Solutions to “The Rising Sea”

Jack Westbrook
July 31, 2025

The exercises in this document are taken from the February 21, 2024 draft of Ravi Vakil’s “The
Rising Sea”. You can access the draft |herel

Preliminary Results

Results in Arbitrary Categories
Lemma 0.1. If f : A — B, the inclusion map ¢ : ker f — A is monic.

Proof. If g1, 92 : C — ker f are such that ¢ o g; = ¢ 0 go, then the following diagram commutes:

2 e

ker f —+— A
r/7
a
L ioge

D

Log1

We immediately notice both g; and gy satisfy the unique arrow because to gy = t0¢g;. By uniqueness,
g1 = g2- O

Lemma 0.2. If f: A — B, the projection w: B — cok f is epic.

Proof. Suppose g1, go : cok f — C are such that g; om = gyom. Then the following diagram commutes:

We notice immediately that g; and g5 satisfy the unique arrow because goom = g1 o, so by uniqueness
g1 = g2- O

Lemma 0.3. If h =go f and h is epic, then g is epic.
Proof. Suppose ¢ o g = ¢ o g. Then it’s also true that
pogof=pogof

which by definition implies
poh=ypoh

Because h is epic, ¢ = ¢ as desired. O
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Lemma 0.4. If h = go f and h is monic, then f is monic.

Proof. If fo¢ = f o, then
gofop=gofop

which means by definition
hop=hoy

Because h is monic, then ¢ = ¢ as desired. O
Lemma 0.5. If A ENy; FEN C, then ker(go f) = ker f.

Proof. If ker f <% A is the inclusion, it follows that the following diagram commutes:

C
;VQﬂ
If there is a morphism h : D — A such that go f o h = 0, then we notice

gofoh=0=go0

which implies, by g being monic, that f o h = 0. Then we obtain a unique induced morphism from
the following diagram:

Pt

ker f —*— A

Thus, in particular, the following diagram commutes as well:

2

ker f —+— A

e
D "
O
Corollary 0.5.1. If A ENy; LN C, then coim(g o f) = coim f.
Proof. ker(go f) = ker f, thus
coim(g o f) = cokker(g o f) = cokker f = coim f
O

Lemma 0.6. If A —f» B C, then cok(go f) = cokg.

Proof. It C 5 cok g is the projection,



ALC

commutes because wo g = 0. If we have some p : C' — D such that po go f = 0, we notice
pogof=0=00f

which implies, by f being epic, that po g = 0. Thus the following commutes:

In particular, we have the following unique morphism from the above diagram such that the following
diagram commutes:

O
Corollary 0.6.1. If A-» B % C, then im(g o f) = img.
Proof. cok(g o f) = cok f, thus
im(g o f) = kercok(go f) = kercokg =img
O

Lemma 0.7. Ifkerg A <i> B 2 C such that f o ¢ is the inclusion
t:kerg < B, then ker(go f) =kerg.

Proof. We have the following diagram commutes:

2

kerg —2— A

because
gofop=gor=0
Now if there exists some morphism h : D — A such that go f o h =0, then



If ¢ is the induced morphism, then

fopod=10p=foh

Because f is monic, we get that ¢ o ¢ = h so that the following diagram commutes:

2

kerg —— A

¢
D i
O
Lemma 0.8. If A LBY C, then there is a canonical monomorphism ker f — ker(g o f).
Proof. The canonical morphism is the one induced in the following commutative diagram:
C
0
/gOfT
ker(g o f) LI
where go foj=go0 =0, and the induced morphism is monic by Lemma O
Lemma 0.9. If A ENY;IEN C, then there is a canonical epimorphism cok(g o f) — cokg.
Proof. The canonical morphism is the one induced in the following commutative diagram:
cok g
cok(g o )
AT Lo
where gogo f =00 f =0, and the induced morphism is epic by Lemma O

Lemma 0.10. IfIf A ENY; N C, then there is a canonical monomorphism im(go f) < img

Proof. Using the same notation as was used in the Lemmas referenced, by Lemma we get a
morphism ¢’ : cok(g o f) — cokg such that ¢ = ¢’ o p. Then by Lemma we get the desired
morphism 7’ : ker p < ker ¢ such that i’ =io0¢’. O



Results in Abelian Categories

Lemma 0.11. If.: A — B, then ¢ is monic if and only if im. = A.

Proof. The forward direction is by definition of an Abelian Category. For the reverse direction, suppose
im¢ = A. Then ¢ is a kernel of its cokernel, and by Lemma [0.I] we obtain that ¢ is monic. O

Lemma 0.12. If7: A — B, then 7 is epic if and only if coomm = B.

Proof. The forward direction is by definition of an Abelian Category. For the reverse direction, suppose
coimm = B. Then 7 is a cokernel of its kernel, and by Lemma [0.2| we obtain that 7 is epic. O

Lemma 0.13. If a morphism [ : A — B factorizes as both toq and (' o ¢’ where ¢ is monic and 1o q
is the canonical factorization of f through im f, the following diagram commutes:

A—2 S kerr

lq' o \[b
v

kerr’ —Y— B
)
Proof. We will let 7w : B — cok: and 7’ : B — cok ¢’ be the projections. Therefore
ﬂ_/of:ﬂ_/OL/Oq/:OOq/:O

Because also cok ¢t = cok f, we get the following commutative diagram:

Therefore
molr=pomor=¢po0=0

We use the fact that 7’ o = 0 to get the following commutative diagram:

cok ¢/

7
/
kern’ —~—— B
1
Alx

-
-

ker m v

Therefore
Vog' =1oqg=10oxo0q

We use the fact that ¢/ is monic to obtain
A
qg =Xo(q
which shows the desired diagram does indeed commute. O

Theorem 0.14. For every morphism f : A — B, the following diagram commutes:



1]

Proof. Existence of the morphism ¢ : A — im f is simply by definition of im f. The main result is
that ¢ is epic. To show this, suppose there are two morphism g, h : im f — C such that gog= hogq.

Then
gog—hogq=0=(g—h)og=0

We will focus our attention on ker g — h, which is the equalizer of g and h, from which we obtain the

following commutative diagram:

c
S
kerg —h SN im f

>

-

Ap

This implies that
f=tog=10jop

We notice that ¢ o j is monic, so by the statement above, we obtain from Lemma the following

commutative diagram:

A—2 5imf

P L

ker g — h <=1, B

Therefore

L=10jox
Using the fact ¢ is monic we obtain

idim f= ] °oX
Using this, we also obtain

Joxoj=idimsoj =7
Now using the fact j is monic, we get
Xoj= idkerg—h

Thus j is an isomorphism and is in particular epic. Then

(9—h)oj=0=00j

implies that, by j being epic, that g — h = 0, or equivalently g = h. Thus ¢ is indeed epic.

O

Theorem 0.15 (The First Isomorphism Theorem or The 1IT). If f : A — B is a morphism, then

im f = coim f.



Proof. We have the canonical epimorphism ¢ : A — im f. Because f = 10 ¢ and ¢ is monic, we get by

Corollary that

coim f = coim(: 0 ¢) = coim ¢
From Theorem 0.7 we obtain from that ¢ is epic. By definition, in any abelian category the coimage
of an epimorphism is the target, so in the case of ¢ : A — im f
coimq = im f
Hence
coim f =im f
O

Theorem 0.16 (The Third Isomorphism Theorem or the 3IT). If A — B — C, then C/B =
(C/A)/(B/A).

Proof. To prove this, let j: A — B andi: B < C as well as ¢ = cok(i o j) and p = coki . We're
going to show that (C/A)/(B/A) satisfies the universal property of C'/B. First, we observe there is a
canonical morphism ¢ given below:

cok(i 0 7)
1
3
cok j / q
% pT
Al sB—~t ¢

We will first show that ¢ is monic. We will do this by first proving ker(q oi) = A. Suppose that there
is some h : D — B such that goioh = 0. Then we get the following commutative diagram:

cok(i o j)

o

kerqg ————— C
7
EIY

-

D ioh
Then
iojoh’ =ioh

implies, by ¢ being monic, that j o A’ = h. Thus I’ is the unique morphism satisfying the diagram
below, where ker ¢ = A essentially by definition:

cok(i o 7)

/ ool



This demonstrates that indeed A = ker(q o4). By Corollary
im¢=im(top)

which by commutativity is equal to im(g o). By the 1IT [0.15} im(q 0 ) = coim(g o i) = B/ ker(q o).
By our work above, B/ker(qoi) = B/A. Then we obtain that

imt= B/A

By Lemma this shows that ¢ is indeed monic. We claim that cok: = cok?, where we let
7 : C — C/B be the canonical projection. Suppose that ho¢ = 0 for some morphism h : C/A — D.
Therefore

0=0op=hotop=hogqoi

Therefore h o g factors uniquely through coki = C/B as shown below:

C/B --3w'-» D
o1
B——C—2%C/A

However, we can also show that 7 factors through ¢, because 7 oioj =007 = 0, so we also have the
following commutative diagram:

C/A -3+ C/B
y qT /
A, o

Plugging in our result that 7 = 7/ o ¢ to the previous result, we obtain that
hog=hor=h"o7'0q

Now because ¢ is an epimorphism, we obtain that & = h' o7’. The final thing to show is that 7o = 0.
This is because

T'orop=1'ogoi=T0i=0=00p

and p is epic implies that indeed 7/ o ¢« = 0. We have shown that h factors uniquely through 7/ in the
below commutative diagram

D
>
3R’

C/B h

o

BJA —— C/A

so indeed C'/B = cokt = (C/A)/(B/A) because C/B satisfies the universal property of cok . O

Lemma 0.17. If A i» B % C and ker(go f) = ker f, then g is monic.



Proof. We obtain by taking the cokernel of each side that
coim(g o f) = coim f

By the 11T we obtain that
im(go f) =im f

Thus we have the following commutative diagram:

cok(go f)
o 0
A7y B J C J B =im(go f)
By Lemma [0.1} g being a kernel is monic. O

Lemma 0.18. If F' : o — A is a right exact covariant functor and f : A — B is epic, then Ff is
epic.

Proof. We have the exact sequence ker f Lalip oo By right exactness of F', then the following
is also exact:

Fker f X% pA XL PR 0

In particular, im F'f = F'B is the target of F'f, so by Lemma Ff is epic. O

Lemma 0.19. If F : o — A is a left exact covariant functor and f : A — B is monic, then Ff is
monic.

Proof. We have the exact sequence 0 — A 5B 2 cok f- By left exactness of F', the following is also
exact:

0= FAL B2 Peok f

In particular, ker F'f = 0 so F'f is monic. O

Lemma 0.20. If F : o — A is a right exact covariant functor and f : A — B, then cok Ff =
Fcok f.

Proof. We have A 1. B P cok f — 0is an exact sequence in 7. Then by right exactness,
FAEL FB I Feok f =0

is exact. Then we get the following commutative diagram:

Fcok f




where F'p is epic by Lemma Thus by exactness
ker Fp=imFf =kern
Therefore
ker m = ker F'p = coim 7w = coim F'g

Because both m and Fg are epic, we also have coim 7 = 7 and coim F'p = F'p, which proves m = Fp. O

Corollary 0.20.1. If F : &/ — 2% is a right exact contravariant functor and f : A — B, then
cok F'f = Fker f.

Proof. If F : o/ — 2 is contravariant, then F' : &/°P — % is an equivalent formulation. Because
limits in .&7°P are colimits in 2/ and vice versa,

ker f = cok(f°P)
implies that by Lemma [0.20]
Fker f = Fcok(fP) = cok FfP = cok F'f
O
Lemma 0.21. If F : &/ — B is a left exact covariant functor and f : A — B, then ker F'f = F'ker f.

Proof. We have 0 — ker f 2 AL B is exact. By left exactness,

0= Fker f 2% FA XL FB

is exact. Therefore we have the following commutative diagram:

P

ker Fif —~— FA

where F% is monic by Lemma [0.19] By exactness, im Fi = ker F'f, and because Fi is monic, then
im Fi = Fker f by Lemma [0.11} which proves ker F'f = Fker f. O

Corollary 0.21.1. If F : &/ — A is a left exact contravariant functor and f : A — B, then
ker Ff = Fcok f.

Proof. If F: o/ — 2 is contravariant, then F' : &/°P — % is an equivalent formulation. Because
limits in .@7°P are colimits in «/ and vice versa,

cok f = ker(f°P)
implies that by Lemma [0.21

Fcok f = Fker(f?) = ker Ff? = ker F'f

10



Lemma 0.22. If F : o — A is an exact covariant functor and f : A — B, then im Ff = Fim f
and coim F' f = F coim f.

Proof. By Lemmas [0.21] and [0.20, we have
Fim f = Fkercok f = ker Fcok f =kercok F'f =im F'f
as well as

F coim f = F cokker f = cok F'ker f = cokker F'f = coim F'f

O
Lemma 0.23. If F : &/ — 2% is an exact contravariant functor and f : A — B, then imFf =
Fcoim f and coim F'f = Fim f.
Proof. By Corollaries [0.21.1] and [0.20.1]
Fcoim f = F cokker f = ker F'ker f =kercok Ff =imFf
and
Fim f = Fkercok f = cok F cok f = cokker F'f = coim F'f
O

Miscellaneous Results

Lemma 0.24. If D : N — Top is a diagram and D’ : N — Top is another diagram and there exists
some embedding o € Nat(D’, D), then colim(D/D") = colim(D)/ colim(D’).

Proof. Let D : N — Top be a diagram such that D(i) = X; for every ¢ € N with embeddings
ti » Xi = Xiy1, and D’ : N — Top is another diagram such that D(i) = A; for every i € N with
embeddings j; : A; < A;11, and let o € Nat(D’, D) be an embedding of diagrams, i.e. o; : A; — X,
is a natural embedding. For each ¢ € N, let p; : X; — X;/A; be the quotient map taking imo; to
a point. For ease of notation, define X := colim X; and A := colim A;. We observe the following
commutative diagram, and in particular, the induced embedding x : A — X:

X

0
|
1
3!

o N

S N

A — s A

which commutes because o was natural by assumption. Therefore we let ¢ : X — X/A be the quotient
that maps all of im k to a point. We can create another functor F : N — Top that has objects X;/A;
and the morphism 7; : X;/A; — X;11/A;+1 is defined by the below universal property of X;/A; :

Li Pit1
Xl' Xi+1 Xi+1/Ai+1

o
l g _ 3!7’1 T

11



Now have our two objects of interest in the problem: X/A and colim(X;/A;), defined by the
universal properties respectively below:

3!

colim(X;/A;)

Xz/Az o Xi+1/Ai+1

Now we will begin constructing maps via universal properties, and eventually show that the two
constructed maps are isomorphisms — i.e. homeomorphisms. We first notice that

qo fiooi=qokKkog;=ci0g=cs

where for the rest of the homework we let ¢, be a constant map. Thus g o f; is constant on o;, hence
we obtain a morphism ¢; : X;/A; — X/A for each i € N given as follows:

X —L x 1y x/4

l : =1

Xl/Al
Now we observe one more thing:

Pit+1 O Ti O P;
= Pi+1 O Pi+1 0L
=gqo fit10
=qofi
= PYiop;
which implies, because each p; is an epimorphism — i.e. surjective — that ¢; = ;41 0 741. Therefore

we get the following induced morphism ® : colim(X;/A;) — X/A below:
X/A

a~

T
3o

COllm(XZ/A1>
Xi/A; ik Xiv1/Ai

We eventually will show @ is an isomorphism. For now though, we turn our attention to the following
property:

hi+1 O(gi+109;
=hir10T0p;
=h;op;

by construction of 7;. Thus we get another morphism ¢ : X — colim(X;/A;) given below:

12



COhl’Il(Xi /Az)

Ry i hita
el

X /n’_;(\)(

4
fi fit1
k , %1

Ji
X Xit1

i+1

We claim that ¢ o kK = c,. To show this, we notice that for a € A, there exists some a’ € A; for some
i such that a = g;(a’), so if we can show that for arbitrary g; it is constant, we are done. We observe

pokKoy;
=¢o fioo;
=h;op;00;
=h;oc,
=c,

as desired. Therefore ¢ descends downstairs to a map ¥ : X/A — colim(X;/A;) shown below:

X —2 5 colim(X;/A;)

//a
q EING

X/A

We now claim that ® o ¥ = 1,4 and ¥ o ® = T gjim(x,/4,)- We will use uniqueness of the maps
induced by universal properties to prove both. We observe first that

PoVog=Pogp

Now, we realize that every element of x € X has the property that there exists some i € N such that
there exists some 2’ € X; where z = f;(2’). Therefore

Pogof;
=®oh;op;
= @ioPi
=qof;

shows ® o U o ¢ acts the same as ¢ on every im f;, hence indeed ® o ¥ o ¢ = q. Then we observe the
following commutative diagram, where the unique arrow is satisfied by both ® o ¥ and 1 x,4, proving,
by uniqueness, the two are equal:

X 25 X/A

=
q Ell

X/A
For the second claim, we observe

Vodoh;
:\IJOSDZ’

13



and

Vop;op;
=Vogof;
=¢of;
=h;op;
The second equation shows, because p; is an epimorphism, that h; = ¥ o ¢;, so by the first equation

we get Wo ®oh; = hy, thus both ¥ o ® and T gjim(x,/4,) satisfy the unique arrow from the universal
property below:

COhHl(XZ/Al)
H:! hiy1
colim(X;/A;)
Xz/Az ki Xi+1/Ai+1

This proves that ® (or equivalently ¥) are homeomorphisms, so the claim that colim(X;/A;)
colim(X;)/ colim(A;) is true.

O R

Chapter 1

Section 1.1

There are no exercises in this section.

Section 1.2

Exercise 1.2.A

Proof.  (a) If we have a groupoid ¢ with one object X, we could define the group of C to be Aut(X).
On the other hand if we’re given a group G by the standard definition, we could define a category
with one object, namely the underlying set of G, where the morphisms are defined by the action
of the elements of GG, and where composition of morphisms is given by multiplication of the
elements.

(b) Consider the following category:
A+— B
This is not a group because it has two objects, or by interpreting the morphisms as the elements
of the set, we cannot compose the morphism A — B with itself, so our operation is not always

defined.
O

Exercise 1.2.B

Proof. Since the subcategory of % consisting of the single object A and the morphisms Aut(A) all
have inverses, we have a monoid that is also a groupoid, a.k.a. a group.

For Example 1.2.2, given any set S, Aut(S) is the set of all bijections from S to itself, a.k.a. the

14



permutation group of S.

For Example 1.2.3, given any k vector space V, Aut(V) is the set of all bijective linear transfor-
mations from V to itself. For V' with dimension n, these can be interpreted as the group of n x n
matrices with entries in k.

