈ p, and then ϕ(x) = x
1 ∈ q, i.e. x ∈ ϕ−1(q)).

Exercise 3.2.L

Proof. To show (C[x, y]/(xy))x ∼= C[x]x, we first notice every element of C[x, y]/(xy) has repre-
sentative

∑
aix

i + y
∑
bjy

j since a C-basis for the i-th graded piece of C[x, y]/(xy) is just xi, yi.

Then an arbitrary element of the localization by x is of the form
∑
aix

i+y
∑
bjy

j

xk . We define a map

ϕ : (C[x, y]/(xy))x → C[x]x given by
∑
aix

i+y
∑
bjy

j

xk 7→
∑
aix

i

xk , and claim this is a ring homomorphism,
where it is immediate that ϕ(0) = 0 and ϕ(1) = 1. We compute that

ϕ(

∑m
i=0 aix

i + y
∑n
j=0 bjy

j

xk
+

∑m′

i=0 a
′
ix
i + y

∑n′

j=0 b
′
jy
j

xk′
) =

∑m
i=0 aix

i +
∑m′

i=0 a
′
ix
i+d

xk

=

∑m
i=0 aix

i

xk
+

∑m′

i=0 a
′
ix
i+d

xk
=

∑m
i=0 aix

i

xk
+

∑m′

i=0 a
′
ix
i

xk′

= ϕ(

∑m
i=0 aix

i + y
∑n
j=0 bjy

j

xk
) + ϕ(

∑m′

i=0 a
′
ix
i + y

∑n′

j=0 b
′
jy
j

xk′
)
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where we have assumed without loss of generality that k′ ≤ k and where we set d = k−k′. In addition,

ϕ(

∑m
i=0 aix

i + y
∑n
j=0 bjy

j

xk
·
∑m′

i=0 a
′
ix
i + y

∑n′

j=0 b
′
jy
j

xk′
) =

∑m+m′

α=0 (
∑
i+j=α aia

′
j)x

α

xk+k′

=

∑m
i=0 aix

i

xk
·
∑m′

i=0 a
′
ix
i

xk′
= ϕ(

∑m
i=0 aix

i + y
∑n
j=0 bjy

j

xk
)ϕ(

∑m′

i=0 a
′
ix
i + y

∑n′

j=0 b
′
jy
j

xk′
).

Now suppose
∑m

i=0 aix
i+y

∑n
j=0 bjy

j

xk is in the kernel of ϕ, hence∑m
i=0 aix

i + y
∑n
j=0 bjy

j

xk
=
y
∑n
j=0 bjy

j

xk
=
xy
∑n
j=0 bjy

j

xk+1
=

0

xk+1
= 0

so the map is injective. It’s immediate that ϕ is surjective, and thus ϕ is an isomorphism.

Exercise 3.2.M

Proof. Fix p ∈ SpecA, and first we show ϕ−1(p) is an ideal of B. If x, y ∈ ϕ−1(p), then ϕ(x − y) =
ϕ(x)−ϕ(y) ∈ p by hypothesis, so x− y ∈ ϕ−1(p). In addition, if r ∈ A, we have ϕ(rx) = ϕ(r)ϕ(x) ∈ p
so rx ∈ ϕ−1(p).

Now we show ϕ−1(p) is prime. Suppose xy ∈ ϕ−1(p). Then ϕ(x)ϕ(y) = ϕ(xy) ∈ p implies that
either ϕ(x) ∈ p or ϕ(y) ∈ p, i.e. one of x or y is in ϕ−1(p), so ϕ−1(p) ∈ SpecB.

Next, we show that ϕ−1 is inclusion preserving by supposing q ⊂ p. Then ϕ−1(p) contains ϕ−1(q)
simply because preimages are inclusion preserving by general set theory.

Exercise 3.2.N

Proof. (a) By the proof of Exercise 3.2.J.

(b) By the proof of Exercise 3.2.K.

Exercise 3.2.O

Proof. Let ϕ : C[y]→ C[x] be given by y 7→ x2. By Exercise 3.2.M, we get a map ϕ−1 : SpecC[x]→
SpecC[y]. Our goal is to show the preimage of (y − a) under ϕ−1 is the set containing (x−

√
a) and

(x +
√
a). First, we will show that ϕ−1(x −

√
a) = (y − a). Indeed, y − a ∈ ϕ−1(x −

√
a) because

ϕ(y − a) = x2 − a = (x −
√
a)(x +

√
a) ∈ (x −

√
a). Thus ϕ−1(x −

√
a) ⊃ (y − a), but as y − a is

maximal, equality holds. An analogous argument shows that ϕ−1(x+
√
a) = (y − a).

Now suppose p ∈ SpecC[x] is in the preimage of (y − a) under ϕ−1, i.e. ϕ−1(p) = (y − a). By
general set theory, we get

p ⊃ ϕ(ϕ−1(p)) = ϕ(y − a) = (x2 − a).
Then (x−

√
a)(x+

√
a) ∈ p and p prime implies that one of x−

√
a or x+

√
a is in p. Because these

elements generate maximal ideals, we get that either p = (x−
√
a) or p = (x+

√
a) as desired.

Exercise 3.2.P

Proof. (a) Suppose ϕ : B → A is a ring homomorphism, and J ⊂ B and I ⊂ A are ideals such that
ϕ(J) ⊂ I. We claim that ϕ induces a map SpecA/I → SpecB/J .

By Exercise 3.2.M, it suffices to show ϕ induces a ring homomorphism B/J → A/I given by
x + J 7→ ϕ(x) + I. This map is clearly additive and multiplicative because ϕ is, and is well
defined because if we instead pick a representative x+ j with j ∈ J , then

x+ j + J 7→ ϕ(x+ j) + I = ϕ(x) + ϕ(j) + I = ϕ(x) + I
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since ϕ(j) ∈ I by hypothesis.

(b) Suppose ϕ : k[y1, . . . , yn] → k[x1, . . . , xm] is a morphism of k-algebras with fi := ϕ(yi) for
each 1 ≤ i ≤ n. We need to show ϕ−1 : Spec k[x1, . . . , xm] → Spec k[y1, . . . , yn] sends (x1 −
a1, . . . , xm − am) to (y1 − f1(a1, . . . , am), . . . , yn − fn(a1, . . . , am)). Because the latter ideal is
maximal, it suffices to show yi − fi(a1, . . . , am) ∈ ϕ−1(x1 − a1, . . . , xm − am) for each i. This is
because

ϕ(yi − fi(a1, . . . , am)) = fi − fi(a1, . . . , am) ∈ (x1 − a1, . . . , xm − am)

because (x1 − a1, . . . , xm − am) is the kernel of the evaluation at the tuple (a1, . . . , am) ∈ km,
and fi−fi(a1, . . . , am) is clearly in this kernel. Note we used that ϕ is a morphism of k-algebras
so that ϕ is k-linear, and in particular fixes elements of k like fi(a1, . . . , am).

Exercise 3.2.Q

Proof. Notice that π−1(p) = {q ∈ AnZ | q∩Z = (p)} = {q ∈ AnZ | p ∈ q}, with the last equality holding
because p ∈ q implies q ∩ Z is an ideal containing the maximal (p). By Exercise 3.2.J, we have a
bijection between SpecZ[x1, . . . , xn]/(p) = AnFp

and {q ∈ AnZ | (p) ⊂ q} = {q ∈ AnZ | p ∈ q}, which is

equal to π−1(p).
We claim π−1(0) corresponds to AnQ, and notice that π−1(0) = {q ∈ AnZ | q ∩ Z = (0)}. We

view Q[x1, . . . , xn] as S
−1Z[x1, . . . , xn] where S = Z \ 0. By Exercise 3.2.K, AnQ = SpecQ[x1, . . . , xn]

corresponds with {q ∈ SpecZ[x1, . . . , xn] | q ∩ S = ∅} = {q ∈ AnZ | q ∩ Z = 0} = π−1(0).

Exercise 3.2.R

Proof. (a) Suppose I is an ideal of nilpotents. By Exercise 3.2.J, SpecB/I ∼= {p ∈ SpecB | p ⊃ I}.
Let p ∈ SpecB be arbitrary. Then for each x ∈ I, there is some n ∈ N with xn = 0 ∈ p, hence
by primeness, x ∈ p. Thus I ⊂

⋂
p∈SpecB p, and in particular, {p ∈ SpecB | p ⊃ I} = SpecB.

(b) To show N(B) is an ideal, suppose xm = 0 = yn, and let a ∈ B be arbitrary. To show
x− y ∈ N(B), we compute

(x− y)m+n =

m+n∑
i=0

(
m+ n

i

)
(−1)m+n−ixiym+n−i

and notice that if i ≥ m, then xi = 0 and if i ≤ m, then m+n− i ≥ n, so ym+n−i = 0. In other
words, every term of our sum vanishes, so indeed x− y ∈ N(B). To show ax ∈ N(B), we easily
see

(ax)m = amxm = 0.

Exercise 3.2.S

Proof. By the proof of Exercise 3.2.R, N(A) ⊂
⋂

p∈SpecA p, so it remains to show the reverse inclusion
by fixing x /∈ N(A), and showing x /∈

⋂
p∈SpecA p. What we want is equivalent to showing there exists

a prime not containing x, and to do this, it suffices to show Ax ̸= 0, for then there is a maximal ideal
of Ax, which corresponds to a prime ideal of SpecA not intersecting {1, x, x2, . . . } by Exercise 3.2.K,
i.e. a prime not containing x. Showing Ax ̸= 0 is equivalent to showing 0 ̸= 1 in Ax, so we will show
the latter. Supposing for a contradiction that 0 = 1, then by definition of localization, there is some
xn such that xn(1− 0) = 0, i.e. xn = 0. This is impossible by assumption that x /∈ N(A).
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Exercise 3.2.T

Proof. Fix f =
∑n
i=0 aix

i ∈ k[x]. Then

f(x+ ϵ) =

n∑
i=0

ai(x+ ϵ)i =

n∑
i=0

ai

i∑
j=0

(
i

j

)
ϵjxi−j .

Because ϵ2 = 0, every ϵj = 0 for j ≥ 2, so we have

n∑
i=0

ai

i∑
j=0

(
i

j

)
ϵjxi−j =

n∑
i=0

ai
[
xi + iϵxi−1

]
=

n∑
i=0

aix
i + ϵ

n∑
i=1

aiix
i−1 = f + ϵf ′

where f ′ is the formal derivative of f .

Section 3.3

Section 3.4

Exercise 3.4.A

Proof. The x-axis is the ideal (y, z), which is clearly prime. In addition, (y, z) ⊃ {xy, yz} because y
divides each of these elements, and y ∈ (y, z). By definition, (y, z) ∈ V (xy, yz).

Exercise 3.4.B

Proof. Suppose p ∈ V (S), i.e. p ⊃ S. Then for an arbitrary element
∑n
i=1 aisi with each si ∈ S and

ai ∈ A, each si ∈ p by hypothesis, hence
∑n
i=1 aisi ∈ p as well. This shows p ⊃ (S), so p ∈ V ((S)).

On the other hand, suppose p ∈ V ((S)), i.e. p ⊃ (S). Because (S) ⊃ S, we get p ⊃ S, so
p ∈ V (S).

Exercise 3.4.C

Proof. (a) SpecA is closed because SpecA = V (∅) as every prime contains ∅. Thus ∅ is open. ∅
is closed because ∅ = V (A), since every prime is proper. Thus SpecA is open.

(b) Fix p ∈ SpecA. It’s easy to show that p ⊃ Ii for each i if and only if p ⊃
∑
i Ii. For the forward

direction, we let
∑n
k=0 xik ∈

∑
i Ii be an arbitrary element with xik ∈ Iik for each k. As each

xi ∈ p, indeed the sum is in p, showing p ⊃
∑
i Ii. For the reverse direction, as

∑
i Ii ⊃ Ii for

each index i, we see p ⊃ Ii for each i as well. By definition, p ∈
⋂
i V (Ii) is equivalent to p ⊃ Ii

for each i, and p ∈ V (
∑
i Ii) means p ⊃

∑
i Ii. Thus arbitrary intersections of closed sets is

closed, which is equivalent to arbitrary unions of open sets being open.

(c) To show V (I1) ∪ V (I2) = V (I1I2), first fix p ∈ V (I1) ∪ V (I2). If p ∈ V (I1), i.e. p ⊃ I1, then
as I1 ⊃ I1I2, we get p ⊃ I1I2, so p ∈ V (I1I2). The case where p ∈ V (I2) is analogous, so
V (I1) ∪ V (I2) ⊂ V (I1I2). For the reverse inclusion, suppose p ̸⊃ I1 and p ̸⊃ I2. Then we let
x ∈ I1 and y ∈ I2 be such that x, y /∈ p. Then by primeness of p, xy /∈ p, and as xy ∈ I1I2, we
see p ̸⊃ I1I2, so p /∈ V (I1I2). Thus finite unions of closed sets are closed, or equivalently, finite
intersections of open sets are open.
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Exercise 3.4.D

Proof. To show
√
I is an ideal, fix x, y ∈

√
I, and a ∈ A, and assume xm ∈ I and yn ∈ I. To show

x− y ∈
√
I, we compute

(x− y)m+n =

m+n∑
i=0

(
m+ n

i

)
(−1)m+n−ixiym+n−i

and notice that if i ≥ m, then xi ∈ I and if i ≤ m, then m + n − i ≥ n, so ym+n−i ∈ I. In other
words, every term of our sum is an element of I, so (x − y)m+n ∈ I, proving x − y ∈

√
I. To show

ax ∈
√
I, we easily see

(ax)m = amxm ∈ I

because xm ∈ I.
It’s clear that I ⊂

√
I, so easily V (

√
I) ⊂ V (I). To show the reverse inclusion, suppose p ∈ V (I),

so p ⊃ I. Then for any element x ∈
√
I, we have xn ∈ I ⊂ p, which implies by primeness of p that

x ∈ p. Therefore p ⊃
√
I, and thus p ∈ V (

√
I).

Since an ideal is always contained in its radical, we have immediately that
√
I ⊂

√√
I. For the

reverse inclusion, suppose x ∈
√√

I, so there exists some m > 0 such that xm ∈
√
I. By definition

of
√
I, there exists some n > 0 such that (xm)n = xmn ∈ I. This implies that x ∈

√
I, proving√√

I ⊂
√
I.

To show prime ideals are radical, it suffices to show
√
p ⊂ p for p ∈ SpecA. If x ∈ √p, then let

xn ∈ p. By primeness of p, we get x ∈ p, so
√
p ⊂ p as desired.

Exercise 3.4.E

Proof. For
√⋂n

i=1 Ii ⊂
⋂n
i=1

√
Ii, suppose x ∈ A is such that xm ∈ Ii for each i. Then x ∈

√
Ii for

each i, proving this inclusion.
For the reverse inclusion, suppose x ∈ A is such that for each i, x ∈

√
Ii. Then for each i, there

is some mi > 0 such that xmi ∈ Ii. Letting m = max{m1,m2, . . . ,mn}, we then observe xm ∈ Ii for
each i. Then x ∈

√⋂n
i=1 Ii as desired.

Exercise 3.4.F

Proof. By Exercise 3.2.S, we haveN(A/I) =
⋂

q∈SpecA/I q. We have x+I ∈ N(A/I) if and only if there

is some n > 0 with xn+ I = I if and only if xn ∈ I. Thus x ∈
√
I if and only if x+ I ∈

⋂
q∈SpecA/I q.

By Exercise 3.2.J, SpecA/I ∼= {p ∈ SpecA | p ⊃ I}. Moreover, by the proof of this result, the
bijections are taking images and preimages under the quotient map. Thus x+ I ∈

⋂
q∈SpecA/I if and

only if x ∈
⋂

p⊃I∈SpecA p. To see this, for the forward direction, if there is some prime p ⊃ I such that
x /∈ p, we then get x+ I /∈ p/I ∈ SpecA/I. For the reverse direction, if x ∈ p ⊃ I, then x+ I ∈ p/I,
and as every q ∈ SpecA/I is realized as the quotient of a prime containing I, the result follows.

Exercise 3.4.G

Proof. Recall that A1
k is just the set of irreducible polynomials of k[x] (the maximal ideals), along

with 0. As Exercise 3.2.D, points out, there are infinitely many points in A1
k. Because V (S) = V ((S))

by Exercise 3.4.B for an arbitrary subset S ⊂ A, an arbitrary closed set is of the form V (I) for some
ideal I ⊂ A. We inspect an arbitrary closed set V (I), where we have:

If I = 0, V (I) = A1
k.

If I = A, V (I) = ∅.
If 0 ⊊ I ⊊ A, I = (f) for some f ∈ k[x] since k[x] is a PID, and as f has finitely many irreducible

factors, we see I is contained in finitely many maximal ideals. Thus V (I) = {m1,m2, . . . ,mn}, a
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finite set of maximal ideals, i.e. a finite set of points of A1
k \ [0]. Then we know the only possible

closed sets of A1
k are the empty set, A1

k itself, and a finite set of points of A1
k \ [0]. It thus remains

to show every set of the above form is closed. ∅ and A1
k are closed by Exercise 3.4.C, and as

{m1, . . . ,mn} = {m1} ∪ · · · ∪ {mn} and each {mi} = V (mi), we get from Exercise 3.4.C that since
finite unions of closed sets are closed, indeed {m1, . . . ,mn} is closed. We remark that since the only
closed set that contains the generic point [0] is A1

k, [0] is in every nonempty open set.

Exercise 3.4.H

Proof. We take V (I) to be an arbitrary closed set (allowable by Exercise 3.4.C as V (S) = V ((S))),
hence it suffices to show π−1(V (I)) = {p ∈ SpecA | π(p) ⊃ I} is closed. We claim V (ϕ(I)) =
π−1(V (I)), which would conclude our proof, and remark that ϕ(I) may not be an ideal, so we just
consider ϕ(I) as a set. If p ∈ SpecA is such that ϕ−1(p) = π(p) ⊃ I, by general set theory we
get p ⊃ ϕ(ϕ−1(p)) ⊃ ϕ(I), thus showing p ∈ V (ϕ(I)). On the other hand, if p ⊃ ϕ(I), then
ϕ−1(p) ⊃ ϕ−1(ϕ(I)) ⊃ I, so p ∈ π−1(V (I)).

Then Spec : Ring→ Top assigns rings to topological spaces and ring homomorphisms to contin-
uous maps in a contravariant fashion. It’s clear that the induced map on spectrum of the identity is

again the identity, and if C
ψ−→ B

ϕ−→ A, then we get SpecA
π−→ SpecB

τ−→ SpecC and also a map
σ : SpecA→ SpecC induced by ϕ◦ψ. Moreover, for p ∈ SpecA, τ ◦π(p) = τ(ϕ−1(p)) = ψ−1(ϕ−1(p)),
and σ(p) = (ϕ ◦ ψ)−1(p) = ψ−1(ϕ−1(p)) so σ = τ ◦ π, thus showing Spec is functorial.

Exercise 3.4.I

Proof. (a) By Exercise 3.2.N, SpecB/I is in bijection with {p ∈ SpecB | p ⊃ I}. By definition, the
latter subset is V (I), which is closed in SpecB.

We take S = {1, f, f2, . . . }, and in addition, by Exercise 3.2.N, SpecS−1B is in bijection with
{p ∈ SpecB | p ∩ S = ∅} = {p ∈ SpecB | f /∈ p}, where p ∩ S = ∅ if f /∈ p by primeness
of p (fn ∈ p implies f ∈ p). To show the latter set is open, we will show its complement
{p ∈ SpecB | f ∈ p} is closed. The subset is V ({f}), hence closed.

To show for arbitrary S, SpecS−1B need not be open nor closed in SpecB, we take B = Z
and S = Z \ {0} so S−1B = Q. We notice SpecQ = {0} since Q is a field, so we must show
{0} ⊂ SpecZ is neither open nor closed. As is mentioned on page 116 in Vakil, the open sets
of SpecZ are the empty set, and SpecZ minus a finite number of “ordinary” ((p) where p is
prime) primes. Indeed {0} is not of the form above (since SpecZ has infinitely many “ordinary”
primes), so {0} is not open. Equivalent to the statement in Vakil is that the closed sets of SpecZ
are SpecZ itself, and a finite number of “ordinary” primes. Also {0} is not of this form, so {0}
is not closed.