Suppose A, B € € are isomorphic, and let ¢ € Mor(A, B) be an isomorphism. For any f € Aut(A),
we can define a map ¢ : Aut(A) — Aut(B) that acts by

frrgofop™

To demonstrate ¢ is an isomorphism, we need to show it has an inverse. We do this by letting
¢ : Aut(B) — Aut(A) that acts by

g logop

Then
$pod(g)=d(p  ogop)=po(p togop)op l=idgogoidp =g
and
$od(f)=d(pofop ) =¢ lo(pofop ) op=idao foida=f

so indeed ¢ = ¢~ 1. Also

¢(fog)=pofogop l=pofop topogop ™ =g¢(f)od(g)

Therefore ¢ (and similarly ¢ 1) preserve compositions of morphisms. O

Exercise 1.2.C

Proof. We wish to show that the following diagram commutes for all VU € f.d.Vecy, and T €
Mor(V,U):

Vv
178%% T Uvv

as well as that my is an isomorphism. We first define my : V — VVV as

for any f € VY and any x € V. Then
my (x+y)(f) = f(z+y) = f(z) + fly) = (my (z) +mv(y))(f)

and

my (cx)(f) = flex) = cf(x) = emy (2)(f)

so indeed my € Mor(V,VVV).

To construct an inverse to my, we simultaneously fix bases for all finite dimensional vector spaces
so that if {e1,...,e,} be a basis for V, we let {e1,...,€e,} be the corresponding dual basis for V'V,
meaning that for each 1 <14,j < n,

1, ifi=j
6i(ei)_{o, ifi;«éj}

15



We define my : VVV = V as

=> ple)e

k=1

Then

my o m'v(ap)(z a;e;) = mv(z @(ei)ei)(z a;€;) Z ai€; Z )e;)
i i i
= Z a;p(€;) Z a;€;)
which implies that my o my = idyvv. On the other hand for any ¢;
my (D biei)(e;) = (D bier) = Y biej(es) = b
i i i
Then we clearly see that

rriv o mv(z blel) = Zblel

so additionally my o my = idy implies that as desired niy = my,
Now to prove

1 and that my is an isomorphism.

commutes, we first observe that for any ¢ € V¥ and any g € U, TVV(¢)(g9) = ¢(goT) which makes
sense because go T : V' — k. Therefore if {dy,...,d} is a basis for U with dual basis {d1,...,n}

my o T(Z ae;) = mU(Z a;Te;)

and

mU(Z azTeZ)(Z Oéj(Sj) = Zajéj(z aiTeZ-)
= Zajéj(z a; Zc};dk) = Z aj Zaicé-
J i k J i

where we have rewritten each

On the other hand,
TVV(mV(Zaiei))(Zajé =my( Zalel Zajé oT) Zajé oT Z:azeZ
4 J
= Zajéj(z a;Te;) = Zaj ZaZchdk Zaj Z%‘C;
j i j i
which proves the diagram does indeed commute. O

16



Exercise 1.2.D

Proof. First we will simultaneously fix bases for all vector spaces. Then the inverse functor G :
fdVecy — ¥ will map any V € f.d.Vec, with dimension n to k™. If W € f.d.Vecy has dimension
m with fixed basis {w1,...,w,,} and V has basis {v1,...,v,}, then for any T : V. — W we define
GT € Mor(k™, k™) such that if for each 1 <i<mn

m
Tv, = E ciw;
=1

then
m .
GTki = cik;
j=1
where {ki,...,k,} is a basis for k" constructed inductively such that for any k" C k", the basis

{k1,...,kn } is a subset of the basis {k1,...,k,}.

To show F' o G is naturally isomorphic to idf 4. vec,, Wwe want to show the following diagram com-
mutes:

T

mw

G B o a(w)

|
FoG(V)

where we define my (v;) = k; for each 1 < i < mn. my is then an isomorphism because its inverse m(,l

is described how you would think: it is the linear map that sends each k; to v;. Following the diagram
on the bottom,

Fo G(T)(mv(z a;iv;)) = Fo G(T)(Z aiks;)
= F(Zaz ZC;IE’]) = Zm ZC;kJ

On the other hand,

i %

mv(TZam) =my()_a; Zcéwj) -Ya Zc;kj

so the diagram commutes. To show G o F' is naturally isomorphic to idy, we want to show

Go F(k) ED G o P(km)

where here my» = idg». Because Go F'(k™) = k™ and preserves bases, the diagram trivially commutes
because also Go F(T) =T. O

Section 1.3

Exercise 1.3.A

Proof. Suppose both A and B as objects of a category € are initial. Then we have

17



af
A—B
Ilg

because by A being initial f exists and by B being initial g exists. But now we observe
A5 A

and because by definition of € being a category, id4 € Mor(A, A), so the only morphism from A to
itself is id4 by uniqueness. But f o g € Mor(A, A) implies that f o g =id4. Similarly go f = idg, so
A= B.

If A,B € % are final, then the same diagrams exist but now because A, B are final instead. The
same argument holds here. O

Exercise 1.3.B

H Category ‘ Initial Object ‘ Final Object H

Set 1) {*}
Proof. Ring Z 0
Top 1) {*}
Subset(X) %] X
Op(X) 1) X

Exercise 1.3.C

Proof. (=) Assuming A — S~'A, we want to prove S has no zero divisors. Assuming for a contra-
diction that s € S is a zero divisor, let as = 0 for some a € A. Noting that 0 — 0/1, we also
observe that a — a/1 = 0/1 because s(1-a—1-0) = sa = 0. This contradicts the mapping
being an injection.

(<) Now we assume S has no zero divisors. If a,b € A are mapped to the same element of S~1A4,
then a/1 = b/1. This is true if and only if there exists some s € S such that

s(al —=bl) =0 < s(a—b)=0
But s being a non-zero divisor implies that a — b = 0, hence a = b proving that the canonical

map is injective.
O

Exercise 1.3.D

Proof. Suppose we have an A-algebra B such that every element of A is mapped to an invertible
element of B via the map g. We want to make the following diagram commute:

A—— S71A

|
X‘ El
~

B

If we're constructing the unique map f : S™'A — B, by commutativity we have f(a/1) = g(a) for all
a € A. Also notice that

I = f(1/1) = f(s/s) = f(s/1)f(1]s) = g(s)f(1/s)
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so f(1/s) = g(s)~!, which exists since g maps elements of A to invertible elements in B. Then

fla/s) = fla/1)f(1/s) = gla)g(s) ™!
means that if f is a morphism, it is uniquely determined by the line above. To show f is linear,

S2a1 + S1a2

fla1/s1 +az/s2) = f( 5153 ) = g(saa1 + s1a2)g(s1s2) "

= [g(s2)g(ar) + g(s1)g(az)lg(s1) " g(s2)~
= g(a1)g(s1) ™" + glaz)g(s2) ™" = fla1/s1) + f(az/s2)

1

and
al a aLa
—2) = f(72) = glaraz)g(s155) ™
S1 S92 5152
_ _ a a
= g(ar)g(s1) "' g(az)g(s2) ™" = () (2
S1 S92
which concludes the proof. O

Exercise 1.3.E

Proof. We will take the construction given in the hint to be S~'M and define the map ¢ : M — S~ M
as m — 7. Clearly this map is an A-module map that sends elements of S to invertible elements.
We want to show that the following diagram commutes for all o that map elements of S to invertible
elements of N:

For any such map 3 : S~'!M — N, by commutativity we have 3(m/1) = a(m). We will let o5 to be
the isomorphism s x - : N — N. Then

o5 oa(m) = 5(")

which means that if 8 is an A-module morphism, then it is uniquely determined by the line above.
To show S is linear, we see

Somy + S1m2

mi mo o 1
ﬁ(?l‘i‘g) —,8( 5152 ) —051520a(52m1+81m2)
_ -1 _ -1 -1 my m2
= 04,5, (s20((m1) + s10(m2)) = 0 a(ma) + o, a(mz) = 6(;) + 5(5)
where we used the fact that o4, 0 05, = 05,5, = Os,5, = Os, 005, . Also
am, _.am. R _a,m
gg = E) =0, ,olam) =ao, oo, a(m) = gﬂ(g)
so B is S~ A-linear and uniquely satisfies the commutative diagram. O
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Exercise 1.3.F

Proof. (a) This is just a special case of the following part of the question.

(b)

We define a map f: S~ M; — @ S~ M; that acts as
(mi)

To show f is linear, we observe

L L L O
= () (2 = gy g,
and
FEL) - plmdy (8 - g

To be completely thorough we should show that f is well defined, but I will not do this for
brevity. Now we see that if
@ — 0
s
then for each i, 0. This means that for each m;, there exists some r; € S such that
rym; = 0. But because there are only finitely many ¢, we take [[r; € S, and then (m;)/s =0

because
Hm‘(mz’) =(0)=0

so f is injective. To show f is surjective, fix any (Z4) € @ S~'M;. Then again using the

Sq
fact that only finitely many m; are nonzero, we define for each m; an element ¢; of S, namely

¢i = [];4; 8j- Then

m;

(), _ (Garmay _ ()

4 [Isi ' “Ilsi si

as desired so f is surjective, thus proving f is an isomorphism.

If we let each M; = Z and S = Z \ {0}, then S~'M; = Q where we are considering these as Z
modules. Letting ¢ be the canonical embedding of [[Z; — [][ Q;, then we have

However, ¢ does not map to the element (1, %, %, %, ...). To prove this, we suppose

ny,Na, ... 11
P )
Then
Sw((nl,nj,...)) _ (s<n1’nj’)) _ tp((nl’nf’”')) — (n1.ma,. )
But on the other hand, by hypothesis <p(("1"572)) =(1,3,...) so also
ny,no, ... 1
sgp(%) 28(175"”)
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which implies for some nonzero integer s, (s,3,3,...) = (n1,n2,n3,...) where each n; € Z.

This would imply that every prime number p; divides s because = would be in the sequence

and would have to equal n; € Z. But this is a contradiction because there are infinitely many
primes, hence no such s can exist. Thus ¢ is not surjective, but ¢ is the unique morphism that
preserves the structure of []Z; which embeds into both S~ []Z; and []Q;.

O

Exercise 1.3.G

Proof. We have
61®2)=1®12=1®0=0

On the other hand,
5(1®2)=10(11)=10®1=0®1=0

Therefore
1®1+1®1=1®2=(6-5)(1®2)=6(1®2)-5(1®2)=0—-0=0

We can now see that we only have two elements in Z/(10) ®z Z/(12), being 0 and 1 ® 1. To show
1® 1 # 0, we can show that there is a bilinear map from Z/(10) ®z Z/(12) to Z/(2), given by first
noticing that any a ® b = ab® 1, which then we just map ab — ab mod 2. It’s readily verified this is
bilinear, and we notice 1 ® 1 — 1 mod 2, which is a nonzero element, hence 1 ® 1 # 0 either by the
universal property. O

Exercise 1.3.H

For simplicity of the proof we will use the facts that the Hom functor is left exact—proven in Exercise
1.6.F— and that for all A modules M, N, P

Homu (M ® N, P) =2 Homa (M, Homyu (N, P))
by Exercise 1.5.D.
Lemma. If the sequence Hom(C, P) 9, Hom(B, P) EMR Hom(A, P) is exact for all P € Mod 4, then
AL B s exact. 1]

Proof. First, we let P = cokf = B/im f and let © be the projection from B onto cok f. Then
m € ker f* because f*(w) = mo f = 0, and by exactness w € img*. Let h € Hom(C, P) such that
g*(h) = m, or equivalently h o g = 7. Then we observe that

kerg C kerm =im f

which demonstrates ker g C im f.
To prove the reverse inclusion, we now let P = C' and we trace id¢ through the diagram to see

0=/f"og*(ide) = f*(idcog) =go f
Then clearly im f C ker g. Therefore
AL B
is exact. O

Main Result. Given M' L5 M % M” = 0 is exact, we first fix an arbitrary P € Mod and
subsequently apply Hom(-, Hom4 (N, P)). By left exactness of the Hom functor, the following is
exact:

0 — Hom(M", Hom (N, P)) 2 Hom(M, Hom (N, P)) s Hom(M’, Homa(N, P))
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Now we use the fact that - ® N is left adjoint to Hom(XN, -) by Exercise 1.5.D so that

0 = Hom(M” @ N, P)) Y™y Hom(M @ N, P)) LN Hom(M' © N, P))

is exact for all P. The lemma yields that

MeoNLL ven L5 e N
is exact. Now to show g® N is surjective given g is, fix any m” @ n € M"” @ N. Because g is surjective,
let g(m) = m”. Then g @ N(m ®n) = g(m) ® n = m” ® n proving that g ® N is surjective. This
completes the proof. O

Exercise 1.3.1

Proof. In this category, the objects are pairs (T,t : M x N — T) such that t is bilinear, and a
morphism f : T — T" is a morphism of A modules such that f ot =#. Defining the tensor product to
be the initial objects of this category, by the fact that any initial object in a category is unique up to
unique isomorphism, we get the desired result. But for a more concrete proof, suppose we have (7' t)
and (7”,t') both satisfying the definition of tensor product. Then

MxN—Lt— 7T
t’ <
WA

and also

commute. On the other hand,

means that idr satisfies the definition, as well as g o f because go f ot = got’ = t, so by uniqueness
idy = go f, and a similar argument shows f o g = idp.

We could define the product in any category % to be the final object in a category whose objects
are pairs (P,pa,pn) where P € €, pyr € Morg (P, M) and py € Morg (P, N). The morphisms of
the category are morphisms f € Morg (P’, P) such that p, = pa o f and ply = pny o f. Again, any
final object in a category is unique up to unique isomorphism, so the product is defined up to unique
isomorphism. O

Exercise 1.3.J
Proof. Suppose we have some pair (T,t) as in the previous exercise. To show that

MxN—2 s MeN

\ -
-7 1
L 3!

T
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If any such ¢ : M @ N — T exists that makes the diagram commute, then by definition
p(m @ n) =t(m,n)

Notice this proves that if ¢ exists, it is unique. To show this ¢ € Homa (M ® N,T) we first need to
show that it is well defined. Letting R be the linear subspace of the free module F(M x N) spanned
by all elements of the form

we formally have any tensor m ® n = (m,n) + R as a coset. But for each basis element z of R, we
notice that f(x) = 0 because f is bilinear, so f = 0 on R. Thus it doesn’t matter which representative
of the coset (m,n) + R we pick, so f is well defined. To check linearity,

@o(m1 +ma ®@n) = f(m1+ma,n) = f(my,n)+ f(ma,n) = p(mi @n) + p(me @n)
and similarly
p(m®@n1 +ng) = f(m,n1 +nz) = f(m,n1) + f(m,n2) = p(m @n1) + p(m @ na)

and
plam ®n) = f(am,n) = af(m,n) = ap(m Q@ n)

There are no other linearity relations on M ® N, so ¢ must be linear on other sums of tensors; indeed
¢ is an A-module homomorphism and is the unique one making the diagram commute. O
Exercise 1.3.K

Proof. (a) We define scalar multiplication by first constructing a bilinear map ¢y, : BXxM — B M
for each b € B given by
op(b/;m) =bb' @m

To prove ¢y, is bilinear,

gﬁb(bl + bz,m) = b(b1 + bg) Xdm = bbl + bbg Xdm = bbl X m + bbg XKm = gpb(bl,m) + (,Ob(bg,m)

and
op(b',m1 + ma) = bb' @ my 4+ ma = bb' @ my + bb’ @ ma = (b, m1) + (b, Mm2)
as well as
wp(ab’ym) = bab' @ m = bb' @ am = (b, am) = apy(b’,m)
Thus

BxM —— B®a M

& S

B®a M
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commutes and we define scalar multiplication by b as the function ¢,. It’s easy to verify that

¢b1 © ¢b2 (b ® m) = ¢blbz (b & m)

Thus
bl(bgb ® m) = (blbg)b Xm

By ¢y being A-linear,
b(by @ m1 + by ® ma) = bby @ mq + bby @ My
Also
oy by (D@ M) = (b1 + b2)b@m = b1b+bob @ m = b1b@m + bob @ m
= ¢p, (b ®@m) + dp, (b @ m)

And finally
p(bem)=1b@m=b®m

so we have indeed defined a B-module structure on B ® 4 M. To see that this defines a functor,
we want to show that for any X,Y,Z € moda, f € Homu(X,Y) and g € Homyu (Y, Z), that
B®gof =B®goB® f where we define B® f as the induced map in the following commutative
diagram:
BxX -2, Bo,X
lidB x f i Ell

BxY -2 Bo,Y

To be thorough we should prove that ¢y oidg X f is bilinear, but it is readily verifiable because
f is A-linear. Now to show that this functor respects compositions, we see

B®goB® fboz)=Bogbe f(z) =bogo f(x) =Bogo [(ba )
so we do have a functor from mods — modpg.

(b) We have a similar approach for the construction of multiplication: for all b € B and ¢ € C, we
define a map ¢p.: BxC = B®y C as

wp.e(b ) =bb @ e
To show ¢y, . is A-bilinear, we see
@b,c(b1 + b, C/) =bb1+b)® cd =bb; ® e + bby ® e’ = @b,c(bh c)+ @b,c(b2, CI)
and
wb,e(b'y 1+ c2) =bb' @ c(er + c2) = bb' @ cey +bb' @ cca = pp. (V' c1) + @b, (b, c2)

as well as
wp,elab’, ) =bab' @ e’ = bb' @ cac’ = @y (V,ac’) = app (V', )
Then we get a commutative diagram induced by the universal property:
Bx(C —— B®yuC

|
=l
o ! Pb,c

v

B®aC
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Then we use the action of ¢, . to be multiplication by b ® c¢. Therefore
Bb,c0 P o (b @) = p (V' @) =Y @ e’ = ppy e (V' @ )
so multiplication is associative. The multiplicative identity is
$110R¢c)=1bR1lc=b®c
To show multiplication is distributive,
Ob,e(b1 @ c1 4+ b2 ® c2) = Py e(b1 @ c1) + Py (b2 @ c2)
because ¢y, . is A-linear. We notice that because B, C' are commutative rings,
(b1 ® c1)(ba ® ¢2) = b1ba @ c1c2 = bab1 ® 2¢1 = (ba ® ¢2)(b1 ® b1)
implying that multiplication is also right distributive since
1 ®c14+ba®c)(b®c)=0b@c)(b1®c1+ba®c2) = (b@c)(b1®c1)+ (b®c)(b2 ® ca)
=bi1®c)(b®c)+ (ba @c2)(b®c)

This completes the verification of the ring axioms, so indeed B ® 4 C' is a ring. O

Exercise 1.3.L

Proof. We will use the universal property of tensor products to construct a map 8: S™'A®4 M —
S~1M. We define a map o : S™'A x M — S~1M given by a(%,m) = . To show « is A bilinear,
we see

al ag S2a1 + S1a2 Soa1 + S1as)m aim asm aq ag
o(Z 4 %2 ) = o2t 22 ) Jm_ G G2 (B (22 )
S1 S92 51852 5182 S1 S92 S1 S92

and

a almy +mse) ami = amg a a

a(=,m; +ma) = = + = a(=,m1) + a(=,my)

s s s s s s

as well as
! i /
ala'%,m) = a(“2,m) = T = /TR~ da(%,m) = T = o, a'm)
s s s s s s s

Then « is A bilinear, and hence we get an induced map 8 : S™'A®4 M — S~'M from the below
diagram:

STIAXM — S 1A M

We will now construct an inverse to 8. Let ¢(m) = 1 ® m. This is clearly A bilinear as well so we
obtain a unique ¢ : STI!M — ST'A®4 M

M — S7M

x \%{3!