(b) We first consider SpecB/I, and want to show SpecB/I is homeomorphic to {p ∈ SpecB | p ⊃ I}
as a subspace of SpecB. By Exercise 3.2.N, if we let ϕ : B ↠ B/I be the quotient, taking ϕ
and ϕ−1 give an inclusion-preserving bijection. Thus we need to show each map is continuous.
That ϕ−1 : SpecB/I → SpecB is continuous is by Exercise 3.4.H. Then it remains to show
ϕ : {p ∈ SpecB | p ⊃ I} → SpecB/I is continuous. By Exercise 3.4.B, it suffices to show
ϕ−1(V (J)) is closed for an ideal J of B/I. By definition, ϕ−1(V (J)) = {p ∈ SpecB | ϕ(p) ⊃ J}.
In addition, ϕ(p) ⊃ J if and only if p ⊃ ϕ−1(J) because by the proof of Exercise 3.2.J, we have
ϕ−1(ϕ(p)) = p and we can similarly show ϕ(ϕ−1(J)) = J (x + I ∈ J implies x ∈ ϕ−1(J) so
x+ I ∈ ϕ(ϕ−1(J)), and it’s always true that ϕ(ϕ−1(J)) ⊂ J). Thus ϕ−1(V (J)) = {p ∈ SpecB |
p ⊃ ϕ−1(J) and p ⊃ I} = V (ϕ−1(J)) ∩ {p ∈ SpecB | p ⊃ I} is closed.
Now we consider SpecS−1B, and want to show SpecS−1B is homeomorphic to {p ∈ SpecB |
p ∩ S = ∅} as a subspace of SpecB. By Exercise 3.2.N, ϕ : B → S−1B induces a bijection
between SpecS−1B and {p ∈ SpecB | p∩S = ∅}, and is continuous by Exercise 3.4.H. Then it
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remains to show the inverse map ϕ : {p ∈ SpecB | p ∩ S = ∅} → SpecS−1B sending such a p
to ϕ(p) is continuous. By Exercise 3.4.B, it suffices to show ϕ−1(V (J)) = {p ∈ SpecB | ϕ(p) ⊃
J and p ∩ S = ∅} is closed for an arbitrary ideal J of S−1B. We claim { bs | b ∈ p} = ϕ(p) ⊃ J
(the first equality by the proof of Exercise 3.2.K) if and only if p ⊃ ϕ−1(J), assuming p∩S = ∅.
By the proof of Exercise 3.2.K, we have ϕ−1(ϕ(p)) = p, so the forward direction is immediate,
and if p contains ϕ−1(J), if we fix b

s ∈ J , we get b ∈ p, so indeed b
s ∈ {

b
s | b ∈ p} = ϕ(p).

Thus {p ∈ SpecB | ϕ(p) ⊃ J and p ∩ S = ∅} = {p ∈ SpecB | p ⊃ ϕ−1(J) and p ∩ S = ∅} =
V (ϕ−1(J)) ∩ {p ∈ SpecB | p ∩ S = ∅} is closed.

Exercise 3.4.J

Proof. f vanishes on V (I) by definition if and only if f ≡ 0 mod p for every p ∈ SpecB containing
I, i.e. f ∈ p for every p ∈ SpecB containing I, i.e. f ∈

⋂
p⊃I∈SpecB p =

√
I by Exercise 3.4.F.

Exercise 3.4.K

Proof. Exercise 3.2.A tells us that Spec k[x](x) = {0, (x)}: let’s classify the closed subsets of Spec k[x](x).
Let V ((f)) be an arbitrary closed subset by Exercise 3.4.B. If f = 0, then V (0) = Spec k[x](x). If
f ∈ (x) \ 0 , then V (f) = {(x)}, and if f /∈ (x), (f) = k[x](x), hence V ((f)) = ∅. Then the only pos-
sible closed subsets are ∅, {(x)}, and Spec k[x](x). Indeed, each of these are realized as the vanishing
set of 1, x, and 0 respectively, so these are the three closed subsets.

Section 3.5

Exercise 3.5.A

Proof. That the distinguished open sets form a base for the Zariski topology is equivalent to showing
that every closed set can be written as an intersection of complements of distinguished open sets. Let
V (S) be an arbitrary closed set. Then

V (S) = {p ∈ SpecA | p ⊃ S} =
⋂
f∈S

{p ∈ SpecA | p ∋ f} =
⋂
f∈S

SpecA \D(f).

Exercise 3.5.B

Proof. For
⋃
i∈J D(fi) = SpecA implies ({fi}i∈J) = A, suppose

⋃
i∈J D(fi) = SpecA. Then for each

p ∈ SpecA, there is some i ∈ J such that p ∈ D(fi) = {q ∈ SpecA | fi /∈ q}, i.e. fi /∈ p for some
i ∈ J . Then if ({fi}i∈J) was proper, we would have ({fi}i∈J) ⊂ m for some maximal m ∈ SpecA,
which contradicts our assumption that there is some fi /∈ m because each fi ∈ ({fi}i∈J) ⊂ m. Then
indeed ({fi}i∈J) = A.

Conversely, suppose
⋃
i∈J D(fi) ̸= SpecA, so there is some p ∈ SpecA such that p /∈ D(fi) for

each i, or equivalently fi ∈ p for each i. Then A ⊋ p ⊃ ({fi}i∈J), implying ({fi}i∈J) ̸= A.
That ({fi}i∈J) = A is equivalent to the existence of some ai (i ∈ J), all but finitely many 0, such

that
∑
i∈J aifi = 1 is by definition of ({fi}i∈J).

Exercise 3.5.C

Proof. Suppose SpecA =
⋃
j∈J D(fj). Equivalently by Exercise 3.5.B, there are some aj (j ∈ J),

all but finitely many 0, such that
∑
j∈J ajfj = 1. By reordering J , suppose f1, . . . , fn are such

that
∑n
j=1 ajfj = 1. Then no proper ideal can contain every fj for j = 1, . . . , n, and for arbitrary
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p ∈ SpecA (being proper), we see there must be some j = 1, . . . , n such that fj /∈ p, i.e. p ∈ D(fj).
Since p ∈ SpecA was arbitrary, we get SpecA =

⋃n
j=1D(fj).

Exercise 3.5.D

Proof. p ∈ D(f) ∩D(g) if and only if f /∈ p and g /∈ p, if and only if fg /∈ p by primeness, if and only
if p ∈ D(fg).

Exercise 3.5.E

Proof. For D(f) ⊂ D(g) equivalent to fn ∈ (g) for some n ≥ 1 is the same as the statement “For
every p ∈ SpecA, f /∈ p implies g /∈ p if and only if f ∈

√
(g)”. For every p ∈ SpecA, f /∈ p implies

g /∈ p is equivalent to the statement “For every p ∈ SpecA, g ∈ p implies f ∈ p.” By Exercise 3.4.F,√
(g) =

⋂
p∋g p, hence f ∈

√
(g) if and only if f is in every prime containing g if and only if for every

p ∈ SpecA, g ∈ p implies f ∈ p.
g is invertible in Af if and only if there is some a ∈ A and n ≥ 0 such that 1 = ag

fn if and only if

there is some m ≥ 0 such that fm(fn − ag) = 0 if and only if there is some n ≥ 0 and a ∈ A with
fn = ag if and only if there is some n ≥ 0 with fn ∈ (g). If f0 = 1 ∈ (g), then (g) = A implies
that also f1 ∈ (g). Thus there is some n ≥ 0 with fn ∈ (g) if and only if there is some n ≥ 1 with
fn ∈ (g).

Exercise 3.5.F

Proof. Notice D(0) = ∅ since every prime contains 0. Then D(f) = ∅ if and only if D(f) ⊂ D(0) if
and only if f ∈

√
0 = N(A) by Exercise 3.5.E.

Exercise 3.5.G

Proof. Suppose B ⊂ A. We want to show that the induced map π : SpecA → SpecB has dense
image. By Exercise 3.5.A, the distinguished open sets form a base for the Zariski topology, so our
claim is equivalent to showing that for every p ∈ SpecB and every f ∈ B such that p ∈ D(f),
D(f) ∩ π(SpecA) ̸= ∅. Suppose this is false, so there is some p ∈ SpecB and some f /∈ p such that
for every q ∈ SpecA, q ∩ B contains f , i.e. f ∈

⋂
q∈SpecA q ∩ B = B ∩N(A) by Exercise 3.2.S. But

then fn = 0 ∈ p for some n > 0 implies by primeness of p that f ∈ p, a contradiction.

Section 3.6

Exercise 3.6.A

Proof. Let A = A1 × · · · × An, and let pi : A ↠ Ai be the projection. Then for each i, we get maps
ϕi : SpecAi → SpecA. By Exercise 3.4.I, we have that each ϕi is a homeomorphism onto the subspace
V (ker pi) = {q ∈ SpecA | q ⊃

∏
j ̸=iAj} = {q ∈ SpecA | q ⊃ {fj , j ̸= i}} where fj = (δij)

n
i=1 and δ is

the Kronecker delta. We claim that q ∈ SpecA contains each fj for j ̸= i if and only if fi /∈ q. For the
forward direction, if a q containing each fj for j ̸= i in addition contained fi, then q ∋ f1+· · ·+fn = 1,
contradicting that q is proper. For the backwards direction, we suppose q ∈ SpecA does not contain
fi. Then for any j ̸= i, we have q ∋ 0 = fifj implies by primeness that fj ∈ q. Then we have
homeomorphisms ϕi : SpecAi → D(fi) as required.

We now want to show SpecA =
∐n
i=1D(fi). Because the distinguished open sets are open, all

that remains is for i ̸= j, D(fi) ∩ D(fj) = ∅ and that SpecA =
⋃n
i=1D(fi). By Exercise 3.5.D,

we have D(fi) ∩ D(fj) = D(fifj) = D(0) = ∅. Suppose for a contradiction that some q ∈ SpecA
contains each fi. Then q ∋ f1+ · · ·+fn = 1, a contradiction to the assumption that q is proper. Thus
q ∈ D(fi) for some i.
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Exercise 3.6.B

Proof. (a) Let U ⊂ X be nonempty and open. If U is not dense in X, then there is some p ∈ X
and neighborhood V of p such that V ∩ U = ∅. Then X is reducible.