S—1A ®a M
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Then )
a am a
pofB(—-@m)=p(—)=-Qam=-Qm
s s s s

and
m

Bop(™)=p(; om)="

so indeed S™'M = S~'A®4 M as A-modules. We can extend the A-module structure into a S~1A
module structure by the previous exercise, and in fact the same morphisms we just constructed can
be considered to be S~1A linear as well. We can see this by

!

aa aam a'am d _a
PGgem=—"g =55 ~7Gem
and
(am)_ (am)_1® _al® _a(m)
Soss’ 79088/ oss amiss’ m—sgo s/
Therefore they are also isomorphic as S~!A modules as well. O

Exercise 1.3.M

Proof. We will use the universal property to construct our desired map. We define a : M x @, ; N; —
P,cr M ® N; where
a(m,Zni) = Zm@ni
To verify « is A-bilinear,
a(my +m2,Zm) = Zml +my ®n; = Zm1 ® n; +Zm2 ®n;
= a(mi, Z n;) + a(ma, Z n;)
and
a(m,Zni + Zni) = a(m,Zm +nl) = Zm@ni +n
= Zm@ni +Zm®n§ = a(m,Zm) —|—a(m,Zn§)
as well as

a(am,Zni) :Zam@)ni:aZm@)ni:Zm@ani:a(m,aZni)

Then let ¢ be the unique induced map below:

1
~

@D, M @4 N;

Then p(m ® Y-, n;) = Y, m ®n;, and the inverse map ¢ is defined as (3, m @ n;) = m® Y, n,.
The construction of ¢ follows from the diagram below:
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T 1o
BMeN, —= MaN; -2 Mo @N;

e

MXNj

and then defining ¢ = ), ¢; o m; which is well defined because all but finitely many of the ;
are nonzero for any given element. These are clearly inverses, hence M @ @ N; =2 P M ® N; as
A-modules. O

Exercise 1.3.N

Proof. Letting S = {(z,y) € X xY : a(x) = B(y)} with the obvious projection maps wx and 7y, it
is immediate that

Sy
[~
X =7
commutes by construction of S. Now suppose we're given the following commutative diagram:

Py

W —Y

bl

X 2> Z

We want to show that
Py

S, Y
[~ ]
X -7

commutes for some unique map ¢ : W — S. Any such map ¢ that makes the diagram commute has
mx o =px and my o = py. It’s then clear that if (w) = (px(w), py (w)) for all w € W, that then
px = px and py = py. Thus uniqueness is proven, and the fact that ¢ makes the diagram commute
is trivial so indeed S = X xz Y. O

Exercise 1.3.0

Proof. We claim that if A, B,C € Op(X) such that A,B C C, then A x¢ B = AN B. In Op(X),
we observe that there is at most one arrow from any object to any other object, so we needn’t prove
uniqueness in the universal property argument. It is clear that

ANB —— B

L

A——C

commutes—notice that commutativity here is just saying that every element of A N B is an element
of C because the morphisms are inclusions. If we have another open set W such that W C A and
W C B, it’s clear that every element of W must be an element of AN B by definition, which proves
that
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:

commutes as well, thus proving A x¢c B=ANB. O

Q+—W

Exercise 1.3.P
Proof. First of all, given the following data

we have our unique morphism ¢ : W — X x Y that makes the diagram above commute. But by
Z being final, there is only one morphism from any object to Z, hence the entire diagram below
commutes:

]

X — 7

Therefore X x Y satisfies the definition of X x 7Y, and by the standard universal property argument,
are defined up to unique isomorphism. O

Exercise 1.3.Q
Proof. The path traced in red below

M— S
N =

J

is equal to

|

M= Q
N H— <
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by commutativity of the top square, and by commutativity of the bottom square

U—V

|

?f

—

N < —

—

Now we need to show

X2

It is easily checked that ¢ is the desired morphism that makes the original diagram commute, so we
have shown that the tower is indeed a Cartesian diagram. O

Exercise 1.3.R
Proof. We have

commuting, then

29



X1 Xng 4)X2

l lhog

Xl hof

induces the unique natural morphism demonstrated here.

Exercise 1.3.S

Proof. From the previous exercise, the following diagram commutes

|

X, hof

because
X1 Xy X2 L> XQ
J{Tl J{Q
x, —!r sy

commutes. There is another natural map a: Y — Y Xz Y given by

idy

[

y — " 7

Additionally, there is a map 0 : X1 Xz Xo = Y Xz Y given by

gom2

J{Ml J{h
y —h 7z

Then we would first like to show the following diagram commutes:

X1 XYX2 LXl XZX2

[en I

Y — & sV x,Y
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To do this, we will turn to the following commutative diagram:

gom20p

J/;Ufl lh
Y —— 7
On one hand, we will show that a o f o 77 makes the diagram commute. We observe
mowaofor=for =fomop
as well as
peoao foTi =pp000goTy=goTy=gom0p
On the other hand, we will show that 6 o ¢ makes the diagram commute. We have
purobop=fomop
and also
profop=gomoyp

By uniqueness of the induced map, we obtain that indeed 8 o ¢ = a0 f o 7. Now we need to show
the square is universal. Suppose the following diagram commutes:

p2

P

X1 XyXQ L> X1 XzXQ
p1 J{foﬁ J{@
Yy —2 Y xzY

Then
aopr =00 p,

implies, by applying w1 or ps to the left of each equation,
pr=probopy=pz06op,

which is true by definition if and only if
p1=fomopy=gomops

Therefore the following diagram commutes:

T20pP2

[ s
x, —r .y

Let x be the induced map, which proves uniqueness. We will show that x makes the following diagram
commute:
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P2

\
X1 XyX2 L) X1 XzX2
P J{foﬁ J{O
Y — % sV x,Y

To show f o7 ox = p1, we have
fomox=fomops=p;

To show ¢ o x = pa, we will show that both ¢ o x and py satisfies the following induced map:

T20p2

B

X, " v,y

It’s obvious that ps makes the diagram commute. On the other hand,
M OPOX=T10X =T10D2
as well as
T2 O0POX =T20)X = T20pP2
Since both make the diagram commute, by uniqueness, ¢ o x = p2 which completes the proof. O
Exercise 1.3.T

Proof. Given an indexed family of sets A; for i € I, the disjoint union is the set

HA’i = U{(a:,z) cx € A}

iel iel
where each A; is equipped with a map ¢; : A; — ], A; such that
ti(x) = (x,1)
Now we suppose we have a set P such that for each ¢ € I, there is a map p; : A; — P. Then

P

31
i ;A

1

A;
where the unique map ¢ is defined by ¢(x, i) = p;(x). This definition is given to us by commutativity,

so uniqueness is proven, and the construction is well defined because ¢; is an injection for each i € I,
which proves existence so indeed the disjoint union is the coproduct in Sets. O
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Exercise 1.3.U

Proof. Suppose f: A — B and v: A — C are ring morphisms and

p:B—=B®Cand ¢: C — B® C are as defined in the exercise. To show ¢ is a ring morphism, we
recall that B can be considered an A-module where scalar multiplication is defined as a - b := S(a)b.
We immediately get ¢(1) = 1 ® 1 which is the identity on B ® C, so ¢ preserves identities. To show
 is linear,

and
p(biba) = b1ba ® 1 = (b1 @ 1)(b2 ® 1) = (b1)p(b2)

An almost identical argument shows ¢ is a ring morphism as well. Lastly, we suppose we have a ring
P with morphisms f: B — P and g : C'— P such that the following diagram commutes:

P<+——C
I

B<TA

To show

B+—A

commutes, we see that if any such map x : B®4 C' — P exists that satisfies the diagram, xy o p = f
and y o ¢ = g. This equivalently says x(b® 1) = f(b) and x(1 ® ¢) = g(c). This actually determines
the action of y entirely because x is a ring morphism and thus

x(b®@e)=x((b@1)(1®c) =x(b@)x(1®c) = f(b)g(c)

This proves that x is unique. To prove existence, we need to show that x is a ring morphism. We can
use the universal property of tensor products to do so. Define o : B x C' — P as a(b,c) = f(b)g(c).
To show « is A bilinear, we observe

a(ab, c) = f(ab)g(c) = f(B(a)b)g(c) = f o B(a)f(b)g(c) = go(a)f(b)g(c)
= f(b)g(v(a)e) = f(b)g(ac) = a(b, ac) = aa(b, c)

and
a(by + b2, ¢) = f(br + b2)g(c) = f(b1)g(c) + f(b2)g(c) = a(br, ) + ax(b2, c)

and
a(b,c1 +c2) = f(b)g(er + c2) = f(b)g(cr) + f(b)g(ca) = a(b,c1) + a(b, c2)

Then by the universal property of tensor products, we get our induced map x defined exactly as we
require it to be. This proves existence of x and completes the proof. O
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Exercise 1.3.V

Proof. Suppose m : X — Y and w5 : X — Z are both monomorphisms and suppose we have two
morphisms f,g : W — X. We want to show that 7o om o f = myom 0og = f = g. Supposing
mg o7 o f =y om 0g, by mo being monic we have my o f = m; 0 g. Now we use the fact that 7 is
monic to get f = g as desired. O

Exercise 1.3.W

Proof. (=) We suppose 7 : X — Y is monic. To prove X xy X exists, we claim that X satisfies the
definition of X xy X. To show this, we want to show

D2

id
1dx X

a
*
3

LY

holds. Using the fact that 7 is monic and the fact that 7 o p; = 7 o po by commutativity to get
that p; = ps2, so we just need to show that

bS]

commutes. The unique morphism is clearly p. Thus X satisfies the definition of X xy X, and
thus the induced morphism is idx which is, in particular, an isomorphism.

(<) Now supposing that there is a unique isomorphism ¢ : X — X xy X and that X xy X exists,
we will furthermore suppose that mo f = w o g for some f,g: Z — X. Notice that

commuting and ¢ being an isomorphism implies that x2 = ¢~ = x1. Then we obtain a map ¢
from the below commutative diagram:




Therefore f = p~1 o ¢ and g = ¢! 0 ¢. This implies that f = g as desired so 7 is monic.
O

Exercise 1.3.X

Proof. We will use the same variables in this exercise as in Exercise 1.3.S. Let ¢ : X1 Xy X5 — X1 x2 X5
be induced in the following diagram, using the fact 7 is monic here so that 7o for =7mTogom =
for =gomy:

X1 szg L>)(2

R
N

X ——Y
A

We also use the fact that 7 is monic implies both p1, g from Exercise 1.3.S are equal to a~!, where
« is an isomorphism by Exercise 1.3.X. Then

fO7T1=,u109:a7109:>aof07r1:9
Now using the magic diagram from Exercise 1.3.S, we have

dx) x 7 x5

Ty
X1 XyXQ L) X1 XzXQ

J{fm—l J{aofon—l
[

Y ——— Y xzY

Let ¢ be the map induced in the above diagram, where it is immediate that ¢ o ¢ = idx, «x,x,. To
show ¢ o ¢ = idx, x, x,, Wwe will show it satisfies the diagram below, which suffices because clearly
idx, xy x, also does:

[
X, —r oy
We need to show that 7, = 7 0 ¢ 0 p and that 75 = 75 0 ¢ 0 . Recalling that ¢ is a section of ¢ and
that 71 = 7 o p and 79 = 75 o , we have
TIOPOY =T 0POoPOoY="T1 0P =T
as well as
T20PO P =T 0QPOPOP=T0p =Ty

Land ¢ is an isomorphism. O

which proves that ¢ = ¢~
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Exercise 1.3.Y

Proof. (a) We have the following diagram is commutative for all f : C' — B:

Mor(B, A) AN Mor(C, A)

I Jre

Mor(B, A') —+ Mor(C, A")
Now because B was arbitrary, we let B = A, and then we have

Mor(A, A) E AN Mor(C, A)

b
Mor(4, 4) —L Mor(C, A7)

Now we track id4 through the bottom portion of the diagram, letting g = t4(ida) and f €
Mor(C, A) arbitrary to get
frowalida) = f*(g) =go f

On the top side of the diagram, we get

vo o fH(ida) = we(idao f) = e(f)
By commutativity, these two are equal, hence tc(f) = g o f, determining ¢ entirely.

Now assuming all of the ¢ are isomorphisms, we get the following diagram where g € Mor(A, A’)
is as defined in the previous part:

Mor(A’, A) AN Mor(A, A)

Jea Jea

*

Mor(A’, A’) —2— Mor(A4, A")

By surjectivity of ¢4, for each f € Mor(A, A’), there exists a unique f’ € Mor(A, A) such that
ta(f)y=f < go f' = f. On the other side of the diagram, for every o € Mor(A’, A, there
exists a unique o € Mor(A’, A) such that 14/ (¢/) =a < goad' =a.

Thus if @ = ids/, we obtain a section o’ of g. Now by uniqueness of the first statement,
there exists a unique f’ € Mor(A, A) such that go f’ = ¢g. But id4 and o' o g both satisfy this
requirement, which proves that o o g = id4, proving that o/ = g~ .

O

Exercise 1.3.Z

Proof. (a) If we’re given some f € Mor(B,A), we want to give a natural transformation m¢ :

Mor(A,C) — Mor(B, C). We define for every C' € €, we define

mc(p) = ¢o f

To prove m is indeed a natural transformation, we need to show for every g : C — C’, the
following diagram commutes:
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Mor (A, C) —£— Mor(A, ")

J(m c J{m o’

Mor(B, C) —£— Mor(B, ")

On the bottom side of the diagram, for any ¢ € Mor(A, C'), we observe

g« omc(9) = gu(dpo f)=godo f
on the other hand,
mcr © g«(¢) =mer(god) =godo f

so m is a natural transformation.

Now if we're given a natural transformation m, we get the following commutative diagram
for arbitrary C' € ¥ and g € Mor(4, C):

Mor(A, A) —£— Mor(A, C)

|ma |me

Mor(B, A) —%— Mor(B, C)
Tracking id4 on the bottom and defining f :==m(ida) € Mor(B, A), we get

g oma(ida) = g«(f) =go f

On the top, we get

mc 0 gi(ida) = mc(g oida) = me(g)
By commutativity, ma(g) = go f for all g € Mor(A, C). Because f uniquely defines m, we have
obtained a unique morphism from every natural transformation.

We define a map ¢ : Mor(B,A) — Nat(h?,hP) given as ¢(f) = of, and another map
¢ : Nat(h?, hB) — Mor(B, A) as ¢(m) = ma(ida). To show these are inverse maps,

pop(f) =olof) =idac f=f

and
pop(m) = p(ma(ida)) = oma(ida) =m

1

by our previous work. Thus ¢ = ¢~" and we have given the desired bijection.

Given any f € Mor(A4, B), define ¢(f) = fo where ¢ : Mor(4, B) — Nat(ha,hp). Similarly
to part (a), one can readily check that this defines a natural transformation. We can also do a
similar process of tracking the identity to realize that any for natural transformation m and any
g € Mor(C, A), ma(g) = ma(ida) o g. We then define ¢ : Nat(ha, hp) — Mor(A, B) given by
#(m) = ma(ids). In a very similar manner to part (a), ¢ = ¢! so we obtain the bijection we
want.

If we're given any natural transformation m from h* — F, we have that for all f € Mor(B, C),

the following diagram commutes:

Mor(A, B) SELEN Mor (A, C)

o
FB) — (o)
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Letting B = A, we have

Mor(A, A) ELEN Mor(A, C)
[
Fr
F(A) ———— F(O)
Yet again, we track id 4 on the bottom to get F'fom 4(id4), and on the top we get mgo fi(ida) =
me(f oida) = me(f). Thus by commutativity, for any f € Mor(4, C),

mo(f) = Ff(ma(ida))

We now notice then that m¢ is determined entirely by m4(id4), so we define ¢ : Nat(h?, F) —
F(A) given by p(m) = ma(ida). On the other hand we define ¢ : F(A) — Nat(h?, F) to act
as ¢(x)c(f) = Ff(x) for any C € € and f € Mor(A,C).

Then
o d(x) = w(d(x)) = o(x)alida) = F(ida)(x) = idpa)(x) = x
and for any f € Mor(A, C),
pop(m)c(f) =d(ma(ida))c(f) = Ff(ma(ida)) = mec(f)

so indeed ¢ is a bijection.

Section 1.4

Exercise 1.4.A

Proof. We claim that if F : .4 — ¥ is a functor and e € .# is an initial object, then ].'&HAZ' = A..
Because e is initial, there exists a unique morphism into every i € .#, so there exists a unique morphism
fi + Ac — A; for each i. If W is another object in € with maps p; for each i that commutes with
everything, there exists a morphism p, : W — A, because e € .#. We also know that by assumption
the following diagram must commute:

so in particular the following diagram commutes for all f :4 — j and all ¢,j € .#.

w
AN

Ae

Fr

Sy DN

A — 4

Uniqueness comes from the fact that any morphism g : W — A, that makes the diagram commute in
particular makes the following subdiagram commute:
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so that g = pe. O

Exercise 1.4.B

Proof. To show X7 Xy X5 is the limit of the diagram, we need to show

commutes given the Cartesian square below:

X1 Xy X2 L> X2

[ s
X, —f Sy

But the commutativity of the first diagram is trivial then. Now to show the first diagram is universal,
suppose we have the following commutative diagram:

X1
N
P Y
N

Xo

#Z

Then we get an induced map from the following diagram:

P2

MRS

~
.
X1 Xy XQ *2> X2

This proves uniqueness. This map v makes the following diagram commute trivially
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P2 Xy xy Xy y —hs 7z
e T
Xo

which proves existence. Thus X7 Xy X5 is the limit of the diagram.

To show Y X(yx,y) X1 Xz X3 is also the limit of the diagram, we first need to show that the

following diagram commutes:
X1
Y

Y Xvx,v) X1 Xz Xo

W} %
Xo

where we’re given the following Cartesian diagrams:

—hyz

Y X(yx,v) X1 Xz Xo —2= X1 Xz Xo

! 19

Y & Y xzY

and

X1 XzXQ L}XQ

lm lhog

and the induced map « below:

Now to show
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T10L2

§

Y Xvx,v) X1 Xz Xo

4

Y —
T20L2 /
2

does indeed commute, we observe

L1 = L1
= U1 0QO0 L] = [l2 00Ol
= p106oiy =ps00019

= fom oty =gomyou

just by recalling the definitions of each. Now that this diagram commutes, we suppose we have the
following commutative diagram to prove universality:

/
\

Y — 7

N/

Then we can use the universal property of X; Xz X5 to get a unique map S in the following diagram:

P2

s
g
)(1 Xz )(2 ‘4‘4%4> )(2

lm lhog

With this map 5, we claim the following diagram commutes:

P 4‘4‘49 )Yi Xz )(2
lfopl l@
Y —2 3V xzY

To prove this, we turn to the universal property of Y xz Y shown below:

gop2

st
Yx,V 225 Y7

s

Y ——— 7

fop1
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We will show that both ao f op and 6 o 8 satisfy the unique arrow.
To show « o f o p; satisfies the diagram, we see

proao fopr=fop
and
pzoao fop = fop=gops
Now to show 6 o g satisfies the diagram,
probof=fomof=Ffop
as well as
p2obof=gomof=gop;

This proves that by uniqueness of the arrow, that o f op; = 0 o 8. Thus we get an induced map y
in the following commutative diagram:

Y X(yx,v) X1 Xz Xo —2 X1 xz X5

- !