(b) We first claim that for any open U ⊂ X, U ∩ Z̄ ̸= ∅ if and only if U ∩ Z ̸= ∅. Let Z ′ be the
set of limit points of Z in X, i.e. the set of all points x ∈ X such that every neighborhood U
of x intersects Z at some point other than itself. Because Z̄ = Z ∪ Z ′, so Z ⊂ Z̄, the backward
direction is immediate. For the forward direction, suppose x ∈ U ∩ Z̄. If x ∈ Z, the claim
follows. If x ∈ Z ′, then as U is a neighborhood of x, there is some y ∈ U ∩ Z, proving the
forwards direction.

By definition of the subspace topology, Z is irreducible if and only if for every open U, V ⊂ X
with U ∩ Z ̸= ∅ and V ∩ Z ̸= ∅, (U ∩ V ) ∩ Z = (U ∩ Z) ∩ (V ∩ Z) ̸= ∅. Similarly, Z̄
is irreducible if and only if for every open U, V ⊂ X with U ∩ Z̄ ̸= ∅ and V ∩ Z̄ ̸= ∅,
(U ∩ V ) ∩ Z̄ = (U ∩ Z̄) ∩ (V ∩ Z̄) ̸= ∅. The result now follows easily from our claim.

Exercise 3.6.C

Proof. Suppose SpecA = V (I) ⊔ V (J) and A is a domain, i.e. 0 ∈ SpecA. If 0 ∈ V (I), then 0 ⊃ I
implies I = 0 implies V (I) = SpecA. Similarly if 0 ∈ V (J) then V (J) = SpecA. Thus SpecA cannot
be written as the disjoint union of two proper closed subsets.

Exercise 3.6.D

Proof. Suppose X is not connected, so X = U ⊔ V with U, V open an nonempty. Then U ∩ V = ∅
by assumption, so X is not irreducible as two nonempty open subsets do not intersect.

Exercise 3.6.E

Proof. Let A = C[x, y]/(y2 − x2). By Exercise 3.2.E, we have SpecC[x, y] consists of principally
generated ideals and the ideals of the form (x − a, y − b). In addition, by Exercise 3.2.I, we have
SpecA ∼= V (y2−x2) = V (y−x)∪V (y+x) as a subspace of SpecC[x, y], with the equality by Exercise
3.4.C. Thus SpecA = {(y − x), (y + x), (x − a, y − a), (x − a, y + a)} where a ∈ C ranges over all
possible values.

To show SpecA is connected, suppose SpecA = V (I) ∪ V (J) and V (J) and V (J) are proper
subsets of SpecA. Notice that if (y + x) and (y − x) are both in V (I), then V (I) = SpecA contrary
to assumption, so by symmetry we assume (y + x) /∈ V (I), so (y − x) ∈ V (I) and (y + x) ∈ V (J).
But (x, y) = (y + x) + (y − x) ⊃ I + J means (x, y) ∈ V (I + J) = V (I) ∩ V (J) by Exercise 3.4.C. We
have shown SpecA cannot be written as the disjoint union of two proper closed subsets, i.e. SpecA
is connected.

To show SpecA is reducible, we will give two nonempty open sets with empty intersection. Let
f = y − x and g = y + x, so (y + x) ∈ D(f) and (y − x) ∈ D(g). But ∅ = D(0) = D(y2 − x2) =
D(fg) = D(f) ∩D(g) by Exercise 3.5.D.

Exercise 3.6.F

Proof. (a) We show I = (wz−xy,wy−x2, xz−y2) is prime by showingK[w, x, y, z]/I ∼= K[a3, a2b, ab2, b3],
a subring of the integral domain K[a, b]. We have a map ϕ : K[w, x, y, z] ↠ K[a3, a2b, ab2, b3]
taking the tuple (w, x, y, z) to the tuple (a3, a2b, ab2, b3). Indeed each generator of I is in the
kernel of ϕ, and if we can show kerϕ = I, we are done. We have f ≡ g mod I where g has mono-
mials indivisible by any of wz,wy, and xz (a vector space basis for K[w, x, y, z]/I consists of
monomials indivisible by those three). A monomial wixjykzl is indivisible by each of wz,wy, xz
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if and only if its not the case that i ≥ 1 and k ≥ 1 or j ≥ 1 and l ≥ 1 or i ≥ 1 and l ≥ 1 if and
only if i = 0 and j = 0 or i = 0 and l = 0 or k = 0 and l = 0, i.e. the set of monomials of the
form ykzl or xjyk or wixj . Then g is a K-linear combination of {ykzl, xjyk, wixj | i, j, k, l ∈ N}.
We will now show that ϕ is injective on these monomials, thus implying g = 0 and then that
f ∈ I. We compute that ϕ(ykzl) = akb2k+3l, ϕ(xjyk) = a2j+kbj+2k, and ϕ(wixj) = a3i+2jbj .

It’s clear ϕ(ykzl) = ϕ(yk
′
zl

′
) implies k = k′ and l = l′, and similarly ϕ(wixj) = ϕ(wi

′
xj

′
) implies

i = i′ and j = j′.

a2j+kbj+2k = a2j
′+k′bj

′+2k′ if and only if 2j+k = 2j′+k′ and j+2k = j′+2k′. These equations
imply j′ = j + 2k − 2k′ which implies 2j + k = 2j + 4k − 4k′ + k′, which is true if and only if
k = k′. Now that k = k′, we see j = j′ as well.

akb2k+3l = a2j
′+k′bj

′+2k′ if and only if k = 2j′ + k′ and 2k + 3l = j′ + 2k′. These equations
imply that 4j′ + 2k′ + 3l = j′ + 2k′, or equivalently 3(j′ + l) = 0, thus j′ = l = 0 and k = k′.

akb2k+3l = a3i
′+2j′bj

′
if and only if k = 3i′ + 2j′ and 2k + 3l = j′. These equations imply that

6i′ + 4j′ + 3l = j′ or equivalently 2i′ + j′ + l = 0, hence i′ = j′ = l = 0 and thus k = 0 as well.

Lastly, a2j+kbj+2k = a3i
′+2j′bj

′
if and only if 2j+k = 3i′+2j′ and j+2k = j′. These equations

imply that 2j + k = 3i′ + 2j + 4k, or equivalently 3(i′ + k) = 0 so i′ = k = 0. Thus j = j′ as
well.

We have now shown that if the images under ϕ of the monomials g is written in are linearly
dependent, they must have had 0 coefficients to begin with. But they all must cancel by
hypothesis that g ∈ kerϕ, so g = 0 as desired.

(b) The matrix (
x0 . . . xn−1

x1 . . . xn

)
has rank at most one if and only if any two columns are scalar multiples of each other, which

is true if and only if the determinant of

(
xi xj
xi+1 xj+1

)
is zero for every 0 ≤ i < j ≤ n − 1, i.e.

hij := xixj+1 − xjxi+1 = 0. We claim the ideal I generated by all hij ’s is prime. We will show
that K[x0, . . . , xn]/I injects into a subring of a domain, thus implying the source is a domain as
desired. We define a morphism of K-algebras ϕ : K[x0, . . . , xn]→ K[a, b] defined by xi 7→ an−ibi

for each 0 ≤ i ≤ n. Indeed, each hij ∈ kerϕ because

ϕ(hij) = ϕ(xi)ϕ(xj+1)− ϕ(xj)ϕ(xi+1) = an−ibian−j−1bj+1 − an−jbjan−i−1bi+1

= a2n−i−j−1bi+j+1 − a2n−i−j−1bi+j+1 = 0.

We now claim that kerϕ ⊂ I, which would then prove I is prime. Fix f ∈ kerϕ, and so there
exists some g such that f ≡ g mod I and that each monomial in g is indivisible by each xixj+1

for 0 ≤ i, j ≤ n− 1. This is allowed because K[x0, . . . , xn]/I is spanned as a K-vector space by
the monomials indivisible by each xixj+1. Our goal is now to show that g = 0, using the fact

that g ∈ kerϕ since I ⊂ kerϕ and f ∈ kerϕ. Notice that a monomial xk00 . . . xknn is indivisible by
xixj+1 for each 0 ≤ i < j ≤ n− 1 only if it’s not true that there are such indices i, j with ki ≥ 1
and kj+1 ≥ 1, or equivalently for every 0 ≤ i < j ≤ n − 1, ki = 0 or kj+1 = 0. Then for every
index 0 ≤ i ≤ n − 1 if ki ̸= 0, we observe that every kj = 0 for j ≥ i + 2. Similarly, for every
index 1 ≤ i ≤ n, if ki ̸= 0 then kj = 0 for every j ≤ i− 2. Therefore g is a K-linear combination

of monomials of the form xαi−1x
β
i x

γ
i+1. Moreover, it cannot be that α, γ ≥ 1 otherwise the

monomial is divisible by xi−1xi+1. Thus g is a K-linear combination of monomials of the form
xjix

k
i+1 with 0 ≤ i ≤ n− 1 and j, k ∈ N. We will now show that ϕ preserves linear independence
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of this set, which would then imply g = 0 as g ∈ kerϕ. Because ϕ takes monomials to monomials
(which are always linearly independent), it suffices to show ϕ is injective on the monomials g
is in. We will achieve this by looking at two cases, one where the index i is the same, and one
where it is different.

Suppose

a(n−i)(j+k)−kbi(j+k)+k = ϕ(xjix
k
i+1) = ϕ(xj

′

i x
k′

i+1) = a(n−i)(j
′+k′)−k′bi(j

′+k′)+k′ ,

or equivalently (n− i)(j + k)− k = (n− i)(j′ + k′)− k′ and i(j + k) + k = i(j′ + k′) + k′. Then
k′ = i(j + k − j′ − k′) + k, so (n − i)(j + k) − k = (n − i)(j′ + k′) − (j + k − j′ − k′) − k, or
equivalently n(j + k) = n(j′ + k′) so j + k = j′ + k′. Substituting back, we see k = k′, which
then implies j = j′.

Suppose

a(n−i)(j+k)−kbi(j+k)+k = ϕ(xjix
k
i+1) = ϕ(xj

′

i′ x
k′

i′+1) = a(n−i
′)(j′+k′)−k′bi

′(j′+k′)+k′ ,

or equivalently (n−i)(j+k)−k = (n−i′)(j′+k′)−k′ and i(j+k)+k = i′(j′+k′)+k′ with i′ > i.
Then k′ = i(j+k)−i′(j′+k′)+k, so (n−i)(j+k)−k = (n−i′)(j′+k′)−i(j+k)+i′(j′+k′)−k,
or equivalently

n(j + k) = n(j′ + k′).