Y o Y xz Y

Therefore the following diagram commutes as well:

X1
P1 TFZOLQ f

P 4) YX(YXzY) X1 XZX2

Taolp0 X =m0l =p

because

and
Ty olp0X =T 0f3=Dpy

This proves that the limit of the diagram
X

~
>

Xo

y s 7

is simultaneously X; xy Xy and Y X(yy,y) X1 Xz X, meaning they are defined up to unique
isomorphism, so in particular the following diagram is Cartesian:
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X1 XyXQ *>X1 XZXQ

| |

Y — 5 Y x5V

Exercise 1.4.C

Proof. Let S be the defined set and 7; : S — A; are the projections. It’s clear that for any i,j € &
and m : ¢ — j, the following diagram commutes:

S
AiLAj

by construction of S. Now suppose

W
2N
Fm

commutes under the same hypotheses. If there were a map ¢ : W — S such that

commutes, then for each w € W, p(w) = s where 7;(s) = g;(w). This element s is uniquely defined
to be (gi(w))ic.s. This demonstrates that ¢ exists and is unique, so indeed S = Jim A;. O

Exercise 1.4.D

Proof. (a) I'm not entirely sure if the question wants to describe Q as an object of Ring or Mody,
but I will assume we want Q € Ring. We take the index set to be the set of positive integers
with a unique arrow n — m if and only if there exists some positive integer k such that m = nk.
If this is the case, we define a ring morphism ¢y, x : Z, — Zyy defined by = — (f:TI)Z Here,
is the ring given by localization by the multiplicative subset generated by n. We define maps

tn: Zn — Qas 5 — 5. Then by the construction, the following diagram commutes:

Q

SN

an — Zn

Dn.k
because 4 i
x k' xk® T x
Lnk © ¢n,k(ﬁ) = Lnk(m) Sk w Ln(;)

If we have another ring R with maps f, : Z,, — W satisfying the commutativity hypotheses, we
want to show

43



By commutativity alone, we would require the unique map ¢ to act as % + f,,(;57) which shows
that the map ¢ is unique. To be precise we should show that ¢ is indeed a ring morphism by

showing that it’s well defined for different choices of &, i.e. if % = % then their images are the

same. Notice that £ = 2 if and only if £ = Y2, Therefore
v 4 vg — uq

X

— ) = oL E = ol ﬂ = [ol} 22 = ]2
w(y) @ y(y) ® yq(yq) @ q(q) w(q)

and the other ring morphism axioms can be easily verified.

(b) For any set X, we have the category Subset(X) in which we can define A; U Ay = hg LA
where . is the discrete category

1 2

Explicitly, we are defining A; U As as the coproduct of A; and As. If
B
Ay As

commutes, then A3 C B and As C B which directly implies that the standard definition of
Ay U Ay C B. Therefore there is a morphism A; U A — B, and uniqueness is by uniqueness of
arrows in Subset(X).

O
Exercise 1.4.E
Proof. Let S be the defined set and let ¢;(a) = [(a,7)] where ¢; : A; — S. If m : i — j, then

and
tj o Fm(a) = [(F'm(a), j)]

Also notice that (a,i) ~ (Fm(a), j) because F'm : A; — A; and id4, = Fid; are two maps such that
Fm(a) = ida,(f(a)). This shows that S satisfies the required definition.

To show that S is universal, suppose we have another set W equipped with maps ¢g; : A4; — W
that satisfy the definition. We want to show




We define ¢ : S — W as ¢([(a,4)]) = gi(a), which proves uniqueness because this condition comes
directly from commutativity. To prove existence, we just need to show ¢ is well defined. In other
words, we need to show that if (a;,4) ~ (a;,j) then g;(a;,7) = g;(a;,5). If (a;,9) ~ (a;,j), then for
some « : i — k and some (3 :j — k,

Fa(a:) = Ff(a;)

Then the following diagram must commute:

AN

A = Ak A

We now observe that
gi(a;) = gr. o Fa(a;) = gy o FB(a;) = gj(a;)

so ¢ is well defined, which proves existence. O

Exercise 1.4.F

Proof. For the problem, let m; denote (m;,i) € [[ , M; as well as the element in M; depending on
the context for convenience. To prove addition is well defined, suppose m; ~ m; and m; ~ mj for
some 1,1, 7,5 € .#. Also pick some [ and I’ such that we have

i u I v ,7
and

i Y i
Then there exists some f : i — n; and some f’ : ¢’ — n; such that Ff(m;) = Ff'(m;) and some
g:j—mn;and ¢’ : 7/ — n; such that Fg(m;) = Fg¢'(m; /). By the first filtered hypothesis, we have
the following set of arrows in .#:

u:.%b'

~
~

~
.

as well as the other set of arrows

T —— l——7j

—

We can get another set of arrows
n——m-<+—k

Therefore we have the paths:
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2 ) l k m
3 J n; n m
4 J l k m
5 7' n; n m
6 i I k m
7. J’ n; n m
8. J' U k m

Then by the second requirement of .# being filtered, there exists
mi, ma, m3, My € & and arrows such that the following diagram commutes:

/! ——k ——m

3

NSNSNSNS

/! — sk ——m

We will add on to this diagram by obtaining the following commutative diagrams:
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ms —— mi,

m mi3

e ™~
AN e

mp —— mi,

me — Mmby

m ™Moy

and we will add on to these commutative diagrams one final time to obtain the following commutative
diagram:

my — mby
mi3 — m6

e
N

Moy — m6

m mo

N
S

Adding all of our newest constructions to the large diagram, we get the following commutative diagram:
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/! ——k——m

.
<

ms — mi,

/

n;, —— n ——m miz —— my

N

my —— mis

.

|l —— k——m mo

my — mby

N

Moy — m6

e

my — mby

<.

SNSNSNSN

<

.

NSNSNSNS

/! ——k ——m

Now just think of this commutative diagram in Mod 4 with the A-modules indexed by the elements
in .# above because it’s tedious to relabel the entire diagram. Because all of the morphisms are linear,
if we want to show that Fu(m;) + Fv(m;) ~ Fu'(my) + Fv'(mj), it suffices to show that there
exists morphisms xo : I’ — mg and x1 : I = mg such that F(x; o u)(m;) = F(x2 o uv')(my) and
F(x10v)(mj) = F(x20v')(m;). We claim that x; is the path from | — mg in the above diagram
and x2 is the path from I” — mg. Recalling that Fu(m;) = Fu'(m; ), when tracking our elements
m;, my, mj, mj, we have that the path i/ — n; =i — n; and j' - n; = j — n;. Therefore we track
the path of m; as

/! ——k——m

mg —— mis

N

mi3 — m6

e

ng ——mn-——>m

my — mi,

SN SN
NSNS

| ——k—m mo

equals
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equals
! —— k——m
/ \
i ms — M,
n, ——n ——m mis —— My
i my — mi,
\ /
|l —— k——m mo
equals
/! —— k——m
/ \
i ms — mi;
ng —— N ——m myz — My
i my —— mis
N e
Il ——k——m mo
equals
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Z/

i
£

<

NN

.

mg — mis

mi3 — m6

my —— mi,

ng ——n ——m

.

NSNS

| —k—m mo

which demonstrates that F(x1 o u)(m;) = F(x2 o «’)(m;). On the other hand, tracking mj,

[—— k——m mo

my —— mby

N

Moy — My,

e

my —— mby

<.

SN\ SN

nj*>n—>m

~

.

|
|

NSNS NSNS

equals
l—— k——m mo
N /
J Mg —— Mgy
nj ——n——m Moy — My
J My — My
! —— k ——m
equals
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[l —— k——m mo

j my — mby
nj ——mn-——m Moy — M)
Vi my — mby
/! —— k ——m
equals
/l*>k—>m mo
j my — mby
nj*>n4>m\ Moy — My
Vi my — mby
! ——k ——m
equals
/l*>k—>m mo
j mg —— mby
nj*>n—>m\ Moy —— My
Vi mg — mby

/! ——k ——m

which shows that F(x1 o v)(m;) = F(x2 o v")(m;/). This proves that
Fx1(Fu(mg) + Fu(my)) = Fxz(Fu'(mi) + Fv'(myr))

so that indeed
[(Fu(mi) + Fu(my),1)] = [(Fu'(my) + Fv'(m0), )]

so addition is independent of choice of u,v, and .
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We define multiplication as a[(m;,i)] = [(am;,i)]. To show multiplication is well defined, suppose
(mj,i) ~ (mj,7). Then for some f:i— k and some g:j — k, Ff(m;) = Fg(m;). Then

Ff(am;) = aF f(m;) = aFg(m;) = Fg(am;)
implies
(mi, i) ~ (my,j) = (ami, i) ~ (amy, j) = a[(ms, )] = a[(m;, j)]

demonstrating multiplication is well defined.

The module axioms are readily verifiable. Now suppose we have an A-module W that satisfies the
commutativity of the diagram indexed by .# equipped with morphisms «;. We want to show

w

(673 |

We will construct such a unique map. By commutativity, we are required that ¢([(m;,1)]) = a;(m;).
This proves ¢ is unique. To prove ¢ is well defined, suppose (m;,i) ~ (m;,j). Then there exists
some f :4i — k and some g : j — k such that Ff(m;) = Fg(m;). Then the following diagram must
commute:

Therefore
ai(m;) = ag o Ff(m;) = a o Fg(m;) = a;(my)

so @ is well defined. To show ¢ is linear, we have
o([(mi, )] + [(my, 5)]) = L([Ff(mi) + Fg(m;), k]) = ar(Ff(mi) + Fg(m;))
= ag o Ff(mi) + ay o Fg(m;) = ai(mi) + a;(m;) = @([(mi, 9)]) + @([(m;, 5)])

by the below commutative diagram:

Additionally,

p(al(mi,i)]) = @([(ami, 1)]) = ailam;) = aa;(mi) = ap(((mi, i)])

which proves existence. O
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Exercise 1.4.G

Proof. We take the index category to be the elements of .S where there is an arrow s : s; — so if and

only if so = ss; for some s € S. In this case, we define the map F's : iA — i as

a sa

S1 581
Our index category is filtered as for any si,s2 € S, there is an arrow s; — s1S2 and an arrow
So — $182. By construction, there is at most one arrow from any object to any other object, so the
second condition is trivially true. To show that hg %A is isomorphic to S™' A, we will first show the
existence of a morphism ¢ : hﬂ %A — S71A. For each s € S, we define a map ¢, : %A — S71A given
by ¢+ %. To induce the map ¢, we want to show the following diagram commutes:

S~1A
N
14 ) 14
5S1 S1
e tas © F(8)(7) = tasy (7)== = = 0a(5)
551 s17 g8’ s1s s s

which proves the diagram commutes, hence we obtain the induced morphism ¢ : lir %A — STLA.
Now to find the inverse morphism, we will use the universal property of S~*A. We construct a

map a : A — hg%A given by a(a) = §. To show that for any s € S, multiplication by s is an
automorphism of hgq %A7 if we take any ; € hg %A such that
a
5= =0 — My
S s’

if and only if there exists some F'(r) such that F(r)(3%) = 0, which by definition means

rsa
— =0

s'r

which is true if and only if there exists some r’ € S such that
r'rsa =0
Assuming that 0 ¢ S, using the fact that A is an integral domain and r'rs € S implies
a=0
Therefore multiplication is injective. To show multiplication by s is surjective, fix any & € hgl %A.

Then
a as as a a a

S— = — = —_— = F S —_ = —_ = —
s's  ss’ (ss’) ( )(s’) (s’) s’
so indeed multiplication by s is an automorphism. Therefore we use the following universal property
toget amap ¢: ST1A — M%AZ

A—— S71A
X 3
L1
ling A
These can easily checked to be inverses of each other, which proves the isomorphism. Equivalently,

we could have just used the previous exercise to look at the structure of li %A, and observed that
the underlying sets are the same, and then proved the structures are isomorphic as well. O
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Exercise 1.4.H

Proof. The commutativity of
16] M/ ~

v

commutes by definition of ~. Now suppose

M, £,

w
2
M;

commutes. If

P M;/ ~ |

S

M—>M

the induced morphism ¢ would have to satisfy ¢ ot; = g;. By linearity, this determines ¢ completely

as
@(Z g mz Z @ o L’L mz Z gi(mi)
[ [

because also every element of the direct sum is in the image of one of the +’s. This proves uniqueness.
To show ¢ is well defined on equivalence classes, suppose F'(n)(m;) =m; <= m; ~ m;. Then

poi(mi) = gi(m;) = gj o F(n)(m;) = gj(m;) = ¢ or;(m;)

so @ is well defined. ¢ is A-linear as

<P(Z vi(m;) + Z%(”y‘)) = oD ulmi+ni) =Y pou(mi+n) = @oulm)+ Y @oun)

i i i j
and

p(ati(mi)) = (tilam;)) = gi(am;) = agi(m;) = ap(ti(m;))
Then indeed the construction is the colimit. O
Section 1.5

Exercise 1.5.A

Proof. The diagram is below where g, = go and Gg, = Ggo:
Mor(F(A), B) —£— Mor4(F(A), B')

J{TAB J/TAB/

Mor 7 (A, G(B)) ~225 Mor (A, G(B"))
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Exercise 1.5.B

Proof. We define n4 to be Tap(4)(idpa)) and ep as TF_é(B)B(idG(B)). Tracking 174 on the bottom of
the diagram below:

Mor(F(A), F(A)) —~— Morg(F(A), B)

J/TAF(A) J/TAB

Mor,, (A, GF(A)) 2 Mor,, (A, G(B))

we see
Gg«(na) = Ggona
while on the top we get
TaB © gx(idp(a)) = TaB(9 0 idp(a)) = TaB(9)
By commutativity, the two must be equal, and g € Morg(F(A), B) was arbitrary.

For eg, we will use the following diagram:

Morg(FG(B), B) —Ls Morz(F(A), B)

J/TG(B)B J/TAB

Mor (G(B), G(B)) —L = Mor (A, G(B))

On one hand, we get
Ff*(eg) =epo Ff

while on the other hand we have
Tap © f*otamp(B) = Tap o f(idan) = Tap(idam) o f) = Tip(f)

and by commutativity the two are equal, where f € Mor (A, G(B)) was arbitrary. O

Exercise 1.5.C
Proof. We will use the following universal property:
MxN—s M®N
\ -
P
For an arbitrary ¢ € Hom(M, Hom(N, P)), we let a(m,n) = ¢(m)(n). Then

a(my +ma,n) = ¢(m1 +mz)(n) = ¢(m1)(n) + ¢(ma)(n) = a(mi,n) + a(msg,n)

and
a(m,ni +n2) = ¢(m)(n1 + na2) = ¢(m)(n1) + ¢(m)(n2) = a(m,n1) + a(m, nz)
as well as

a(am,n) = ¢(am)(n) = ag(m)(n) = ¢(m)(an) = a(m,an)

which proves « is bilinear, hence we get our induced map 84 € Hom(M ® N, P). Then we can define
a map ¢ : Hom(M, Hom(N, P)) — Hom(M ® N, P) as ¢(¢) = Bg.

55



On the other hand, if we have some ¢ € Hom(MQN, P), we will define some v € Hom(M, Hom(N, P))
where y(m)(n) = ¢(m ®n). Then indeed for any arbitrary m € M, v(m) € Hom(N, P) because

Y(m)(n1 +n2) = ¢(m @ n1 + n2) = p(m @ n1) + $(m ® nz) = y(m)(n1) + y(m)(n2)
and
v(m)(an) = ¢(m @ an) = ap(m @ n) = ay(m)(n)
Also v € Hom(M, Hom(N, P)) because
Y(my +ma)(n) = ¢(my +ma @n) = ¢(m1 @ n) + ¢(ma @ n) = y(m1)(n) +v(m2)(n)

and
v(am)(n) = p(am ® n) = ag(m ®n) = ay(m)(n)

Therefore we can define a map ¢ : Hom(M ® N, P) — Hom(M, Hom(N, P)) given by ¢(¢) = 7v4. To
show that ¢ is a bijection, we observe

po@(d)(m@n) = p(1s)(m @n) =7s(m)(n) = ¢(m@n)

and
@ op(g)(m)(n) = &(By)(m)(n) = By(m @ n) = ¢(m)(n)

L and ¢ is a bijection. O

so indeed ¢ = ¢~

Exercise 1.5.D

Proof. We fix arbitrary f € Hom(A’, A) and g € Hom(B, B’) and define
Tap : Hom(A ® N, B) — Hom(A,Hom(N, B)) as ¢! in the previous exercise, which we proved was
a bijection. We first want to show that the following diagram commutes:

Hom(A ® N, B) — 2™, Hom(A' ® N, B)

l‘l’AB lTA’B

Hom(A, Hom(N, B)) —_— Hom(A’, Hom(N, B))
Fixing any ¢ € Hom(A ® N, B) and any o/ € A’ and n € N, we get on one hand that
Tapo f@ON™(¢)(d)(n) =Tap(do fR®N)(d)(n) =do f@N(d @n)=d(f(d)®n)
On the other side of the diagram, we get
frorap()(@)(n) =Tap(8) o f(a')(n) = ¢(f(a’) @ n)
which proves the diagram does commute. Now we want to show the below diagram commutes as well:

Hom(A® N,B) —%— Hom(A® N, B)

J{TAB J{TAB’

Hom(A, Hom(N, B)) -2 Hom(A, Hom(N, B'))

where g, is as usual and g.. = (g«)«. Fixing any a € A,n € N and ¢ € Hom(A ® N, B), we get on
the top that
Tap' © g«(9)(a)(n) = Tap/ (g0 ¢)(a)(n) = g o p(a @ n)
On the bottom, we get
gux 0 TaB(0)(a)(n) = g» 0 TAB(¢)(a)(n) = g 0 TaB(¢)(a)(n) = g o p(a @ n)

which shows this diagram commutes as well, proving that -@ N and Hom(N, -) are adjoint functors. [J
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Exercise 1.5.E

Proof. We want to first show that the following diagram commutes:

Hom(N ®5 A, M) 222 Hom(N’' @5 A, M)

J{T N M J/TN M

Hom(N, Mp) — Hom(N’, M)

To do this, we first need to define what 7y is. Given any ¢ € Hom(N ®p A, M), let o(¢) €
Hom(N, Mp) act as

p(@)(n) = p(n@1)

To show (@) is actually B-linear, we observe

@(@)(n1 +1n2) = ¢(n1 +n2 @ 1) = ¢(n1 @ 1) + d(ng @ 1) = p(¢)(n1) + ¢(¢)(n2)
as well as
p(0)(bn) = d(bn © 1) = bp(n © 1) = bp(¢)(n)
On the other hand if we have some ¢ € Hom(N, Mp), let ¢(¢') € Hom(N ®p A, M) act as

$(¢")(n®a) = ag'(n)

where we can consider elements of M as elements of Mp and vice versa. To show ¢(¢') is well defined,
we define for ¢’ an a: N x A — M as a(n,a) = a¢’(n). Then

a(ny + ng,a) = agd’(n1 + n2) = ag’(n1) + ad’(n2) = a(ni,a) + a(ng, a)
and
a(n, a1 +az) = (a1 + a2)¢' (n) = a1’ (n) + a2¢’(n) = a(n,a1) + a(n, az)
as well as
a(bn,a) = ad’(bn) = bag'(n) = a(n, ba)

which demonstrates ¢ satisfies the universal property below:

NxA—— N®pA
\3‘!
M

1

Now to show ¢ = ¢~" and ¢ is a bijection, we have

pop(¢)(n) =g(¢)(ne1) =¢(n)
as well as
@op(@)(n®a) = ap(¢)(n) =ad(n®1) = ¢(n ®a)
which proves the two are inverses and are bijective.
Therefore we define 7y as ¢ was above, so we’ve already shown 7y, is a bijection. Now back
to the diagram below,

Hom(N @5 A, M) L2245 Hom(N' 5 A, M)

J/TNIW lTN’ M

*

Hom(N, Mp) ——— Hom(N’, Mp)
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we fix any ¢ € Hom(N ®p A, M) and any n’ € N’, then
v o f @AY (P)(n) = fRAT(P)(n ®1) =do fRAMN @1)=¢(f(n)@1)
On the bottom side, we get
fromvm(@)(n) = mvm(@) o f(n') = Tva(9)(f () = 8(f(n) @ 1)

so the diagram commutes. To show

Hom(N ®p A, M) —<— Hom(N ®5 A, M)

J/TN M lTNM’

Hom(N, Mp) —%—— Hom(N, M)

the above diagram commutes where the g, on the bottom is now considered to be B-linear, fix any
¢ € Hom(N ®p A, M) and any n € N. Then

TNM © G« (0)(n) = TNmr (g 0 9)(n) = g o p(n © 1)

On the bottom,
g« o TNM(B)(n) = goTnm(P)(n) =gop(n®1)

This proves that -g is right adjoint to - ® g A. O

Exercise 1.5.F

Proof. If GG is an abelian group, then we claim that the following diagram commutes for every map
of abelian semigroups ¢ and every abelian group H:

¢ 49, g

|
\“’/‘3!
~

H

If such a unique map ¢ were to exist, then it would satisfy
poidg=¢p=9¢=9¢

This proves uniqueness. Existence is obvious since ¢ = ¢ gives existence. O

Exercise 1.5.G

Proof. We will take the construction given in the problem for our construction, where
[(a,0)] + [(¢, d)] = [(a +¢,b+d)]
Suppose that (a,b) ~ (a’,b) and (¢,d) ~ (¢/,d’). Then there exists e; and e; € S where
a+b +e=b+ad +e

and where
ct+d +exs=d+c + e

It follows that (a + ¢,b+d) ~ (a’ 4+ ¢/, b’ + d') because

at+c+bV +d+(e1+e)=(a+b +e)+ (c+d +ea)
=0b+d +e)+(d+ +e)=d+ +b+d+ (e1 + ea)
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Therefore addition is well defined. Also
[(a, )] + [(c;d)] = [(a + ¢,b+ d)] = [(c + a,d + b)] = [(c,d)] + [(a, b)]

so addition is commutative. In a similar fashion, addition is associate because it is in S. Because S
is nonempty, there exists some s € S, so we claim that [(s, s)] is the identity on H(S). It’s clear that
this identity is independent of the choice of s € S because for any s,r € S,

s+r+s=r+s+s=(s,s)~(rr)
To show [(s, s)] =0, for any a,b € S, we have
[(c;0)] + [(a,b)] = [(c + a,c+ b)] = [(a, b)]

because
ct+a+b+a=a+c+b+a= (c+a,c+b)~(abd)

Also, we claim that [(a,b)]~! = [(b,a)]. To show this,
[(a,0)] + [(b,a)] =[(a+b,b+a)] =[(a+ba+b)] =0
Therefore the abelian semigroup map is
s [(s +5,5)]
To show this map ¢ is linear, we see
pla+b)=[(a+b+a+ba+b)]=[(a+a,a)+[b+0bDb)]=p(a)+pb)

Now to show that H is left-adjoint to the forgetful functor F', we first want to show the following
diagram commutes:

Hom(H(A), B) "5 Hom(H(4'), B)

lTA B J/TA 'B
*

Mor(A, F(B)) —L— Mor(A’, F(B))

where we define H f([(a,b)]) = [(f (a),f(b))] and where we define 745(¢)(a) = ¢([(a + a,a)]) and
715@)([(a,b)]) = ¢(a) — p(b). To show 75 is well defined, suppose (a, b) ~ (c,d). Then there exists
some e € A such that

a+d+e=c+b+e

By linearity of ¢, we get
p(a) +¢(d) + p(e) = p(c) + p(b) + p(e)

Because now these are considered as objects of B, we have cancellation so

p(a) +@(d) = p(c) + ¢ (b)

By subtraction in B, we get

p(a) — @(b) = ¢(c) — o(d) = T4 5()([(a,b)]) = Tap () ([(c, )

Then for any ¢ € Mor(A, F(B)) and any a € A, we get

ap 0 Tap(9)(a) = T () ([(a + a,a)]) = p(a + a) — p(a) = ¢(a)
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and on the other hand

Tap ©TaB(9)([(a,0)]) = Ta(¢)(a) — Tap(8)(b) = é([(a + a,a)]) — ([(b+b,b)])
= ¢([(a+a,a)] = [(b+,0)]) = 6([(a + a,a)] + [(b;0 + b)]) = &([(a + a + b,a+ b+ b)]) = 6([(a, b)])

This proves that our T;é is actually the inverse of 74 and that both are indeed bijections. To prove
the diagram commutes, we have for any a’ € A’ and any ¢ € Hom(H (A), B),

Tap o Hf*(¢)(a") = Hf*(¢)([(a' +d',d)]) = po Hf([(a' +a',a")])
= o([f(a’) + f(a'), f(a")])
On the other hand,

frotap(@)(d') = tap(8)(f(d) = &([f(a) + f(a'), f(a")])
so this diagram does indeed commute. Now we want to show the following diagram commutes:
Hom(H(A), B) —%— Hom(H(A), B)
JTAB lTAB,
Mor(A, F(B)) —2 Mor(A, F(B'))
Then for any ¢ € Hom(H(A), B) and any a € A,

Tap © g«(0)(a) = g«(¢)([(a + a,a)]) = g o ¢([(a + a,a)])
while along the bottom,

Fg.o1ap(¢)(a) = FgoTap(¢)(a) = Fgod([(a+a,a)]) = go é([(a + a,a)])

since Fg(x) = g(x) for all x € F(B). Therefore both diagrams commute, which proves that H is left
adjoint to F. O

Exercise 1.5.H

Proof. To show this embedding is fully faithful, it suffices to show that every morphism f: M — N
in Mod, defines a unique morphism f : S~'M — S~!N in Modg-14 because it’s clear that every
Modg-: 4 morphism defines a unique Mod 4 morphism. By the universal property of M and N, if
f: M — N then we have the following commutative diagram:

M——s S™1M

\ﬁ!

N

because S~'M =2 M when M is already an S~!'A4 module. Also N = S~ N yields the desired unique
f':S™'M — S7'N. We could understand the action of the induced map f’ : S™'M — S~'N by
noticing that

1= 1) =) = 1 C)s
so that . 1
F) =5

which defines the desired S~!'A module homomorphism which must act as

my _1fm) _ fm)

S s 1 S

f(
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Furthermore, the forgetful functor applied to this induced homomorphism is indeed the original map
f.

If we let L : Mody — Modg-14 be the localization functor, we claim that L is left adjoint to the
forgetful F' : Modg-14 — Mod,4. For any objects X,Y € Mody and W, Z € Modg-1,4 and any
f:Y — X, we have

.
(LX), 2) L5 Hommod,, , , (L(Y), Z)

J/TX 4 lTY z

Homod , (X, F(Z)) —L— Homppod , (Y, F(Z))

HOD’lMod

where 7 is just the forgetful functor acting on homomorphisms, which commutes because

frorxz(9)(y) =1xz(9) o fly) =go f(y)

and
vz o Lf*(9)(y) = 1vz(90 Lf)(y) = go f(y)
where g € Hommod, , , (L(X),Z) and y € Y were arbitrary. On the other hand,

Hommod,_, , (L(X), W) —*— Hommoa,_, , (L(X), Z)

J{TX w J{TX z

Fg.
Homntod , (X, F(W)) —Z— Hompod (X, F(2Z))
which commutes because

Tx7 0 g«(f)(x) = Txz(g0 f)(x) = g o f(x)
as well as
Fg.omxy(f)(x) = Fgorxy(f)(x) =go f(x)
where g: W — Z, f: L(X) — W and = € X are arbitrary.
Then indeed L is left adjoint to F. O

Section 1.6

Exercise 1.6.A

Proof. im f < A"! by Lemma so 0 — im f? Ny being exact is clear. Furthermore, if
Tl AL cokiis the projection, ker 7/ = im:* so im f? Ly AT T ok f? is exact. Finally, 7 is

epic by Lemma which shows A1 I cok f? = 0 is exact as well, thus proving

0—im f* 5 A% I cok ff =0
is exact.
For the second exact sequence, we first want a monomorphism H?(A®) — cok f*~!. For notation, let

5% : ker f* < A’ be the canonical maps for each i. First, we obtain the following induced morphism
" from the below commutative diagram:




Using this factorization of f! = ¢ o 7~!, we obtain another induced morphism ¢’ from the following
commutative diagram:

Az’+1

ker fi —L— A

imdi—!

where f?o//=! =0 because f' = p' o7 ~! s0

f’LOLlilchZOﬂZilOLlil:(pZOO:()

Then we define H*(A®) = ker fi/im fi=! as cok ¢%, and let o° : ker f* — H*(A®) be the projection.
Then we obtain one last induced morphism x* from the following commutative diagram:

cok fi1

-

3!

-
-

HZ A.) rit
im fi1 (—>kerf’ S AL

L’L*l

where 7! 0 j* 0 ¢' = 0 because j' o ¢ = /=1 and 77! 0,71 = 0. We claim that y’ is the desired
monomorphism. By Lemma ker(r'~! o j%) = ker 71 =1im f'~!, hence by commutativity of the
above diagram ker(x® o ¢') = im f*~1. By Lemma since o’ is epic and

ker(x’ o 0%) = im f~! = ker o’
we obtain that x’ is monic as desired. Thus 0 — H?(A*) X cok fi~! is exact.

For the map w’ : cok f~1 — im f?, we will let it be the induced map from the following commutative
diagram:

im f?

S e

A’L 1 A’L

It follows from Lemma [0.3| that w’ is epic, so that cok f*~! “ im [t — 0 is exact.
The last thing to show is that ker w® = im x*, which we can do by showing that cok x* = w®. Because
x" is monic, we have

cok X' = cok f71 JH'(A®) = cok f71 /(ker f*/im fi= 1)
= (A"/im f*=1) /(ker f*/im f*=1)
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By Theorem (or the 3IT) , we get that
(A1t f171)fer £/ im 1Y) = A1/ Ker f

By the 11T [0.15] we have that _ _ _

A/ ker f* =im f*
which shows cok x* = im f* as desired. Therefore H?(A*®) X cok £i=1 25 is also exact, proving the
following is exact:

0= HI(A%) X5 cok fi71 <5 im fi 0

Exercise 1.6.B
Proof. Because H'(A®) = kerd'/imd'~!, we get that h'(A®) = dim(kerd’) — dim(im d*~!) by basic
linear algebra. The rank-nullity theorem also gives us that
dim(im d*) + dim(ker d*) = dim A
Therefore ‘ ‘ ‘ ‘ ‘
> (-1)'dim A* =Y "(—1)'[dim(im d') + dim ker(d")]

We claim that the index i is even if and only if dim(kerd’) and dim(im d’) have a positive sign in
S°(—1)%h?(A®). For the dim(kerd’) term, this is immediate. We also notice that the dim(im d*) term
actually comes from h**1(A®), which has a factor of (—1)**! = —1, so that

(- )% i (A®) = —(dim ker dtt — dimimdi) = dimim d* — dim ker d***

so indeed the sign of the dimimd’ is positive whenever i is even. A very similar proof shows that
the index i is odd if and only if dim(ker d*) and dim(im d’) have a negative sign in >_(—1)*h?(A®). It

follows that 4 , o
> (~1)'dimimd’ =) (-1)'h’(A%)

When A® is exact, then kerd’ = imd~! for every 4, so in particular dim ker d® — dimimd‘~! = 0 for
every i. By the main result, we get that

D (1) dim A’ =) (=1)'hH(A%) =0

Exercise 1.6.C

Proof. We can define the addition structure of Hom(A®, B®) as (o + )" = o' + B for each i where
a, 8 € Mor(A®, B*). This gives abelian group structure to Hom(A®, B®) because for each i, addition
commutes, associativity holds, and inverses and identities exist. This defines a morphism in Comg
because if for each ¢
aitlo fi = gioa
and something similar for 3, then
("' 4 B o fi= oo fi 4 B0 fi = gloal g0 f = g'o (ol + B)

because € is an abelian category so composition distributes over addition. This shows that the sum
of morphisms in Come are indeed commutative diagrams. We also need to show that addition
distributes over composition. If o, 8 : B®* — C*® in Com¢ and f,g: A* — B*, then

[ao(f+g)'=ao(f +g")=a'of +a'og =(aof) +(aog)
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(a+B)o I =(a'0f)ofi=alofitfof =(aof)+(fof)
again by Adl. in €. This shows that Adl. holds for Comg.
We claim that the zero object 0 in Comy is the exact sequence

= 0=0—=20—...
We can prove that 0 is initial because if we fix any
e AT 5 AT 5 AT 5 L€ Comgy

then
0 0 0

LD

L — AT s A A

clearly commutes, and because each arrow 0 — A’ is unique, it proves there is a unique morphism in
Comgy from 0 — A® so indeed 0 is the initial object in Come. A very similar argument shows that
0 is final in Come, hence 0 is the zero object in Come. This proves that Ad2. holds in Comg.
We define the product A® x B*® as the complex where

(A®* x B*)! = A’ x B*
and the morphism A? x B — Al x Bl is given by (A" — A**!) x (B* — B**!), which more
precisely is the induces morphism in the following commutative diagram:

A' x B
3

~

Ai—i—l X Bi+1

T/ \,f

Aitl Bit1
and the projection A® x B® — A® is the following commutative diagram:

L — Al x BTl A B AL pitl

| | |

S A Al A+l

* which commutes by definition—the projection to B® is almost defined identically. It’s easy to show
that this is indeed the product in Comg. Therefore Comy satisfies Ad3., so Come is additive.
To show Come is abelian, we take any f: A®* — B® and claim that ker f is the complex below:

. — ker fi71 —— ker f* —— ker f*t! —— ...

where for each i the arrow ker f©=! — ker f? is the one induced in the following diagram:
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Bi
2
ker f@ — A

1
ar

ker fi_1 Ai-l

where if for each i we let g° : A* — A**! be the morphism of the complex A® and h' : B — B! be
the morphisms in the complex B® and let ¢ : ker f* < A* be the inclusion, we have by definition of
f being a morphism in Come that the following diagram commutes:

A1l 9" Al
J/f‘i—l J/fl
Bi-1 Al pi

Therefore o _ ' _ _ _
fz 092,1 ° L7.71 — hzfl o fzfl o[/lfl _ hzfl 00=0

proving that we do indeed get the desired induced morphisms. By construction, the following diagram
also commutes:

Qi1 g' A g’ A

Li— 1]\ Li]\ Li+1]\

. — ker fi=! —— ker f{ —— ker fitl —— ...

We can define cokernels dually, and to be precise we should prove that these satisfy the universal
property we want them to, but we shall not to save space. It’s an easy exercise if you wish.

This shows that kernels and cokernels exist, and f is a monic if and only if each f? are monic, in
which case we get by our constructions and the fact that € is an abelian category that ker cok f = f.
Similarly, cokker f = f whenever f is epic. This shows that indeed Come is abelian. O

Exercise 1.6.D

Proof. We will deal with the special case Mod 4 for ease of proof, which suffices because of the Freyd-
Mitchell Theorem although in general I try not to invoke this theorem. If h € Hom(A®, B®), then we
define a map H'(h) : H'(A®) — H*(B*®) given by

a+im f71 v hi(a) +im gt !
where a € ker fi. Notice that if a € ker f¢, then h'(a) € ker g* because
gi o h(a) _ hi+1 ° fz(a) _ hi+1(0) =0

To show H'(h) is well defined, we need to show it’s constant on representatives of im 1. To do this,
fix any a € im f*~! C ker f* and let f*~!(z) = a for some x € A*~1. Then

H'(h)(a) = hi(a) +img"™ = hio fiz) +img" ™' = ¢ L o b (z) +img" ™ = img' !

so indeed H*(h) is constant on im f*~! so it is well defined.
Then we can define H' : Comy — ¢ to be a functor. We can do this because Hi(ids) acts on
elements a + im f'= € H'(A®) as

a+im f71 i idgi (@) +im f7 = a + im 1
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which shows H(idae) = idyi(4e). If we're given f : A* — B® and g : B®* — C* as morphisms in
Comyg, then for any a € ker f°
H'(go f)([a]) = [go f(a)] = H'(9)([f(@)]) = H'(g) o H'(f)([a])

Then indeed H? is a covariant functor. O

Exercise 1.6.E

Proof. Let f,g: C®* — D*® be homotopic through maps w : C* = D~ ie. f — g = dw + wd. Fixing
some index i, we have f' — g’ = diy'w’ + w'tld,. We quickly observe d'~!w’ induces the trivial
map on homology since we mod out the image of d*~!. In addition, w**!'d’ induces the trivial map
on homology since H*(C*) = kerd’/imd*~!, so applying d' kills anything in H*(C*®). Then f? — g
induces the trivial map on homology, i.e. H!(f) = H'(g). O

Exercise 1.6.F

Proof. Suppose A’ L A% A s exact. EF : of — B is covariant, By Lemmas and we
have

imFf=Fimf = Fkerg=kerFg

Therefore F(A’) 4, F(A) EEN F(A") is exact as desired.
If F: o/ — % is contravariant, By Lemmas [0.21.1] and we get that

im F'lg = F coimg = F cokker g = F cokim f = ker F'im f = ker coim F'f = ker F'f

Exercise 1.6.G

Proof.  (a) To show the localization functor L : Mody — Modg-14 is left exact, suppose 0 —
M' L5 M 2 M” is exact. Then

0— S Mm Ly g-1pr

is exact because we know f is injective, which we can use to demonstrate Lf is injective as
follows:

if and only if there exists some ¢ € S such that tf(m’) = 0. But because f is A—linear, we
notice

tf(m') = f(tm')
Therefore tf(m’) = 0 if and only if f(¢m’) = 0, and now using the fact that f is injective, we
get that tm’ = 0, which proves that indeed

AL
s
Therefore Lf is injective as desired. To show ker Lg = im Lf, fix any =+ € im Lf and let
Lf(’:—,/) = %”7,) = ™. We want to show that Lg(*) = 0. To do this, we observe
_gofm) 0

:—:0
s s
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because im f = ker g. This shows im Lf C ker Lg.
g(m)

For the reverse inclusion, suppose Lg(%) = £~ = 0. Then there exists some r € S such that
rg(m) =0
If g(m) # 0, then by A-linearity of g we get
glrm) =0=rm € kerg

Because ker g = im f, let f(m’) = rm. Then

m’ fmy rm m

rs rs rs S

so indeed “ € im Lf. Therefore ker Lg C im Lf, proving the following sequence is left exact:
0— S M 2L 5= 22 g1
To show L is right exact, suppose
YRR VRN VL

is exact. By the second argument in the proof that L is left exact, we get that M’ — M — M" is
exact. The last thing to show is that Lg is surjective given g is. To do this, fix any "~ € STIM".
Because m” € M" and g is surjective, there exists some m € M such that g(m) = m”. Therefore
my_ gm) _m”
s’ s s

which shows L is right exact.