This implies j + k = j′ + k′, so substituting back, we see

k = (i′ − i)(j + k) + k′.

As i′ − i ≥ 1 and j + k ≥ k, we see (i′ − i)(j + k) ≥ k with equality if and only if i′ − i = 1 and
j = 0. As k′ ≥ 0, we get i′ = i + 1 and j = k′ = 0. Then our original monomials are xki+1 and

xj
′

i+1. By our previous work, we get k = j′ as desired.

As mentioned before, this shows g = 0 so f ∈ I.

Exercise 3.6.G

Proof. (a) Suppose {Ui}i∈I is an open cover of SpecA. By Exercise 3.5.A, for each i ∈ I, we may
write Ui =

⋃
j∈Ji D(fij). Then as {D(fij)}i∈I,j∈Ji is an open cover of SpecA by distinguished

open sets, by Exercise 3.5.C, there is a finite subset I ′ ⊂ I such that for each i ∈ I ′, there is
a finite subset J ′

i ⊂ Ji, such that {D(fij)}i∈I′,j∈J′
i
is an open cover of SpecA. We claim that

{Ui}i∈I′ covers SpecA. If we fix x ∈ SpecA, then x ∈ D(fij) for some i ∈ I ′ and j ∈ J ′
i ⊂ Ji.

As
⋃
j∈Ji D(fij) = Ui, we get x ∈ Ui, and thus indeed {Ui}i∈I′ covers SpecA.

(b) Let A = k[x1, x2, . . . ] for a field k, and let m = (x1, x2, . . . ) be the irrelevant ideal. We also
let pn = (x1, x2, . . . , xn) for each positive integer n. We claim the SpecA \ V (pn)’s cover
SpecA \ V (m), all of which are open, i.e. SpecA \

⋂∞
n=1 V (pn) =

⋃∞
n=1 SpecA \ V (pn) =

SpecA \ V (m), which is equivalent to the claim that
⋂∞
n=1 V (pn) = V (m). This is simply

because m =
⋃∞
n=1 pn.

However, we will also show that if J ⊂ N is a finite subset, then
⋃
j∈J SpecA \V (pj) = SpecA \⋂

j∈J V (pj) ̸= SpecA \ V (m), or equivalently
⋂
j∈J V (pj) ̸= V (m). Notice that for each i > j,

V (pi) ⊂ V (pj) because pi ⊃ pj . Therefore if m = max J , we get
⋂
j∈J V (pj) = V (pm). However,

pm ∈ V (pm) and pm ⊊ m implies pm /∈ V (m). Therefore SpecA \ V (m) has an open cover not
admitting a finite subcover.
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Exercise 3.6.H

Proof. (a) Suppose X =
⋃n
i=1Xi, where each Xi is quasicompact, and we have an open cover

{Ui}i∈IUi. Then for each j = 1, . . . , n,

Xj = X ∩Xj =
⋃
i∈I

Xi ∩Xj ,

so there is a finite Ij ⊂ I such that Xj =
⋃
i∈Ij Ui∩Xi. To show the set of all Ui’s for i ∈

⋃n
j=1 Ij

covers X (and the number of such i’s are finite because each Ij is also finite), if we pick any
x ∈ X, then x ∈ Xj for some j = 1, . . . , n, and then x ∈ Ui ∩Xj for some i ∈ Ij .

(b) If Z ⊂ X is closed and X is quasicompact, then let {Z ∩ Ui}i∈I be an open cover of Z (with
the subspace topology). Then {Ui}i∈I ∪ {X \ Z} is an open cover of X, so there is some finite
J ⊂ I such that {Uj}j∈J ∪ {X \ Z} covers X. Then {Uj}j∈J covers Z, hence {Z ∩ Uj}j∈J is a
finite subcover of Z.

Exercise 3.6.I

Proof. On one hand, suppose p ∈ SpecA is a closed point, so there is an ideal I such that {p} = V (I).
Because there is a maximal ideal m containing I, we see m ∈ V (I), and thus p = m so p is maximal.

Conversely, if m ∈ SpecA is maximal, then {m} = V (m) because no prime can contain m other
than itself.

Exercise 3.6.J

Proof. (a) As suggested, we will show that for any f ∈ A \N(A), D(f) contains a maximal ideal.
We notice that Af is a finitely generated k-algebra as well by the map k[x1, . . . , xn+1] ↠ Af
sending xi to ϕ(xi) (where ϕ : k[x1, . . . , xn] ↠ A by hypothesis) for each 1 ≤ i ≤ n, and
xn+1 7→ 1

f . In addition, Af ̸= 0 else 0 = 1 in Af , which would imply that fm = 0, or

equivalently f ∈ N(A) =
⋂

p∈SpecA p by Exercise 3.2.S, i.e. D(f) = ∅. Then there exists a
maximal m ∈ SpecAf ∼= D(f) by Exercise 3.2.N. We will show that m ∩ A ∈ D(f) is maximal,
which would prove the desired result.

Notice that if A ↪→ B ↪→ C is a chain of subrings and A ↪→ C is a module-finite extension,
then B ↪→ C is also a module-finite extension. Then as we have the chain of inclusions k ↪→
A/(m ∩ A) ↪→ Af/m and Af/m is a finite field extension of k by the Nullstellensatz, it follows
that Af/m is a finite A/(m ∩ A)-module, or equivalently A/(m ∩ A) ↪→ Af/m is an integral
extension. By Theorem 5.7 of [2], stating that if A ↪→ B is an integral extension of rings, then
A is a field if and only if B is. We then get that A/(m ∩ A) is a field, i.e. m ∩ A is maximal as
needed.

(b) We will show the k-algebra k[x](x) does not have its closed points dense. By Exercise 3.4.K, we
have Spec k[x](x) = {0, (x)}. Then D(x) = {0}, and 0 is not a closed point by Exercise 3.6.I
since 0 is not maximal. Then 0 ∈ Spec k[x](x) has a neighborhood D(x) with no closed point.

Exercise 3.6.K

Proof. If f ̸= g in A, then f − g ̸= 0, and as N(A) = 0, we have D(f − g) ̸= ∅ (a distinguished open
subset is empty if and only if the element is nilpotent by Exercise 3.2.S). By Exercise 3.6.J(a), there
is a maximal ideal m ∈ D(f − g). Then f − g ̸≡ 0 mod m, so f ̸≡ g mod m, so f and g differ at a
closed point. Note there was no need for the algebraically closed assumption.
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Exercise 3.6.L

Proof. For one direction, assuming q is a specialization of p if and only if q ∈
⋂
V (I)∋p V (I) = {p},

then q ∈ V (p), i.e. q ⊃ p.
Conversely if q ⊃ p, then for any V (I) containing p, we would then see q ⊃ p ⊃ I, hence q ∈ V (I)

as well. Then q ∈
⋂
V (I)∋p V (I) = {p}.

Then q ∈ V (p) if and only if q ⊃ p if and only if q ∈ {p}, hence V (p) = {p}.

Exercise 3.6.M

Proof. By Exercise 3.6.L, it suffices to show (y−x2) is prime. But C[x, y]/(y−x2) ∼= C[x] is a domain
is equivalent to (y − x2) being prime.

Exercise 3.6.N

Proof. Letting q ∈ K be arbitrary, we have K = {p} = {p} ∪ {p}′ where here {p}′ denotes the set of
limit points of {p}, i.e. the set of all elements of X \ {p} whose neighborhoods all contain p. Then
either q = p or every neighborhood of q contains p, and in either event the claim holds.

Now for any q ∈ X \K, as K is closed, X \K is a neighborhood of q not containing p.

Exercise 3.6.O

Proof. Fix p ∈ X, and let I be the set of irreducible subsets of X containing p, partially ordered by
inclusion. If Z1 ⊂ Z2 ⊂ . . . is a chain in I, there is an upper bound in I, namely Z =

⋃
i Zi. This is

irreducible because if we have some closed U, V ⊂ X where U ∩Z ⊊ Z and V ∩Z ⊊ Z, then for large
indices i, U ∩ Zi ⊊ Zi and V ∩ Zi ⊊ Zi because U ∩ Z = U ∩

⋃
i Zi =

⋃
i U ∩ Zi (the same is true

replacing U by V ).
Then we cannot write Z = (U ∩ Z) ∪ (V ∩ Z), else we would get

Zi = Zi ∩ Z = Zi ∩ ((U ∪ V ) ∩ Z) = (U ∩ Zi) ∪ (V ∩ Zi)

for all i, a contradiction to the irreducibility of Zi for large i.
Then Zorn’s Lemma gives an irreducible set Z containing p, maximal in I. Then if Z ′ ⊃ Z and

Z ′ is irreducible, then p ∈ Z ⊂ Z ′ implies Z ′ ∈ I so by maximality Z ′ = Z. Thus Z is a maximal
irreducible subset that also contains p, i.e. an irreducible component containing p.

Exercise 3.6.P

Proof. By the Hilbert Basis theorem 3.6.17, C[x, y] is a Noetherian ring. Then by Exercise 3.6.T we
get that A2

C is a Noetherian topological space.
However, C2 with the classical topology is not Noetherian because for each n ∈ N, Sn = {(z, 0) ∈

C2 | z ∈ N≥n} is closed since for any (z1, z2) ∈ C2 \ Sn, if z2 ̸= 0 we take B|z2|(z1, z2) which does not
even intersect C× {0}, and if z2 = 0, then z1 /∈ N≥n, in which case we may find the integer m closest
to z1, and then B|z1−m|(z1, 0) does not even intersect Z× {0}. Then we have

S1 ⊋ S2 ⊋ S3 ⊋ . . . ,

showing C2 is not Noetherian.
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Exercise 3.6.Q

Proof. (i) To show that every connected component of a topological space X is the union of irre-
ducible components of X, we first recall Remark 3.6.13, which says that connected components
are closed. Thus closed subsets of a connected component C of X are just closed subsets of
X contained in C. Now by Exercise 3.6.O, we can write C =

⋃
i Zi where each Zi ⊂ C is an

irreducible component of C. We will now show that each Zi is actually an irreducible component
of X.

For any fixed index i, suppose Zi = U ∪ V where U and V are closed subsets of X. It follows
that U and V are closed subsets of C, and thus by irreduciblility of Zi in C, we get U = Zi
or V = Zi, so Zi is an irreducible closed subset of X. Now suppose we have some irreducible
component Z of X containing Zi. Supposing for a contradiction that Zi ⊊ Z, then we see
Z ̸⊂ C, else we would contradict maximality of Zi in C. Then Z ∪ C must be disconnected
because C is a connected component, so Z ∪C = (U ∩ (Z ∪C)) ⊔ (V ∩ (Z ∪C)) for some open
U, V in X with U ∩ (Z ∪ C) ̸= ∅ and V ∩ (Z ∪ C) ̸= ∅. In other words, Z ∪ C ⊂ U ∪ V and
U ∩ V ⊂ X \ (Z ∪C). In particular, Z ⊂ U ∪ V and U ∩ V ⊂ X \Z. Hence U ∩Z ̸= ∅ because
otherwise we would have Z ∪ C = (U ∩ C) ⊔ (V ∩ (Z ∪ C)), so by intersecting each side with
C, we have C = (U ∩ C) ⊔ (V ∩ C) and U ∩ C ̸= ∅ implies that V ∩ C = ∅ by connectedness
of C. However, having U and V cover Z ∪C and being disjoint on Z ∪C is impossible because
∅ ̸= Zi ⊂ Z ∩ C, and so for an element x ∈ Zi, we get x ∈ U or x ∈ V , but then as x ∈ Z ∩ C,
we get U ∩ Z ̸= ∅ or V ∩ C ̸= ∅, a contradiction. Similarly, it must be that V ∩ Z ̸= ∅. But
then we have Z = (U ∩Z)⊔ (V ∩Z) with each side nonempty, which contradicts Exercise 3.6.D.

We have now proven that Zi = Z, so Zi is indeed an irreducible component of X, which gives
the result since the index i was arbitrary.

(ii) Now suppose U is simultaneously closed and open in X. For each p ∈ X, there is a connected
component Zp of X containing p. Then U ⊂

⋃
p∈U Zp. For fixed p ∈ U , Zp ∩ U is an open

subset of Zp. In addition, Zp ∩ (X \U) is an open subset of Zp (because p /∈ X \U but p ∈ Zp).
But now we see that

(Zp ∩ U) ∪ (Zp ∩ (X \ U)) = Zp

and
(Zp ∩ U) ∩ (Zp ∩ (X \ U)) = ∅,

so as
Zp = (Zp ∩ U) ⊔ (Zp ∩X \ U),

either Zp ∩ U = ∅ or Zp ∩ X \ U = ∅ by connectedness of Zp. But p ∈ Zp ∩ U implies
that the latter intersection is empty, or equivalently Zp ⊂ U . As p ∈ U was arbitrary, we get
U =

⋃
p∈U Zp.

(iii) Now suppose X is a Noetherian topological space. Each connected component of X can be
written uniquely as a finite union of irreducible subsets of X contained in the connected compo-
nent by Proposition 3.6.15 and (i), and as X has only finitely many irreducible components by
the same proposition, it follows that X only has finitely many connected components because
distinct connected components are disjoint. Then X =

∐n
i=1 Zi where each Zi is a connected

component of X (and hence closed). Thus any union of connected components is both open
and closed (a finite union of closed subsets whose complement is also a finite union of closed
subsets).

Exercise 3.6.R

Proof. Immediate by Exercise 3.6.S.
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Exercise 3.6.S

Proof. First suppose the ascending chain condition fails, so there is an infinite ascending chain I1 ⊊
I2 ⊊ . . . of ideals in A. Then I =

⋃∞
n=1 In cannot be finitely generated; otherwise I = (f1, . . . , fk) for

some f1, . . . , fk ∈ A. Moreover, there exists some m ∈ N such that each fj ∈ Im because each fi is in
I =

⋃∞
n=1 In. Then for each n ≥ m, we have

In ⊃ Im ⊃ (f1, . . . , fk) =

∞⋃
l=1

Il ⊃ In

so In = Im, and thus the chain becomes stationary past m. This is a contradiction, so I is not finitely
generated.

Conversely, if there is an ideal I of A that is not finitely generated, we inductively define f1 = 0,
and for n ∈ N, letting In = (f1, . . . , fn), pick fn+1 ∈ I \ In (such an element must always exist
otherwise we get a finite generating set for I, which is impossible by assumption). Then we have
constructed an infinite ascending chain

I1 ⊊ I2 ⊊ . . . ,

demonstrating the ascending chain condition on ideals fails.

Exercise 3.6.T

Proof. By Exercise 3.4.B, we may take

V (I1) ⊃ V (I2) ⊃ . . .

to be an arbitrary descending chain of closed subsets in SpecA where each In is an ideal of A. For
arbitrary ideal I, J of A, Exercise 3.4.F tells us that

√
I =

⋂
p⊃I p, so we see V (I) ⊂ V (J) if and

only if
√
I ⊃

√
J . The forward direction is clear since the set of primes being intersected for

√
I is

contained in the set of primes being intersected for
√
J . For the backward direction, assume we have

some p ∈ V (I) and that
√
I ⊃
√
J . Then

p ⊃
√
I ⊃
√
J ⊃ J

so p ∈ V (J) as well. Then we have an infinite ascending chain√
I1 ⊂

√
I2 ⊂ . . .

of ideals in A, which by hypothesis stabilizes at some m ∈ N. Then for every k ≥ m,
√
Im =

√
Ik

implies that V (Im) = V (Ik), so the chain of closed sets stabilizes at m.
For a ring A with SpecA not a Noetherian space, we let A = k[x1, x2, . . . ] for k a field. Then

SpecA contains the descending chain

V (x1) ⊋ V (x1, x2) ⊋ V (x1, x2, x3) ⊋ . . .

where V (x1, . . . , xn) ⊋ V (x1, . . . , xn+1) because both (x1, . . . , xn) and (x1, . . . , xn+1) are prime (and
hence primary), we see (x1, . . . , xn) ⊊ (x1, . . . , xn+1) implies V (x1, . . . , xn) ⊋ V (x1, . . . , xn+1).

Exercise 3.6.U

Proof. Suppose X is a topological space and A ⊂ X is any subspace. We will show that if A is not
Noetherian, then neither is X. By assumption, there exists an infinite descending chain A ∩ Z1 ⊋
A ∩ Z2 ⊋ . . . where each Zi is closed in X. Then for each n ∈ N,

n+1⋂
i=1

Zi ⊊
n⋂
i=1

Zi,
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where containment is clear, and the containment must be proper else we would see that

A ∩ Zn+1 =

n+1⋂
i=1

A ∩ Zi = A ∩
n+1⋂
i=1

Zi = A ∩
n⋂
i=1

Zi =

n⋂
i=1

A ∩ Zi = A ∩ Zn,

contradicting our assumptions. Then we have an infinite descending chain

Z1 ⊋ Z1 ∩ Z2 ⊋ Z1 ∩ Z2 ∩ Z3 ⊋ . . .

of closed sets in X.

Exercise 3.6.V

Proof. The equivalence of the ascending chain condition on submodules and every submodule being
finitely generated is a direct generalization of Exercise 3.6.S by replacing “ideal” by “submodule” and
the elements fi ∈ A instead by elements in the A-module M .

Exercise 3.6.W

Proof. Suppose
0→M ′ →M →M ′′ → 0

is an exact sequence of A-modules (and we will take M ′ ⊂ M and M ′′ = M/M ′ by the first isomor-
phism theorem). Given an ascending chain of submodules M1 ⊂ M2 ⊂ . . . of M , we get two more
chains

M1 ∩M ′ ⊂M2 ∩M ′ ⊂ . . .

and
M1 +M ′ ⊂M2 +M ′ ⊂ . . .

of submodules of M ′ and M ′′ respectively. Then assuming M ′ and M ′′ are both Noetherian A-
modules, there is some m ∈ N such that both chains have stabilized at m. In addition, we have a
short exact sequence in ComA :

...
...

...

0 Mi ∩M ′ Mi Mi +M ′ 0

0 Mi+1 ∩M ′ Mi+1 Mi+1 +M ′ 0

...
...

...

where commutativity of the left square is because each map is simply an inclusion, and each path of
the right square sends an element m ∈Mi to m+M ′. Then for n ≥ m, the below diagram commutes
and is exact on the horizontals:

0 Mm ∩M ′ Mm Mm +M ′ 0

0 Mn ∩M ′ Mn Mn +M ′ 0.

id id
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By the five lemma, we see that Mm → Mn is also an isomorphism, and being an inclusion, it is the
identity. Thus the original chain M1 ⊂M2 ⊂ . . . stabilizes at m.

Conversely, since submodules of M ′ are submodules of M and submodules of M ′′ correspond to
submodules ofM containingM ′ by the lattice isomorphism theorem, it’s clear that ifM is Noetherian
than so too are M ′ and M ′′.

Exercise 3.6.X

Proof. We will show that if M and N are Noetherian A-modules, than M ⊕N is also a Noetherian
A-module. We get a short exact sequence

0→M ⊕ 0→M ⊕N → 0⊕N → 0,

and immediately notice that M ⊕ 0 and 0 ⊕ N are both Noetherian, being isomorphic to M and N
respectively. Then by Exercise 3.6.W, we get that M ⊕N is also Noetherian.

By induction, any finite direct sum of Noetherian modules is Noetherian, and because a ring A
is a Noetherian A-module if and only if A is a Noetherian ring, we immediately get that A⊕n is
Noetherian.

Exercise 3.6.Y

Proof. Suppose A is a Noetherian ring andM is finitely generated by f1, . . . , fn as an A-module. Given
an ascending chain M1 ⊂M2 ⊂ . . . of submodules of M , for each index k we let Ik = {a1⊕· · ·⊕an ∈
A⊕n | a1f1 + · · · + anfn ∈ Mk}. Each Ik is a submodule of A⊕n, and we also notice that for any
m ≥ k, Im ⊃ Ik. Thus the ascending chain of ideals

I1 ⊂ I2 ⊂ . . .

stabilizes at some m ∈ N because A⊕n is a Noetherian A-module by Exercise 3.6.X. Thus for indices
k ≥ m, we take

∑n
i=1 aifi ∈Mk to be an arbitrary element because every element ofM (and thus any

of theMi’s) can be written as an A-linear combination of the fi’s. Then a1⊕· · ·⊕an ∈ Ik = Im, so by
definition of Im we get

∑n
i=1 aifi ∈ Mm as well, thus showing Mk = Mm so the chain has stabilized

at m.