Check the solution to Exercise 1.3.H

Suppose 0 — M’ Ly M % M" is exact. To show f« is injective, suppose f.(h) = 0 where
h € Hom(C, M’). By definition, then foh = 0. By Lemmal0.5 ker(f o h) = kerh

M =ker0=ker(foh)=kerh

which implies that h = 0. Therefore f, is indeed injective.
Now suppose h € ker g, or equivalently g o h = 0. Then we get the following induced morphism
h':

M//
y
;1

kerg ——— M

because f monic implies im f = M’ and we know kerg = im f. Therefore h = f o h/, or
equivalently that f.(h') = h proving that im f. C ker g..
On the other hand, if h € im f,, then let h = f.(h’) or equivalently h = f o h’. Then clearly
h € ker g, because

g«(h) =goh=gofoh'=00h"=0

since im f = ker g. This shows im f. = ker g,, which proves the following is exact:
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0 —— Hom(C, M") —L~ Hom(C, M) —~— Hom(C, M")

If € is an abelian category, each hom-set is an abelian group, hence Hom(C,-) defines a left
exact covariant functor into Ab.

(d) Suppose A L, B % ¢ = 0is exact. To show 0 — Hom(C, M) 7, Hom(B, M) is exact, we want
to show that ¢* has a trivial kernel. If g*(h) = 0, then h o g = 0 But because C' = im g C ker h,
then C' = ker h so h = 0 so indeed g* has a trivial kernel.

To show Hom(C, M) LN Hom(B, M) EAN Hom(A, M) is exact, fix any h € ker f*. Then
ho f =0, and im f = ker g implies

cok f = B/im f = B/kerg = coimg = C

so we get the following commutative diagram:

If W : C — M is the induced morphism, we get h = h' o g = g*(h’) so indeed h € im g*.
On the other hand, if h € im g*, let h = g*(h’) = h' o g. It’s clear then that

fr(h)y=hof=hogof=h0o0=0

so then h € ker f*, which proves along with the previous result that im f* = ker g*. Then indeed
the following sequence is exact:

0 — Hom(C, M) LN Hom(B, M) EAN Hom(A, M)

Exercise 1.6.H

Proof. By the previous exercise we have that Hom(-, N) is left exact and that the localization L :
Mod s — Modg-1 A is exact. Therefore on one hand we have

A®a Ly q®0 9 8r

exact implies
0 — Homu (M, N) 2 Homa(A®?, N) 1 Homy (A%7, N)

is exact and so by left exactness of L we get that

0 = S~ Homa(M, N) 2Y7% 5=1 Hom, (427, N) 27 61 Hom 4(4%4, N)

is exact. On the other hand by right exactness of L, we have

§1A4%a Ly g1 q00 L9, -1y
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is exact so by left exactness of Hom we get

0 — Homg 1 4(S~1M, S™IN) 22 Homg 1 4(S~1 A%, S7IN) 25 Homg 1 4(S~1A%9, S~1N)

is exact.
If 2 € ker L(f*) where h € Hom(A®P, N), then
hy f*(h) _hof
:L V(=) = =
0= (sl = LB _ ke

Additionally, we notice that because

=N
and
EORL

it follows that

Ly =torp ="t

S

Then indeed ker L(f*) C ker L f*.
If now Lf*(h) = 0 where h € Homg-1,4(S1A®P, S7IN),

0=Lf*(h)=hoLf

and

It’s an easy exercise to verify that by S~'A linearity of h, indeed
_hof(x) _ hOf(

s 1 s

X

)

for arbitrary £ € S~'A%4. This proves that ker Lf* C ker L(f*), so

hoLf(%)

ker Lf* =ker L(f")
Therefore by exactness of the two sequence and by Lemma applied to L(g*) and Lg*,

Homg 1 4(S™'M,S™'N) = im Lg* = ker Lf* = ker L(f*) = im L(g*) = S~ Hom (M, N)

Exercise 1.6.1

Proof. For this proof, we will use notation from Exercise 1.6.A for the canonical and induced maps.
We will also use the notation that if f : A — B is a morphism, then f|™ : A — im f is the induced
morphism.
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(a) By Exercise 1.6.A, the following sequence is exact:
0= H(C*) X cokd™! “S imd — 0
By right exactness of F', the following is exact:
FH(C*) X% Feokd=! £% Fimd' — 0

By Lemma we have that F cokd’~! = cok Fd*~!. By Exercise 1.6.A again, the following

sequence is exact as well:
0— HY(FC*) %5 cok Fd™! 2 im Fd' — 0

By Exercise 1.6.A again, we have
71_1'

0= imd <5 ' 5 cokd' — 0
is exact, so by right exactness of F', the following is also exact:

Fimd L5 POt E75 peokdi — 0

We claim that the following diagram commutes:

Feokdi—t £<% Fimd

l: lFLi [fm

cok Fdi=1 —“ & im Fd*

To show this, we just need to recall the definitions of our morphisms. Firstly, we have the
following commutative diagram:

Fimd -£% poitt
Fuw'

F cok d'—1

Fei-t FL po

F(dilim)

as well as the commutative diagram below:

im Fd® —— FCit!

We observe that by commutativity of the two diagrams,
towo Fr™t = 1o (Fd")|™ = Fd' = Fi' o F(d'|™) = Fi" o Fw' o Fr'~!

Because F'ri~! is epic, we obtain the following commutative diagram:

70



Fimdi —£ poit!

=

cok Fd'=t —“— im Fd’
Using Lemma [0.20] and the exactness of our sequences, we see
im F.' = ker Frr" = ker F cok d® = ker cok Fd' = im Fd"

Thus the following diagram commutes:

Fimdi —F"y pei+t

FL'i ‘im
FwiT \ L]\

cok Fdi=1 —“ % im Fd’

Then by Lemma we get the desired canonical inclusion 6 : ker Fw® < ker w which shows

in‘im

FH(C*®) imFXi:keeri~'—9>kerw:imX:Hi(FC’°)

(b) By Vakil (1.6.5.3), we have the short exact sequences below:
0= imd ! L kerd' 25 HI(C®) = 0
0— imFd'~! % ker Fd* % HI(FC*) — 0
By left exactness of F', we get from the first sequence the following exact sequence:
0= Fimd' X% prerd’ £% FHI(C?)

and by Lemma Fkerd' = ker Fd'. We now observe the following commutative diagram:

Fcokdi—t
o

. i—1
peoi-1 4

By Lemma [0.21] we have ker Fr?~! = Fkern'~! = Fimd'~'. By Lemma [0.§ using the factor-
ization of Fr’~! through 7, we get the following commutative diagram:

Fcokdi—!

/ Jmics

. 1—1 .
ker Fri—t < poi
o

71



Letting o : im Fd*~' — Fimd'~! be the induced monomorphism in the diagram above, we now
claim that j = Fj* o a. To see this, we need to recall how we obtained j* (a nearly identical
idea is used to define j):

So we get that % o j° = ¢*~! and similarly x o j = ¢. Then we have
t=F/oa=Fr'oFjioa
as well as
L=Koj
Recalling that by Lemma Fkerd® = ker Fd' implies that x = Fx!. Therefore
koj=kroFjoa

implies, because  is monic, that indeed j = Fj% o «. Thus we have the following commutative
diagram that is exact across rows:

0 —— Fimd~! 2 Frerd 2% FHI(C®)

0 —— imFd~!' — & ker Fd' —%— H{(FC*) —— 0
We have two last morphisms to construct, and composing them will be the desired morphism.
The first is the induced morphism ¢ : cok Fj® — Fcokj® from the following commutative

diagram:

F cok j°




The second comes from Lemma where we get an epimorphism )\ : cok j — cok F'j° such that
o = Ao ¢. Then we have

. A . . .
cokj = H'(FC*®) = cok Fj* £ Fcok j' = FH'(C®)

(c) If F is exact, then w = Fw' because by Lemma Therefore 6, the canonical inclusion
from ker Fw! < kerw is actually just idye, p.i. Additionally, Fx![™ = idpgi(cs) because by
left-exactness of F, F'xy* = ker Fw".

Additionally, by right exactness of F, F¢' = ¢. By our constructions, we have

F¢' =ypoo
and
oc=Ao¢
Therefore
$=poo=porop

which by the fact that ¢ is an epimorphism shows ¢ o A = idg:(pce). This proves that indeed
@o X and fo Fx![™ are inverses of each other because they are both the identity on H*(FC*®) =
FH!(C*). Though it may feel strange that all of our maps just turned into the identity but
they were originally going from one object to another, it’s because each of the objects satisfies
the definition of the other when F' is exact, so they are the same object.

O

Exercise 1.6.J

Proof. This exercise is a special case of Exercise 1.6.J below because kernels are limits of the following
diagram _7:

e —> o

where ' : ¥ x # — %€ is the product functor of the functors .# — ¢ and # — ¥ and where
h = F(id, g) where g is the arrow on the bottom of 7. O

Exercise 1.6. K

Proof. Let F' : . x # — % be a covariant functor so that .# x _#, the product category of .# and
7, will be the index category of the desired limits. For the rest of the proof, let i,i" € .7, j,j' € 7,
f:i— i and g : j — j be arbitrary. To begin with, we notice we get a natural transformation
F(f,id) : F(i,-) = F(i',-) demonstrated below:

F(i,j) 299 g, )

F(f.idy) F(f,id;)

Fi’, ) 0 R, )

which commutes essentially by definition of the product category. Then we obtain an induced mor-
phism f : lim; F'(¢,j) — lim; F(i, j) from the commutative diagram below:
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FGp) T lmy F() F(i, )

1m;

Ppirjr
F(f,m / \ A,idj/)
F F(il,j/)

F(id;s,q)

With these induced morphisms f , we can actually index the lim; F'(4, j)’s by I. This gives us our
definition of lim; lim; F(4, j) below:

lim; lim; F'(¢, j

/

lim; F(4, j)

\

lim; F'(¢', )

~

Similar to above, we get an induced § : lim; F'(i,5) — lim;(F(4,') from the following commutative
diagram for each g : j — j':

lim; F (i, )

F(i,j)
4ij’ a5
F(id% ) F(id;,g)
F(f,id;/
F(iaj/) v : ) F(i/aj/)

Similarly, we can index the lim; F'(¢, j)’s by J with these induced §’s, so we also obtain the following
construction for lim; lim; F'(7, j) below:

lim; lim; F'(4, j

- \

lim; F'(4, 5) lim; F(i, ")

We also observe the following diagram

i el v
T T
lim; F'(t, 5) lim; F(i,7) lim; F(i', 5)
Qij di’
" F(7id;) o
F(i,j) — F(i', )
which commutes because
F(f,id)op” pZ]OfOTZ DPirg © Ty

Let ¢; : lim; lim; F(4, j) — lim; F(¢,j) be the induced morphism above. Now we want to show that
g o yj = ¢;. To do this, consider the following diagram:
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lim; hmj

Ti

90901
lim; F (3, j) lim; F' z,j’) lim; F (i, 5)
Pijr Di 1
F(f,id;/
F(i,j") idy) F(,j")

which commutes because
qijo © gop; = F(id;, g) 0 gij o pj = F(idi, g) o psj o 7 = pijr 0 T
as well as
qirjr 0 gop; = F(idy,g) 0 qijop; = F(idy, g) o pirj o 7o = pirjr 0 Tir

Because the diagram commutes, by uniqueness of ¢;; we get that indeed ;s = go ;. We claim now
that lim; lim; F'(¢, j) together with our morphisms ¢; are universal with respect to this diagram. To
prove this, suppose we have the following commutative diagram:

/\

lim; F(i,j) ———2——— lim; F(i,j")

Then by the below commutative diagram, we get an induced p,; : W — lim; F'(¢, j):

W
X | X’
3!
lim; F(i, §) lim; F (i, 5) lim; F'(4, j')
Pij Dyjr
Qij 45/
F(i, j) T F(i, ')

Now we claim that p; = fo ;. To show this, observe the following diagram:

lim; F(i, ) lim; F(i, ')

qilj ,,j,

which commutes because

pirj o fop = F(f,id;) opij o i = F(f,id;j) 0 qij o x5 = qirj © X;

and

piryr o fop = F(f,idj) o pijr o s = F(f,idj) 0 gijo 0 Xj0 = qirjr © X7
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By uniqueness of u;, we get that indeed p;r = f o p;. Thus we an induced 0 : W — lim, lim; F'(4, j)
from the following commutative diagram:

3!

~

/ il

lim; F (i, j)

Consider the following commutative diagram:

qij

F(i,j) GY))

We observe that
gij ©Xj =DijO s =PpijoTi0o0 =qijopjo0
as well as
Qi'j © Xj = Pirj © pir = Ppirj 0Ty 0 =g 0 pj00

This proves, by uniqueness of the arrow W — lim; F'(4, j) that indeed x; = ¢;06. We need to consider
one final commutative diagram:

F(f,id;/)

F(i', j")
We observe that

Qij’ © Xj7 = Pij' © fi = Pijr 0T 00 = gyj0 0 pjr 0

as well as

Qi/j’ (o) X]/ = pi/j’ O,U/i/ :pi/j/ O T;r O 9 = qi/j’ [ (pi/ [e) 9

Again, by uniqueness of the arrow W — lim; F (3, j'), we get that x; = ¢, 0 6. Thus indeed 6 is the
unique morphism making the following diagram commute:

w

3!

~

% it

lim; F(i, §) d lim; F(i,5')
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Therefore lim, lim; F'(i, j) satisfies the universal property of lim;lim; F'(,j), proving the two are
equal. O]
Exercise 1.6.L

Proof. By Exercise 1.4.F, we know what colimits look like in Mod 4. Suppose that F.G, H : .4 —
Mod4 are the index functors and we have f € Nat(F,G) and g € Nat(G, H) such that the following
sequence is exact in the category of functors Mod, :

0—sF L a2 H 0

where in particular, the f;’s are from the natural transformation f : F — G. We want to show that
the following sequence is exact:

0 —— colim M; % colim IV; m colimP;, —— 0
where colim f is induced by the following commutative diagram

colim V;

~

3!
N climM, S,

NN

and colim g is induced by a similar one. More explicitly, the map colim f and colim g acts as

colim f([m,i]) = [fi(m;), 1]
colim g([n;,4]) = [gi(n:), 1]

Suppose that colim f([m;,i]) = 0. By definition, this means (f;(m;), %) ~ 0, which, by definition of the
equivalence relation means there exists some k : i — j such that G(x)(f;(m;)) = 0 for some j € 7.
Then we observe the following commutative diagram, which commutes by naturality of f:

N, S9N,

fIT #]

M 2 g

Therefore

0 = G(r)(fi(mi)) = f;(F(k)(ms))
implies that, because f; is injective since f is monic, that F(x)(m;) = 0. By definition, this means
that [m;,i] = 0 so indeed colim f is monic.

To show colim g is epic —i.e. surjective — fix any [p;,¢] € colim P;. Then because g; is surjective, we
get some n; € N; such that g;(n;) = p;. Therefore

colim g([n;, 1)) = [gi(ni), 1] = [pi, ]
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so colim g is surjective as well.
The last thing to show is that ker colim g = im colim f. If [n;,4] € imcolim f, then [n;,i] = [fi(m;), ]
for some m; € M;. Then because im f; = ker g;,

colim g([ni,4]) = [gi(n4), 1] = [gi © fi(ms),i] = [0,4] =0

shows that im colim f C ker colim g. On the other hand, fix any [n;,i] € ker colim g. Because (n;,i) ~
0, there exists some 7y : i — j such that H(vy)gi(n;) = 0. We observe the following commutative
diagram

which shows then that

0= H(v)gi(ni) = g;G(v)(ns)

Therefore G(y)(n;) € kerg;. Because kerg; = im f;, let f(m;) = G(y)(n;). This shows that
(ng, 1) ~ (fj(m;), ), proving

(i, = [fj(m;), j] = colim f([m;, j])
so ker colim g C imcolim f, which proves equality holds and that indeed

0 —— colim M; ™™ colim N; “M™¢ colim P, —— 0

is exact. O

Exercise 1.6.M

Proof. By Exercise 1.6.K, colimits are exact. Then we can use colimits as a functor from Mod‘f, and
obtain by Exercise 1.6.H that

H colim C*® = colim HC®

Exercise 1.6.N

Proof. Suppose the following is exact:

0— A Ty Be 9, e 0

We observe that we get a morphism lim f from the commutative diagram below:
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We get a morphism lim g : lim B,, — lim C,, similar to above. We obtain that these morphisms act as
follows:

lim f(ay,as,...) = (fi(a1), f2(as),...)
lim g(b1, b2, ...) = (91(b1), g2(b2),-..)

To show lim f is injective, suppose lim f(aj,as,...) = 0. Then for each i, f;(a;) = 0, which because
each f; is injective, implies each a; = 0 so indeed lim f has trivial kernel.

To show limg is surjective, fix any (c1,ca,...) € limC,. For each i, there exists a b; such that
9i(b;) = ¢; because each g; is surjective. Then

limg(bl,bg,...) = (g(bl),g(bg),) = (01,02,...)

as desired. Now to show kerlimg = imlim f, pick any (fi(a1), f2(az),...) € imlim f. Because
ker g; = im f; for each ¢, we have

lim g(f1(a1), f2(a2),...) = (g91fi(a1), 92 f2(az),...) = (0,0,...) =0

which shows imlim f C kerlimg. Now suppose (b1,bs,...) € kerlimg, i.e. ¢;(b;) = 0 for each 1.
Because ker g; = im f;, we get that b; = f(a;) for every i. Then

limf(al,ag, . ) = (fl(al),fg(ag), .. ) = (bl,bg, .. )

proves kerlim g C imlim f. This proves that indeed

. li . li .
0 —— limA, LT lim B, —% limC,, —— 0

is exact. As a side note, I believe that we used the hypothesis that the transition maps of the left
term are surjective because this makes there only be one morphism from A; — A; with ¢ > j, though
I’'m not entirely sure. O

Section 1.7
Chapter 2

Section 2.1
Exercise 2.1.A

Proof. Fix any (f,U) € 0, \ m,. Then f(p) # 0 because (f,U) ¢ m,. Therefore % € O(V) for a

sufficiently small neighborhood V' C U of p such that f is non vanishing on W, and % must be smooth
because f is and doesn’t vanish on V' by continuity of f. We easily obtain that

Therefore (%, V) € 0, \ m, as well. By definition of the equivalence relation, we get that (f,U) =
(f, V). Therefore we observe that

1 f
(f? V)(*v V) = (*7 V) = (17 V)
f f
is the multiplicative identity on &),. Because multiplication here is commutative —since it is on R"
— we get that indeed (f,U) has an inverse. This shows that if we have some other ideal n C &, it
cannot be maximal because it is either contained in m,, or it is the entire ring &,. O
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Exercise 2.1.B
Proof. Here, we recall what the definition of the differential d : C°°(M) — Ty M given by

where f € C°(M) and v € T, M, i.e. alinear map C°°(M) — R that satisfies the product rule. Now
we will show that d is constant on m?. We recall that d is linear; therefore

d(z figi)(v) = Z d(fig:)(v) =Y v(figi) = Z filp)v(g) + g(p)v(f) = ZO +0=0

K3

using the fact that f;,g; € m, implies the vanish at p. Then we get the following unique map
d:m,/m> — T*M:

m, —%— T*M

=
El

m,/m2

This map is a homomorphism because d is linear. Now suppose df = 0 for some f € C°°(M). Then
by definition,

v(f)=0
for all v € T, M, which implies that indeed f = 0 because if we take the derivation v = % for each ¢
and of
- =0
oz’

then f is constant, but since f +m?2(p) = 0 it must be that f = 0, proving d has a trivial kernel. By
3] Page 281, the da'’ form a basis for T;* M. Thus if we fix any >, c;da’ € Ty M, we let f =, ciat,
which is certainly in m,/m2. Then

By 9f . A
d(f + mf,) = 8;2 dz' = Z cidx’

proves d is surjective as well, and hence an isomorphism. O

Section 2.2

Exercise 2.2.A

Proof. We want for each open set U C X, a set .#(U). This is given when .7 : Op(X) — Set is a
contravariant functor.