Section 3.7

Exercise 3.7.A

Proof. We claim I(S) = (y) ∩ (x, y − 1) = (xy, y2 − y). It’s clear that ⊃ holds, so our job is to show
⊂. Thinking of elements of k[x, y] as elements of k[x][y], we take an arbitrary element

m∑
i=0

Pi(x)y
i + (y − 1)

n∑
j=0

Qj(x)y
j =

m∑
i=0

(
Piy

i
)
+Qny

n+1 +

n−1∑
j=0

(
(Qj −Qj+1)y

j+1
)
−Q0

of (x, y− 1) (so each Pi is divisible by x), and furthermore assume that this element is divisible by y,
i.e. that P0 = Q0 so there are no monomials appearing without y. As x | P0, we see x | Q0 as well.
We may now rewrite our element as

m∑
i=1

(Piy
i)+Qny

n+1+

n−1∑
j=0

(Qj−Qj+1)y
j+1 =

m∑
i=1

(Piy
i)+Qny

n+1+

n−1∑
j=1

(
(Qj −Qj+1)y

j+1
)
−Q1y+Q0y.

We notice that xy |
∑m
i=1 Piy

i, and xy | Q0y as well. Lastly,

Qny
n+1 +

n−1∑
j=1

(
(Qj −Qj+1)y

j+1
)
−Q1y = (y2 − y)

n−1∑
j=0

Qj+1y
j ,
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showing our arbitrary element is in (xy, y2 − y).

Exercise 3.7.B

Proof. We claim I(S) = (x, y) ∩ (x, z) ∩ (y, z) = (xy, xz, yz), where ⊃ is clear. We take

n∑
l=0

∑
i+j+k=l

aijkx
iyjzk

to be an element of (x, y) ∩ (x, z) ∩ (y, z). It must then be that

n∑
i=0

ai00x
i = 0

i.e. each ai00 = 0 by considering our element mod (y, z). Similarly each a0j0 = 0 and each a00k = 0
by considering our element mod (x, z) and (x, y) respectively. For each 0 ≤ l ≤ n, let φl denote the
set of all nonnegative integers i, j, k with i + j + k = l, not j = k = 0 and not i = k = 0 and not
i = j = 0. Then we can rewrite our element as

n∑
l=0

∑
φl

aijkx
iyjzk.

For any l and any i, j, k ∈ φl, we notice that if i ̸= 0, then also j ̸= 0 or k ̸= 0, so xiyjzk is divisible
by either xy or xz. If i = 0, then j ̸= 0 and k ̸= 0, so yz | xiyjzk. Then as each term of our element
is in the ideal (xy, xz, yz), our entire element is in the ideal.

Exercise 3.7.C

Proof. For a subset S ⊂ SpecA, we want to show V (I(S)) = S̄ = S ∪S′ =
⋂
V (I)⊃S V (I), where S′ is

the set of limit points of S in SpecA. If p /∈ V (I(S)), i.e. p ̸⊃
⋂

q∈S q, then clearly p /∈ S, and there
exists some f ∈

⋂
q∈S q \ p. We then see D(f) does not intersect S, but simultaneously p ∈ D(f), so

p is not a limit point for S either. Thus p /∈ S̄.
Conversely, if p /∈ S̄, then there is some V (I) ⊃ S with p /∈ V (I). Then for each q ∈ S, we have

q ⊃ I implies that I(S) ⊃ I as well. Because V (·) is inclusion reversing, we then have

V (I(S)) ⊂ V (I),

and as p /∈ V (I), we get p /∈ V (I(S)).

Exercise 3.7.D

Proof. Exercise 3.4.J tells us that f ∈
√
J if and only if f ∈

⋂
p⊃J p, or equivalently f ∈ I(V (J)).

Exercise 3.7.E

Proof. Notice that J = (x2+y2−1, y−1) = (x2, y−1) since y2−1 = (y+1)(y−1). Thus x /∈ J (else
J would be the maximal ideal (x, y− 1), but k[x, y]/(x2, y− 1) ∼= k[x]/(x2) is not even a domain), but
x ∈ I(V (J)) because I(V (J)) =

√
J by Exercise 3.7.D, and x2 ∈ J means x ∈

√
J .
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Exercise 3.7.F

Proof. Exercises 3.7.C and 3.7.D tell us that V (I(S)) = S̄ and I(V (J)) =
√
J , we know prime ideals

are radical, and Theorem 3.7.1 tells us that V (·) and I(·) are inclusion reversing bijections between
closed subsets of SpecA and radical ideals of A. Thus it suffices to show that V (·) takes prime ideals
of A to irreducible closed subsets of SpecA, and that I(·) takes irreducible closed subsets of SpecA
to prime ideals of A.

Let S ⊂ SpecA be any subspace. If I(S) is not prime, there are primes p, q ∈ S and some f /∈ p
and g /∈ q with fg ∈ I(S). But then we have nonempty open subsets D(f) ∩ S and D(g) ∩ S with
D(f) ∩D(g) ∩ S = D(fg) ∩ S = ∅ (the second equality is by Exercise 3.5.D). Having two nonempty
open subsets that do not intersect means S is reducible by 3.6.4. Thus I(·) takes irreducible closed
subsets of SpecA to prime ideals.

Now suppose V (J) is reducible, so there exist f, g ∈ A with D(f) ∩ V (J) and D(g) ∩ V (J) both
nonempty, and D(fg) ∩ V (J) = ∅. The last condition is equivalent to the statement that fg ∈

√
J

by Exercise 3.4.F. Then J cannot be prime, else J =
√
J , and then fg ∈ J means f ∈ J or g ∈ J

by primeness, which contradicts that D(f) ∩ V (J) and D(g) ∩ V (J) are nonempty. Thus V (·) takes
prime ideals to irreducible sets, and it’s clear V (·) takes prime ideals to closed subsets.

Because prime ideals are by definition the points of SpecA, we get a bijection between points of
SpecA and irreducible closed subsets of SpecA. For any point p ∈ SpecA, we have I({p}) = p, and
thus V (p) = {p} is the described bijection.

Exercise 3.7.G

Proof. Given an irreducible component S ⊂ SpecA, then I(S) must be a minimal prime. To see this,
if q ⊂ I(S) (q ∈ SpecA), then S = S̄ = V (I(S)) ⊂ V (q) by Exercise 3.7.C, and V (q) is an irreducible
closed subset by Exercise 3.7.F. Then by maximality of S amongst the irreducible subsets, we see that
S = V (q). By applying the inverse I(·) to both sides, we get I(S) = q, so indeed I(S) is a minimal
prime.

Conversely if q ∈ SpecA is a minimal prime, then V (p) is an irreducible closed subset. To see this,
if S is an irreducible subset of SpecA containing V (p), then S̄ is also irreducible by Exercise 3.6.B,
and then by the bijection described in Exercise 3.7.F, we get

I(S̄) ⊂ I(S) ⊂ I(V (p)) = p

implies by minimality of p that I(S̄) = p. Then applying the inverse V (·), we get S̄ = V (p), so

V (p) ⊂ S ⊂ S̄ = V (p)

shows V (p) = S, so indeed V (p) is maximal amongst irreducible subsets, and is thus an irreducible
component.

Exercise 3.7.H

Proof. By Exercise 3.7.G, we equivalently need to show that the minimal primes ofA = k[x1, . . . , xn]/(f)
are the irreducible factors of f . Letting f1, . . . , fm be the distinct irreducible factors of f . In a
UFD (such as k[x1, . . . , xn], irreducible elements are the same thing as prime elements. Because
SpecA/f ∼= V (f) ⊂ Ank , any prime p ∈ SpecA/f must contain at least one fi (because f =

∏
i fi ∈ p,

and p is prime). Now if we have some p ∈ V (f) contained in some (fi), i.e. we have the chain
(f) ⊂ p ⊂ (fi) in k[x1, . . . , xn]. If fi /∈ p, then fj ∈ p for some j ̸= i, so then we get the chain

(f) ⊂ (fj) ⊂ p ⊂ (fi)

thus implying fi | fj , contradicting that fi and fj are distinct irreducible factors. Thus indeed fi ∈ p,
so p = (fi), proving each (fi) is a minimal prime.
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An if p ∈ V (f) is a minimal prime, as we noticed earlier, there is some fi ∈ p, so (fi) ⊂ p implies
by minimality that p = (fi).

Thus we have show the minimal primes of A/f are exactly the irreducible factors of f , and remark
that the only important feature of k[x1, . . . , xn] is that it is a UFD.

Exercise 3.7.I

Proof. By the proof of Exercise 3.7.H, the minimal primes of k[x, y]/(xy) are the irreducible factors
of xy, being (x) and (y).

Chapter 4

Section 4.1

Exercise 4.1.A

Proof. By Exercise 3.5.E, we have that D(f) ⊂ D(g) if and only if f ∈
√

(g) if and only if g is a unit
in Af . Then for the map Af → O(D(f)), we let S be the set of elements of A that are units in Af ,
which is also the same as the set of all elements g such that D(f) ⊂ D(g) by the exercise. Then by
definition, we have O(D(f)) = S−1A, so we wish to show Af ∼= S−1A. We have a natural candidate,
a
fn 7→ a

fn . This map is injective because a
fn is 0 in S−1A if and only if there is some unit g ∈ Af

that annihilates a. Then either Af = 0 (or equivalently f is nilpotent, so D(f) = ∅) in which case
O(∅) = 0, so we have an isomorphism, or necessarily a = 0 in Af . This shows injectivity.

For surjectivity, fix a
g with g−1 ∈ Af . Then ag−1 = a

g in S−1A, so ag−1 7→ a
g as needed.

Exercise 4.1.B

Proof. Suppose SpecAf ∼= D(f) =
⋃
iD(fi), or equivalently by Exercise 3.5.B, there is a finite subset

f1, . . . , fn of these fi’s that generate Af , or equivalently
⋃n
i=1D(fi) = SpecAf ∼= D(f). Suppose

we are given s
fn ∈ Af = O(D(f)) that vanishes upon restriction to each Afi = O(D(fi)). To show

s
fn = 0, we notice that there is some large m ∈ N with fmi s = 0 for each i = 1, . . . , n. In addition,

fm1 , . . . , f
m
n generate Af since SpecAf =

⋃n
i=1D(fi) =

⋃n
i=1D(fmi ), so we apply Exercise 3.5.B,

again. Thus there exists r1, . . . , rn ∈ Af with
∑n
i=1 rif

m
i = 1. But then

s =

(
n∑
i=1

rif
m
i

)
s =

n∑
i=1

ri(f
m
i s) = 0.