We want that for each inclusion U — V of open sets, a restriction map resyy : F(V) — Z(U).
This is equivalent to % (U < V) because & is contravariant, and the only maps on Op(X) are the

inclusions. We require that if
Wé————V
U

commutes in Op(X), that also the following diagram commutes:
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resw,v

Z(V)

F (W)
rcsm 0 AV

F

But this is exactly one of the requirement of .# being a contravariant functor.

Finally, we require resy,y = 1, which again, is one of the requirements of # being a functor. Also
notice that U < V < W is the arrow U < W because every morphism in Op(X) is a monomorphism,
and there is an initial object in the category @. There are no other requirements that % is a
contravariant functor, so the two definitions coincide. O]

Exercise 2.2.B

Proof. Clearly the assignment of any open set in C to any set of functions of a given type defined
on that subset together with the natural restriction of functions satisfies the definitions because
(flV)lv = flu as well as fly = f when f : U — C. Thus we will show that in both cases, the
definitions violate the Gluability axiom as well as satisfy restriction being well defined.

(a)

If f: U — C is bounded, then by definition for every € U |f(z)| < N for some constant
N eR. Then if V.C U and y € V, then

[flv)l=1fy)l <N

so indeed f|y is bounded. Now we show that the bounded functions violate the Gluability
axiom. For n = 1,2,... define U,, = D(0,n), the open disc of radius n about the origin and
define f,, : U, — C as f,, = 1. Then for arbitrary n and z € U, we observe

|[fn(@)] = || <n

by definition of x € U,. Then indeed every f, is bounded on U,. Now we observe that
U,—, U, = C. If there were a global function f : C — C such that f|y, = f, for every n, then

it must be that f = 1. But 1 is unbounded on C, which means the Gluability axiom fails.

Restricting holomorphic functions is holomorphic, so again restriction is well defined. Now we
define the following open sets Uy = {re?® € Z: 0 € (—m,m)} and Uy == {re? € C: 0 € (0,2n)},
as well as the identity maps on each of them, which are clearly holomorphic. We let hy(rei?)
Vre’? and hy(re?) = \/re?/? as well. We observe primarily that hi, hy are holomorphic on
Uy and U, respectively, and also that

hi =1y,

h2 =1y,

Then 1y, is a holomorphic function with holomorphic square root on U; and 1, is a holomorphic
function with holomorphic square root on U,. In addition,

]1U1|U1ﬂU2 = ILUlmUQ = ]1U2|U1ﬂU2

However, since U; U Uy = C, the global function f : C — C must be 1¢. However, there is no
global square root function of 1¢, so the Gluability axiom fails here as well.

O
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Exercise 2.2.C

Proof. We claim that a presheaf F' is a sheaf if and only if F(U,. , Us) = lim; je.» F(U;), F(U; N Uj)
for every collection of open sets {U, };c.». To be slightly more precise, the system of F'(U;), F(U;NU;)
is where all of the F'(U;)’s are not connected by any arrows, and each F(U; N Uj) has the restriction
arrows going into it from F(U;) and F(U;). Note that this implicitly encodes the restriction arrows
going from F'(U;) to F(U;) because then F(U; NU;) = F(U;), and indeed resy, y, = idy;, .

For the forward direction, suppose F' is a sheaf. Letting U := (J;c , Ui, then for every 4,5 € ., the
following diagram commutes by F' being a presheatf:

~

F(U;NU;)

where the arrows are the restrictions. We now wish to show F(U) is universal with respect to this
property. Notice that by definition of F' being a presheaf, the middle arrow is implicit and will be
omitted. Now suppose a set W also makes the diagram commute. Notice that the arrows from W
into each F(U; NUj;) is determined by the arrows from W to F(U;) and the arrows from W to F'(U;),
because the following diagram must commute:

LT

F(U; NU;)

Therefore we may forget about all of the arrows from W to F(U; NU;) and only consider those going
into each F(U;). If W = & then trivially the unique arrow exists, so we may consider W # &, and
pick any x € W. Define f; = p;(z) for each i € .#. Therefore, by definition of W making the
system commute, we have that f;|v,nv;, = fj|lu,nu; for each i, j. Then by gluablility, there exists some
f € F(U) such that f|y, = f; for every i € .#. Then we can define the map W — F(U) that sends
everything to f, which proves existence of the arrow going into F(U).

For uniqueness, suppose there exist two maps ¢ and ¢ from W — F(U) that make the following
diagram commute:

o~

F(U;NU;)
If ¢ # ¢, then there exists some z € W such that ¢(x) # ¢(z). However,

o(x)|u, = pi(z) = ¢()|u,



for each ¢ € .# by commutativity. By identity, this implies that ¢(z) = ¢(z), a contradiction. This
proves uniqueness, so F'(U) is indeed the limit of the system.

Conversely, suppose F(U) is the limit of the system. To show F satisfies gluability, suppose there is a
collection of f;’s for each i such that fi|v,nv; = fj|v.nv; for each i, j. Now, let W be the final set and

define maps p; : W — F(U;) that outputs f; for each ¢ € .#. Then the following diagram commutes,
and induces a unique morphism ¢ : W — F(U) below:

ék

F(U;nU,)

J

Then we can take (%) to be our map in F'(U) that restricts to give us each of the maps f;, which
shows gluability. To show identity, suppose we have f1, fo € F(U) such that f; |y, for every

i € .. If we define the set W := {f1, f2}, then W < F(U) naturally. Then the following diagram
commutes, so we obtain a unique arrow W — F(U) shown below:

6§
\/

]

F(U; NU;)

However, we can define two such maps that work, namely (W) = {f1}, as well as ¢p(W) = {fa}.
This implies, by uniqueness, that ¢ = ¢, so indeed f; = fa, proving identity.
Exercise 2.2.D

Proof.  (a) We will show smooth functions form a sheaf on a smooth manifold M, as this is the only
example in S2.1 that I can find. Clearly, this is a presheaf with the obvious restriction maps, so
we will just show gluability and identity.

To show gluability, suppose we have f;’s in C*°(U;) with f;|v,nv;, = fjlv.nu; for every i, j in the
index. Define a function f: U — R as

where U = |J, U;. This is well defined by hypothesis. By the pasting lemma, this function is
continuous as well. In addition, because differentiability is a local property, we have that
(0z1)n "€V T (Qgi)n
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exists for every n € N, proving that our function f € C*°(U), so gluability holds.

Identity is rather trivial: if there exists f1, fo € C°°(M) such that f1|y, = fa|y, for every i, then
because every point in U is in some U; and f; agrees with fy there, they must be the same at
every point, hence f1 = fs.

(b) Let X € Top, and F be the functor sending an open set U to the set Mor(U,R), together
with the obvious restriction maps. Again, F' is trivially a presheaf. To show gluability, let
fi € Mor(U;,R) be a family such that fi|v,nv;, = fjlv,nu, for every i,j. Then define a map
f:U—=>Ras

f(x) = fi(z) if x € U;

which is again well defined by hypothesis. This is also continuous by the pasting lemma. There-
fore f € Mor(X,R), so gluability holds.

For exactly the same reasoning as above, identity follows trivially because any two maps that
agree pointwise are equal.
O

Exercise 2.2.E

Proof. Like usual, Z is clearly a presheaf on X. To show % satisfies gluability, suppose {U;} is
an open cover of U, and suppose we have a collection of f; € Mor(U;, S)’s for each ¢ such that
filuinu;, = filu,nu; for every i,j. Then we can define f: U — S as f(z) = fi(x) if x € U;. This is
well defined and continuous by the pasting lemma, so gluability holds.

If We have f1, fa : U — S such that fi|y, = fa|u, for each 4, then for every x € U, fi(x) = fily,(x) =
folu, (z) = fa(x), so f1 agrees with fo everywhere, hence the two are identical. O

Exercise 2.2.F

Proof. Like usual, the presheaf axioms are readily verified by manipulation of definitions. To show
gluability, if we have a collection of continuous maps f; : U; — Y such that fi|v,nv;, = filv.nu, for
each 7, j, then we can define f(z) = f;(x) if © € U;. This is well defined and agrees on the intersections
by assumption, so it is continuous by the pasting lemma. Then we have our candidate f : U — Y
that restricts to each f;.

To show identity, if we have f1, fo : U — Y as continuous maps and fi|y, = fa|y, for every i, then
fi(@) = filv,(x) = f2|lu,(x) = fa2(x). Thus fi and fy agree everywhere, so they are identical. O

Exercise 2.2.G
Proof. (a) This is clearly a presheaf by simply rearranging the definitions, as
po (slyv) = (e sV = (Lo)ly = 1y (1)

shows that indeed restricting sections gives more sections. To show gluability, if we have a
collection of sections s; : U; — Y such that s;|y,nu; = sj|u,nu; for every 4,7, then we can use
the pasting lemma — using our assumptions — to obtain a continuous map s : U — Y where
s(x) = s;(x) if € U;. Then indeed, for every x € U, x € U; for some 4, so

pos(z) = posi(x) = 1y, (@) =
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proves puo s = 1y as desired. This shows gluability.
To show identity, if s1,s2 : U — Y are sections of p such that s;|U; = s2|U; for every 4, then for
arbitrary « € U, there exists some U; containing x, hence

s1(z) = s1lv,(X) = s2|u, (x) = s2()
Thus s; agrees with sy everywhere, so they are identical functions. This proves identity.

(b) This is a sheaf of sets by Exercise[2.2JF. Thus we want to show each .7 (U) has group structure.
Because Y is a topological group, for any f,g € .% (U), we may define the product fg to act as

fo(x) = fx)g(x)

This is indeed a continuous map from U to Y because multiplication is required to be continuous
by Y being a topological group. It follows that the identity element is the map that takes
everything to the identity element of Y. This operation is associative because Y is a group, so

(f9)h(x) = (fg)(x)h(z) = f(x)g(x)h(x) = f(x)gh(x) = f(gh)(z)

Finally, every f € .%(U) has an inverse f~!, where f~!(z) := (f(x))™!, i.e. a pointwise inverse.
This is indeed a continuous map because inversion is required to be continuous since Y is a
topological group. Secondly, we easily verify that

and

F @) = [ @) f(2) = (f(x) " fe) =1
indeed proves each multiplication gives the constant map to the identity, so the notation we
gave f~! is appropriate. Because .% (U) satisfies all of the group axioms, it may be considered

to be a topological group with this structure.
O

Exercise 2.2.H

Proof. To show m.% is a presheaf given .# is a presheaf, take any open set V€ Op(Y). Then
7 1(V) € Op(X) because 7 is continuous, hence 7..% is well defined. We can verify that if W C
V C U, then indeed 7= }(W) C 7= (V) C 7~ }(U), and the following diagram commutes with the
restrictions given by .# being a presheaf:

F(n= 1 (W) F(r=H(V))

\ /

F(x=H(U))

This is how we may define our restrictions for 7.7, resy,y = res,—1(yy,r—1(v), which is well defined
because V' C U implies that 7=1(V) C #=1(U). Finally, with this definition of restriction, we observe
that

resy,v = I‘eSﬂ.—l(V)m.—l(V) = idﬂ-—l(v) S idﬂ*y(v)

This indeed proves 7,7 is a presheaf as desired.

Now, let’s suppose further that .# is a sheaf. To show identity, suppose we have an open set
U € Op(Y) and an open cover {U;}, as well as fi, fo € m..7 (U), or equivalently f1, fo € Z (7= 1(U))
such that fi|.-1u,) = falz—1(v,) for every i. By identity of .7, it must be that f; = fo. This proves
identity.

To show gluability, suppose we have a collection of open sets U; € Op(Y’) covering an open set U,
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and maps f; € 7.7 (U;) such that fi|—w)nr-1(w,) = fil=—1@w)n=—1(v,) for every i, j. By gluability
of 7, we obtain a map f € Fr~1(|Jm~1(U;)) that restricts to each f; on 7#=1(U;). However, because
unions commute with preimages, we obtain that

Urw) =="1(v)

Thus f € Z (7 1 (U)) = 7.7 (U), and restricts accordingly, so gluability holds. Thus, m,.% is a sheaf
as well. O

Exercise 2.2.1

Proof. If we take the definition of a stalk .%, = colim % (U) where each U is a neighborhood of p,
then we get the following commutative diagram

Fp
(74T )q
/ \
) o T F (V)

T (U
because each m,.% (U) = Z (7~ 1(U)), and each 7=1(U) is a neighborhood of p since 7(p) = ¢q. Thus
we have the maps from Z (7~ 1(U)) — %, by considering every m..% (U) to be a neighborhood of
- O

Exercise 2.2.J
Proof. Because we require the following diagram to commute

Ox(V) x F(V) 250 (V)

lresvy X resy,u J/resV,U

Ox(U) x F(U) 288 Z ()
we have a well defined action of germs by picking the action of a representative. More explicitly, given
a germ [f,U] € Ox, and [g, V] € .%,, then we may define [f,U]-[g,V] = [flunv - 9lunv,UNV]. This
is well defined exactly because we require our diagram to commute. O

Section 2.3

Exercise 2.3.A

Proof. By definition of stalks as colimits of neighborhoods of p, if ¢ : . — ¥ is a morphism of
presheaves on X, then we get our unique induced morphism ¢, in the commutative diagram below:

>R

&)

Ell
resU,V

sy & )

¢EU>\ %,)
Z( V)

p

resy,v

U) ————— F(
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Exercise 2.3.B

Proof. By Exercise[2.2]JH, we’ve already shown 7, takes presheaves on X to presheaves on Y. If we're
given a morphism ¢ : % — ¢ of presheaves on X, then we obtain a morphism 7,¢ : m..% — 7,9 as
morphisms of presheaves on Y, shown below:

resy,v

™94 (U)

¢(W’1(U))T
resy,v

4 (V)
T F(U) —= 7,

%(fl(vn
F(V)

In other words, we define m,¢(U) to be ¢(m~1(U)), which is a morphism of presheaves on Y because
¢ was a morphism of presheaves on X. By stacking the commutative diagrams, we can show m,
distributes over composition below:

resy,v

T I (U) —= m,.(V)
W*W(U)T Tﬂ'*tp(\/)
G U) =2 1.9 (V)
mqﬁ(U)T quﬁ(v)
mnFU) =25 n, F(V)

The last thing to show is that 7, preserves identity morphisms of presheaves, which it does because
m.idg is the natural transformation that acts as m,id#(U) = idg (7 ~}(U)) = Z (7~ }(U)) = 7.7 (V)
that is shown below:

. FU) =25 0, Z(V)
Tr*id.gz(U)T Tmidﬂ(v)

. FU) 228 1, Z(V)

This natural transformation is the identity morphism on 7,.%, so as desired m, does preserve identities
and is thus a functor. O

Exercise 2.3.C

Proof. It’s clear that Hom(.%,¥) : Op(X) — Set is well defined. We may define the restriction maps
as follows: Given any U,V,W € Op(X) such that W C V C U and any ¢ € Hom(%,9)(U), we
define ¢|y as the natural transformation that acts as ¢|y (W) = ¢(W) — in other words, just forgets
its definitions on subsets not contained in V. This defines a natural transformation #|, — 4|y
because ¢ is a natural transformation .7 |y — ¢|y, and V' C U implies every open subset W of V
that ¢|y must act on is already taken care of by ¢. By this definition, it is clear that Hom(.%,9) is
a presheaf.

To show Hom(.Z,¥) satisfies identity, fix any U € Op(X) and let {U;} be an open cover of
U. Furthermore suppose we have two natural transformations ¢1,¢2 € Hom(%,¥)(U) such that
®1|lu, = P2|u, for each i. For an arbitrary open subset V C U, we will show ¢1(V) = ¢2(V). Because
{U;} covers U and V' C U, we obtain the following open cover {V;} of V:

{V;} = {Ul N V}
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Notice that each V; C U; by construction. Thus because ¢1|y, = ¢2|u,, it’s also true that ¢1]y, = ¢2|v;
for each i. Recall that because ¢ and ¢, are natural transformations, the following diagram(s)
commute for j = 1,2 and all ::

F(v) 29 g

resy,v; resy,v;
Z(vi) 2% (v

Fixing an arbitrary x € #(V), we obtain by commutativity that resy v, o¢;(V)(z) = ¢;(V;) o
resy,v, (z). However, since ¢1(V;) = é1]v, (Vi) = ¢2|v, (Vi) = ¢2(V;) for every 4, we obtain that

resv,v; (¢1(V)(2)) = resv,v; (92(V)(2))

for each i. By identity of ¢4, we obtain that indeed ¢1(V)(x) = ¢2(V)(z). But because V C U and
x € F(V) were arbitrary, we get that indeed ¢1|y = ¢2|v as desired.