Exercise 4.1.C

Proof. Suppose
⋃
iD(fi) = D(f) ∼= SpecAf , and suppose further that we are given elements in each

Afi that agree on the overlaps Afifj . Assume first that the index set is finite, say {1, . . . , n}. Then

we have elements ai
gi
∈ Afi where gi = f lii , agreeing on overlaps Afifj , and we may consider each ai

gi

as an element of Agi . The assumption that ai
gi

and
aj
gj

agree on Agigj means that for some mij ∈ N,

(gigj)
mij (gjai − giaj) = 0

in A. By letting m be the maximum of the mij ’s (allowed because the index set is assumed to be
finite), we have

(gigj)
m(gjai − giaj) = 0
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for each i, j. We now let bi = aig
m
i and hi = gm+1

i (so D(hi) = D(gi)). Then on each D(hi), we have
a function bi

hi
, and the overlap condition now is that hjbi = hibj . Because

⋃
iD(hi) =

⋃
iD(fi) =

SpecAf , by Exercise 3.5.B, there are some ri’s in Af such that 1 =
∑n
i=1 rihi. Now the overlap

condition hjbi = hibj gives that if we define r =
∑n
i=1 ribi, then

rhj =

n∑
i=1

ribihj =

n∑
i=1

rihibj = bj ,

so indeed r restricts to
bj
hj

for each j = 1, . . . , n.

For the case where the index set is infinite, we are able to choose a finite generating set f1, . . . , fn
for Af by quasi-compactness of SpecAf , and again let r =

∑n
i=1 ribi as before. Then for any index z

not in {1, . . . , n}, we claim that r restricts to az
f lz
z

in Afz . Then because {1, . . . , n, z} is again finite, we

do the same process and obtain an r′ ∈ Af which restricts to ai
f
li
i

for each i = 1, . . . , n, z. By identity

(proven in Exercise 4.1.B), we see r = r′, and the claim follows.

Exercise 4.1.D

Proof. SupposeD(f) =
⋃
i∈I D(fi), so there exists a finite {1, . . . , n} ⊂ I such that f1, . . . , fn generate

Af (by quasi-compactness and again Exercise 3.5.B ).

For identity, suppose we are given s
fn ∈ Mf = M̃(D(f)) such that s

fn |D(fi) = 0 for each i ∈
{1, . . . , n}. To show s

fn = 0, we notice that we have a large m ∈ N with fmi s = 0 for each such i.

Now because SpecAf =
⋃n
i=1D(fi) =

⋃n
i=1D(fmi ), we see that also fm1 , . . . , f

m
n generate Af , so there

exists some ri’s in Af with
∑n
i=1 rif

m
i = 1. Then

s = (

n∑
i=1

rif
m
i )s =

n∑
i=1

ri(f
m
i s) = 0.

For gluability, suppose we are given elements in each Mfi that agree on Mfifj . First, we suppose

that I = {1, . . . , n} is finite, and so we have elements mi

gi
∈ Mfi where gi = f lii , agreeing on overlaps

Mfifj . We now consider mi

gi
as an element of Mgi . Then mi

gi
and

mj

gj
agree on Mgigj means that for

some mij ∈ N,
(gigj)

mij (gjmi − gimj) = 0

in M . Letting m be the maximum of these mij ’s (allowed because I is finite), we have

(gigj)
m(gjmi − gimj) = 0.

Letting bi = gmi mi and hi = gm+1
i , we notice D(hi) = D(gi). Then on each D(hi), we have a section

bi
hi
, and the overlap condition is now hjbi = hibj . Now

⋃
iD(hi) = Af implies that there are some

ri’s in Af with

1 =

n∑
i=1

rihi.

Defining r =
∑n
i=1 ribi, we notice

rhj =

n∑
i=1

rihjbi =

n∑
i=1

rihibj = bj

by the overlap condition, so r restricts to
bj
hj

for each j ∈ I.
For the case where I is infinite, we again let (f1, . . . , fn) generate Af with {1, . . . , n} ⊂ I by

quasi-compactness, and define r =
∑n
i=1 ribi as before. Then for any index z ∈ I \ {1, . . . , n}, we
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want to show that r|D(fz) =
mz

f lz
z
. Because {1, . . . , n, z} is also finite, we obtain some r′ which has the

desired property. By identity, we get that r = r′, which gives the result.
Now that M̃ is a sheaf on the distinguished base of SpecA, we want to show that it is also a

OSpecA-module. It suffices to show this on the distinguished base, for the sheaves on SpecA are
defined in the natural way by the action on compatible germs. We can see this because Exercise 4.1.E
gives that M̃p

∼=Mp. Therefore

M̃(U) = {(mp ∈Mp) | ∀p ∈ U,∃f ∈ A with p ∈ D(f) ⊂ U and ∃s ∈Mf such that sq = fq∀q ∈ D(f)},

i.e. just the compatible germs. Then (fp)p∈U · (mp)p∈U = (fpmp)p∈U is the action, and indeed the
below diagram commutes

(fp)p∈U × (mp)p∈U (fpmp)p∈U

(fp)p∈V × (mp)p∈V (fpmp)p∈V

as needed. That the action is O(U)-linear is easy to see.

Exercise 4.1.E

Proof. To show M̃p
∼= Mp, we will show Mp satisfies the universal property of M̃p. Notice that

M̃p = colimU∋p M̃(U) = colimD(f)∋p = colimf /∈pMf = Mp. The last equality comes from the fact
that

Mp

Mf Mg

commutes, and if

N

Mf Mg

ϕf ϕg

commutes, i.e. N satisfies the same commutative diagram that defines colimf /∈pMf , then we define
φ : Mp → N by m

a 7→ ϕa(
m
a ). Indeed, this is required by the condition that the below diagram must

commute

N

Mp

Mf

φ

ϕf

which proves uniqueness. To show this map is a module morphism, we check explicitly

φ(
m1

f
− m2

g
) = φ(

gm1 − fm2

fg
) = ϕfg(

gm1 − fm2

fg
) = ϕfg(

gm1

fg
)− ϕfg(

fm2

fg
)

= ϕf (
m1

f
)− ϕg(

m2

g
) = φ(

m1

f
)− φ(m2

g
)
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and also that
φ(a

m

f
) = ϕf (

am

f
) = aϕf (

m

f
) = aφ(

m

f
).

Exercise 4.1.F

Proof. (a) Letm ∈M be an arbitrary nonzero element. We want to show that there is some p ∈ SpecA
such that m ̸= 0 in Mp, i.e. for all x /∈ p, xm ̸= 0. Notice that Ann(m) is a proper ideal (since
1 ·m = m ̸= 0), so there is some maximal m ∈ SpecA with Ann(m) ⊂ m, i.e. ∅ = mc ∩ Ann(m).
This gives the result, for then there is at least one component of

∏
p∈SpecAMp with the image of m

not zero, so the kernel is trivial.
(b) Exercise 2.4.A says for a sheaf F , F (U) ↪→

∏
p∈U Fp. Then by Exercise 4.1.E, we have M̃p

∼=Mp,
so

M̃(SpecA) =M ↪→
∏

p∈SpecA

M̃p =
∏

p∈SpecA

Mp.

Lemma 4.1. If A is a full subcategory of B and B is equivalent to C (i.e. there exists a fully faithful
and essentially surjective functor F : B → C ), then F (A ) is a full subcategory of C , equivalent to A.

Proof. It’s clear that F (A ) ≃ A since F is assumed to be fully faithful so its restrictions retain
that property, and is surjective by construction. We use the fact that an equivalence of categories is
the same as the existence of a fully faithful and essentially surjective functor (a surjective functor is
essentially surjective). Then if ϕ : F (X) → F (Y ) is a morphism in C and where X,Y ∈ B, we get
a unique morphism φ : X → Y in B such that F (φ) = ϕ. Because A is a full subcategory of B, ϕ
is also a morphism of A . Thus F (ϕ) : F (X) → F (Y ) is equal to ϕ, and shows ϕ is a morphism in
F (A ).

Exercise 4.1.G

Proof. By Remark 2.5.3, the category of sheaves on a base is equivalent to the category of sheaves
on the whole space. Therefore it suffices by Lemma 4.1 to work over the category of sheaves on the
distinguished base. On one hand, if we’re given a map φ : M → N , for any f ∈ A, we get a map
φ̃(D(f)) :Mf → Nf given by the localization functor so the following diagram commutes:

M N

Mf Nf

φ

φ̃(D(f))

Moreover, if D(f) ⊂ D(g) (i.e. g ∈ A×
f by Exercise 3.5.E ), the below diagram commutes:

Mg Ng

Mf Nf .

φ̃(D(g)

φ̃(D(f))

To see this commutativity explicitly, φ̃(D(f))( mfn ) = φ(m)
fn , and by g ∈ A×

f we have that 1
g = a

fn

for some n ∈ Z+ and a ∈ A, so that under the vertical maps anything of the form m
gk

is sent to
akm
fnk . Now commutativity is easy by A-linearity of φ and by our constructions. Therefore we get

a map Hom(M,N) → Hom(M̃, Ñ) given by φ 7→ φ̃. Since M(SpecA) = M(D(1)) = M1 = M ,

any map ψ : M̃ → Ñ already encodes the data of a map ψ(SpecA) : M → N , which gives a
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map Hom(M̃, Ñ) → Hom(M,N). We will now show these maps are inverses to each other. For any

ψ : M̃ → Ñ , we want to show ˜ψ(SpecA) = ψ. We check

˜ψ(SpecA)(D(f))(
m

fn
) =

ψ(SpecA)(m)

fn
=
ψ(D(f))(m)

fn
= ψ(D(f))(

m

fn
)

where the last equality is by Af -linearity of ψ(D(f)) and the middle equality is because ψ is a map
of sheaves, and thus commutes with the restriction from SpecA to D(f).

On the other hand, if φ :M → N is a morphism, we want to show φ̃(SpecA) = φ. This is easy to
see by our construction of φ̃ and that SpecA = D(1).

Section 4.2

There are no exercises in this section.
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