To show gluability, suppose we have an open set U € Op(X) and an open cover {U;} of U. Suppose
further we have a collection {¢;} where each ¢; € Hom(.#,%)(U;) are such that ¢;|v,nv, = ¢;lv.nu,
for each 4,7, and pick an arbitrary open subset V' C U. We will define a natural transformation
¢ € Hom(.#,9)(U) pointwise. First, define V; := U; NV for each 4, and notice that {V;} form an open
cover of V. For each fixed section x € .ZV, we obtain sections g;(z) := ¢;(V;) oresyy, (z) € 4(V;) for
each i. We will now show each resy; v.nv; (9i(7)) = resv; v;nv; (g;(2)). By definition of each ¢; being
a natural transformation, the following diagram commutes for every i, j:

F(V) " 4(V)

resv,,v;nv; resv;,v;Nv;

ZWnv, Y viny)

which makes sense because V; C U; for each i, so we may indeed apply ¢; to these subsets. By
commutativity, we may observe that

resv; v;nv; (9i(2))

= resy, v;nv; 0¢i (Vi) o resy,y, ()

= ¢;(V; NVj) oresy, v,nv, oresy,y; ()

= ¢i(ViNVj) eresvv,nv; («)

= ¢;(VinVj) oresyy,ny, ()

=¢;(VinVj)o resy; v,nv; o Tesy,v; (x)

= resy; viny; °9; (V;) o resv,v; (2)

= resv;,vinv; (95(2))
Thus by gluability of ¢, we obtain a section gy (z) € 4(V) such that resyy,(gv(z)) = gi(z) =
¢i(V;) oresy.y, (x) for every i. Then we define the natural transformation ¢ € Hom(#,¥)(U) that
acts as ¢(V)(z) = gv(x) for every z € Z(V) and every V. C U. We need to show that this ¢

is a natural transformation, and that its restriction to U; gives ¢;. To show that ¢ is a natural
transformation, we want to show the following diagram commutes for all W C V C U:

resy,w resy,w

Fw) XY @)

(V)
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We will use identity of ¢4 to prove this. For arbitrary = € % (V), defining an open cover {W;} of W
where W, := W N U;, we compute that

resyw,w, op(W) o resy,w (x)

= resw,w, ogw (resv,w ())

= ¢;(W;) oresw.w, oresy,w ()
= ¢;(W;) oresy,w, (x)

On the other hand, we compute that

resw,w, o resy,w o¢(V)(x)

= resyw,w; oresy.w (gv(x))

= resy, w, oresy,y, (gv(z))

= resy, w, o¢;(V;) o resy,y, ()
= ¢;(W;) oresy, w, oresy,y, (x)
= ¢;(W;) oresy,w, (z)

Therefore identity of ¢ gives us that, because ¢(W) o resy,(z) agrees with resy,w op(V)(x) on
restrictions to every W;, that

resy,w op(V)(z) = ¢(W) o resy,w ()

Because W C V C U were arbitrary with € .Z#(V'), we obtain that indeed ¢ € Hom(.%#,¥)(U). The
last thing to show is that ¢|y, = ¢; for each i. Fix any W C U; and any x € .%#(W). Then, like before,
we have an open cover {W;} of W. We will use identity of ¢ one final time to show that ¢|y, = ¢;.
We compute that

resw,w, odlu, (W)(x)
= resy,w, op(W)(x)
= resw,w; ogw ()

= ¢i(W;) o resw.w, ()

while on the other hand

resw,w, 0¢i(W)(z) = ¢i(W;) o resw,w, ()

)
Thus because ¢|y, (W)(x) agrees with ¢;(W)(x) on all restrictions each W;, the two must be the same
by identity of ¢4. Because W C V and x € % (W) were arbitrary, we obtain that indeed ¢|y, = ¢;
as desired, which proves gluability of Hom(.#,%). Thus Hom(.#,¥) € Setx for all .# € SetX’“ and
94 ¢ Sety. O

Exercise 2.3.D

Proof.  (a) Notice that because {p} is the terminal object in Top, there exists a unique continuous
map from every U C X into {p}, which we will denote as fy. In other words, {p}(U) = {fu}
for each U, and fy|y = fy for every V. .C U C X. We define ¢ € Nat(Hom({p},.#) that acts
on ¢ € Hom({p}, #)(U) as S

p(U)(¢) = o(U)(fv)

For ease of notation, we write ¢(fv) to denote ¢(V)(fy) for all V.C U C X and ¢ €
Hom({p},-#)(U). Notice that for each ¢ € Hom({p},.Z)(U), ¢(fv) determines ¢ entirely be-
cause each {p}(V) = {fv}, and ¢ being a natural transformation implies the following diagram
commutes for all V C U:

89



) 2% 2

resy,v resy,v

(V)
(V) — F(V)
and resy v (fu) = fv, so ¢(fv) = resy,v o¢(fu). We will use this fact to define natural trans-
formations later and show that they are equal. To show ¢ is indeed a natural transformation,
we want to show the following diagram commutes for all vV C U C X:

Hom({p}, Z)(U) 2% 7 ()

Hom({p}, Z)(V) 22 7 (v)

<7

This commutes because for any ¢ € Hom({p}, #)(U), we compute that

(V) oresy,v(9)
= resy,v (6)(fv)
= o(fv)

= poresy,v(fv)
= resy,v ((fv))
= resy,v op(U)(¢)

by our definition of restriction of natural transformations defined in Exercise [2 . Now all
that’s left to show is that ¢ is an isomorphism, or equivalently, for every U C X , o(U) is a
bijection. To show surjectivity, fix any s € .%(U). Then there exists ¢, € Hom({p}, .%#)(U) such
that ¢s(fv) = resy,y(s) for every V. C U. To show ¢ is a natural transformation, we observe

that
¢s(V)
{P}(V) —— F(V)
rcsvw lresvw

{p}( ) 2z

commutes because

¢s(W) oresy,w (fv)
= ¢s(W)(fw)

= resy,w($)

= resy,w oresy,v ()
= resy,w 00, (fv)

Then because ¢(U)(¢s) = ¢s(fu) =resyu(s) = s, we get that indeed ¢(U) is surjective.
To show ¢(U) is injective, suppose ¢1, ¢2 € Hom({p}, #)(U) are such that

e(U) (1) = ¢(U)(¢2)

By definition, then ¢1(fy) = ¢2(fu). By our initial observations though, because ¢(fy) entirely
determines ¢ € Hom({p}, 7)(U), then ¢1 = ¢2 so (U) is injective too. Thus ¢ is an isomorphism.
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We may assume, without loss of generality, that X is connected, for if X =[] X; and

Hom(Z, #)(X;) =2 Z#(X;) for every i, then because 4(X) = [[¥4(X;) for every sheaf ¥ on X, we can
lift these isomorphisms to obtain # = Hom(Z, %) as desired.

Recall that Z(U) is the set of all continuous maps U — Z where Z is endowed with the discrete
topology for each U C X. Notice we have a particular map ¢y : U — Z that sends everything to
the generator 1 € Z. We claim that (cy) = Z(U). To show this, suppose we have some continuous
map f : U — Z. Then because Z is endowed with the discrete topology, we obtain that f~1(n) is
open for every n € Z. In addition, we directly observe that f=!(n) = f~(m) if and only if n = m.
Thus {f~*(n)} form a disjoint open cover of U. But because U is connected, it must be that exactly
one f~1(n) is nonempty. Thus indeed f(z) = n for all z € U and for some n € Z. In other words,
f = ncy, because we are working with sheaves of abelian groups, so we may multiply sections by
values in Z. This proves our claim that Z(U) = {cy) = Z.

Therefore for any ¢ € Hom(Z,.Z%)(U), ¢(U)(cy), or using the same notation as in part (a), ¢(cy)
determines ¢ entirely because ¢y generates Z(U) and

W) == ()

resy,v resy,v
zv) 2 zv)

commutes, along with the fact that resy v (cy) = ¢y so that

d(cv) =resy,v(d(cy))

Now we may define a map ¢ € Nat(Hom(Z, #),.Z) that acts as p(U)(¢) = ¢(cv) for every U C X
and ¢ € Hom(Z, .#)(U). We want to show that the following diagram commutes for all V.C U C W
to prove ¢ is a natural transformation:

Hom(z, 7)(U) 29 7 U)

J/I"GSU,V J/I‘ESU’V

Hom(z, 7)(V) 22 Z(v)

To show this, fix any ¢ € Hom(Z, %#)(U), then

resy,v op(U)(¢) = resy,v (¢(cv)) = ¢(resy,v (cu)) = ¢lev)
= resy,v(d)(cv) = (V) oresy,v (¢)

of course relying on the naturality of ¢, and the fact that we define ¢y to act just as ¢ does. Now
we wish to show that for every U C X, ¢(U) is a bijection. To show surjectivity, fix any section
s € F(U). We may define ¢, € Hom(Z,.#)(U) that acts as ¢s(V)(cy) = resy,v(s). Then by
construction, ¢(U)(¢s) = ¢s(cy) = resy,u(s) = s. To show that ¢, is actually natural, we want to
show the following diagram commutes for all W C V C U:

Z(V) #s(V) F(V)

lresv,w lreSV,W

zw) =M 7 (w)
We may compute that

resy,w o¢s(cy) = resyw oresy v (s) = resyw(s)
= ¢s(W)(ew) = ¢s(W) oresy,w (cv)
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which suffices because again Z(V) = (cv) for every V C X. Thus ¢(U) is surjective.

To show ¢(U) is injective, suppose p(U)(¢1) = p(U)(d2) for some ¢1,¢p2 € Hom(Z, F)(U). Then
o1(cu) = ¢p2(cy). By our previous observations regarding how ¢(cy) determines ¢ entirely, it follows
that ¢1 = ¢o as desired. Thus ¢(U) is a bijection, hence ¢ is an isomorphism.

Define ¢ € Nat(Hom(Ox, F), %) that acts as p(U)(¢) = ¢(1y) for any ¢ € Hom(Ox,.F)(U), where
ly € Ox(U) is the multiplicative identity. To show ¢ is natural, fix any V' C U C X. We claim the
following diagram commutes:

Hom(0x, 7)(U) 22 7 )

J{reSU,V resy,v

Hom(0x, 7)(V) 2Y% z(v)

Letting ¢ € Hom(Ox,.%#)(U) be arbitrary, we compute that

resp,v op(U)(¢) = resy,v (¢(1v)) = ¢(resy,v (1v))

= ¢(lv) =resy,v(¢)(lv) = @(V) oresy,v (¢)
This comes from the fact that ¢ is assumed to be natural, together with the fact that since each
resy,y : Ox(U) = Ox (V) is a ring homomorphism, it must preserve multiplicative identities.
Then indeed ¢ is natural. To show ¢ is an isomorphism, it suffices to show each ¢(U) is a bijection.
First, we claim that every natural transformation ¢ € Hom(&, .#)(U) is uniquely determined by its

action on 1y. To see this, if we take any V' C U and any « € 0(U), we observe that by definition the
following diagram commutes:

Ox(U) X2 F(U)

resy,v resy,v

ox(v) 22 7 (v)

For ease of notation, let ¢(1y) == ¢(U)(1y) for each open U. Because resy,y(ly) = 1y, we obtain
that

o(V)(x) = o(V)(z - 1v) =z - ¢(V)(ly) = z - resp,v od(1vr)

because we have that ¢ is a Modg, homomorphism. To show ¢(U) is surjective, fix any section
s € Z(U). Define ¢4 € Hom(Ox,.#)(U) that acts as

¢s(V)(1y) = resy,v (s)

for any V C U. By our previous observation, this defines ¢4 entirely. To show ¢, is natural, we want
to show the following diagram commutes for all W C V C U:

Ox(V) T F(V)

J{res vV, W J{res vV, W

ox (W) = (W)

To see this, by our previous observations it suffices to show both paths action on 1y agrees. We
observe

ds(W) oresy,w (lv) = ¢s(1w) = resy,w (s) = resy,w oresy,v (s) = resy,w ods(1ly)
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as desired. We also have that, by construction,

o(U)(¢s) = ¢s(1v) = resyu(s) = s

so ¢(U) is surjective.

©(U) is injective because if o(U)(¢1) = o(U)(¢p2) for some ¢1, o € Hom(Ox,.%)(U), then by defini-
tion ¢1(1y) = ¢2(1y). But by our previous observations, this action determines ¢; and ¢ to be the
same. Thus ¢(U) is injective, and hence ¢ is an isomorphism as desired. O

Exercise 2.3.E
Proof. We use the following diagram to define resy,y for every V. C U C X:

j(U) resy,v g\(v) (V)

g

w ker (V)
>

G(V)

3!

-
-

ker ¢(U)
Indeed,
d(V) oresy v oy = resy,y op(U) o vy = resy,yy o0 =0

so we obtain the induced morphism resy,y : ker ¢(U) — ker ¢(V') that makes the diagram commute.
By this construction, it is clear that resy,y = idyer ¢y by uniqueness of resyy and the fact that
respy © F(U) = F(U) = idg@w). The last thing to show is that for all W C V C U C X, we
have that resy,w = resy,w oresy,y. Notice that by our constructions of the restrictions, the following
diagram commutes:

resy,v resy,w

Z(U) F (V) F(W)

LU]\ Lv]\ Lw]\
ker (U) —2% ker (V) —=% ker (W)
By this diagram, it is clear that

Ly © TessEh oTesyEl, = resy oLy o TesESt, = resyy O Tesy v oLy = TeSy, vy Oly = Ly © Tesyhy,

where here we use superscripts to denote which presheaf the restriction is occuring in. Now, using the
fact that ¢y is a monomorphism, we obtain that indeed

resl{}f{/v o reslf}f’{, = reslljff;v

so kerpre ¢ is a presheaf. O

Exercise 2.3.F
Proof. Let m : 9 — cokpre ¢ be the projection defined on each open set U C X as
7y = cok p(U)

Dually to how we defined the restriction maps in Exercise [2.3.JE, we obtain natural restriction maps
for m. As shown in the commutative diagram below, we may observe that indeed 7 o ¢ is the zero
morphism in Mod};* because it is on each open V .C U C X:
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cokpre @(U) —== cokpre ¢(V)

o

of 9U) —=—9(V) Jo
%(U) (V)
FU) —= s Z(V)

Now suppose we have the following commutative diagram in Mod%? :
X

Nhy
COkPre ¢(U) P(U)

o

0 WUT
7)) 2, 4w

Now we define the morphism h : cokpye ¢ — 2 given on each open set U as hy. We now need to
show that h is in fact a natural transformation by showing the following diagram commutes for all
open V CU C X:

#U) —==" s W)

o] ]

k

cokpre H(U) 2= cokpre (V)
The good news is that 7 is an epimorphism, so we can compute the following equalities:
res? ohy oy
= res oyp(U)
= (V) ores®
=hyomyo res®

= hy ores®* oy

Because 7y is an epimorphism, we get that
res™ ohy = hy o res®*

as desired. Then indeed h is a natural transformation, and by construction h o = 1. O
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Exercise 2.3.G

Proof. We obtain a functor taking # — Z(U) and taking ¢ : & — ¢ to ¢(U). This preserves identity
morphisms by definition, and if we have .# LN A, then we take o to (o) (U) = w(U)op(U)
by definition, proving this is a functor.

Now, to show that this functor is exact, we will show that if .# LN N7t exact, then

F(U) iGN 4(U) O, J€(U) is also exact. Supposing the first sequence is exact, then kerp,e ¢ =
impe ¢ by definition. By definition of kerpre and cokpe (and hence imp,e), we obtain that

ker Y(U) = kerpre ¥(U) = impre ¢(U) = im (V)

Thus # (U) iGN 4(U) RACIN A (U) is exact as desired. To be completely thorough, we would need
to show that our functor preserves the additive structures of the hom-sets, but this is simply because
the additive structure of hom-sets in Ab% is defined by addition on each open set. O

Exercise 2.3.H

Proof. The forward direction is clear; to convince yourself, look at Exercise 2:3]G. For the reverse
direction, because kerp,e and cokpye (and hence imy,,e) are defined ”pointwise”, meaning on each open
set, we immediately obtain that 0 — % (U) — --- — £%,(U) — 0 exact for every open U implies
0— % — -+ — %, — 0is also exact. O

Exercise 2.3.1

Proof. Because the category of sheaves is a full subcategory of the category of presheaves, the universal
property is satisfied by a dual argument to Exercise . Thus it suffices to show that kerp,. ¢ satisfies
identity and gluability.

Suppose U C X is open, and {U;} is an open cover of U. Now suppose that we have a collection
of f; : kerpye ¢(U;) such that

fi

for each ¢,7. If ¢ : kerpye ¢ — F is the inclusion, consider {y, (fi)}. Then for each 4, j, ¢y, (fi)
tu, (fj)|lv.nu; because

UiﬁU]‘ = fj UimU]‘

UiﬂUj -

res? o1 = 1 o reskerre @

SO

w, (f)lvinu; = winu; (filvinw,) = wiow; (Filvino,) = w, (F)|v.nu;

Then by gluability of %, there exists some f € .Z(U) such that f|y, = v, (fi;) for each i. To show
feimy(U) = kerpre (U), we will show ¢(U)(f) = 0, where here 0 is the identity element of 4(U).
Notice that

O, = 0= o(Us)(ew, (fi)) = ¢(Us)(flu,) = o(U)(f)
for each i, where again 0 here denotes the identity element(s), we obtain by identity of ¢ that indeed
0 = ¢(U)(f). Thus f € im¢(U) as desired, so we take ¢;,*(f) to be the desired map in kerpe ¢(U).
We compute that

U;

wt (Do, = w5 (flu,) = g (w, () = fi
so gluability holds for kerp;c ¢.
To show identity, using the same open set and open cover as before, suppose we have fi, fo €

kerpre ¢(U) such that fi1|u, = fa|u, for each i. Then

w(flo, = w. (filv) = w.(f2lv,) = w(f2)lu,
for each i. By identity of %, we get that ty(f1) = ty(f2). Then by injectivity of ¢, we get f1 = fo as
desired. O
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Exercise 2.3.J

Proof. Recall that Z takes an open set to the abelian group of continuous maps U — Z, where Z
is given the discrete topology. There is a natural inclusion of Z into Oy, because locally constant
functions are holomorphic and Z C C. Thus

O%ZAﬁX

is exact. For the exactness at %, any function f € % (U) by definition has some holomorphic
g € Ox(U) such that exp(g) = f. Thus the holomorphic function 5% is sent to f, proving

ﬁxgﬂ—)()

is also exact. To show im: C kermw, for any f € Z(U), we have exp(2mif) = c¢1, where ¢; is the
constant function to 1 € C, because all integer multiples of 27i are sent to 1 by exp. This is the
identity on #(U), as the abelian group structure of ¥ is pointwise multiplication.

To show ker 1 C im ¢, suppose exp(27if) = ¢;. We obtain immediately that for every z € U, f(z) €
Z because these are the only values of C for which the exponential evaluates to 1. In addition, we may
pick any small ¢, and notice that J, ., D(n, €) is a disjoint open cover of Z, hence |J, o, f~(D(n, €))
is a disjoint open cover of U. Therefore f must be locally constant, so f € Z(U) as desired. Thus

Z— Ox — F

is exact.

Now, we will show .# is not a sheaf. Consider the following open cover of C*: U = {ei’ : 0 < t <
2r} and V := {e : 7 <t < 37}. Then idy and idy both have holomorphic logarithms, because U, V
by construction have made a branch cut along R>¢ and R<g respectively. If .# satisfied gluability,
then idc« would have a logarithm, so there would be a global logarithm on C*; this is a contradiction
because there is no such global logarithm. Thus .# is not a sheaf. O

Section 2.4

Exercise 2.4.A

Proof. The natural map sends f € Z(U) to ([f,U])pev, the element that projects to the germ [f, U]
for each p € U. To show this map is injective, suppose f,g € F(U) have the same image under our
map. Then for every p € U, we have that [f,U] = [g,U]. By definition, this means that there exists
some open neighborhood V,, C U of p such that f|y, = g|v,. Notice that {V},},ev is an open cover of
U, and flv, = glv, for every p implies, by identity of ., that f = g. O

Exercise 2.4.B

Proof. Let (sp)pev € [[,cp Fp be a compatible germ. Then there exists some open cover {U;} of U
and sections f; € #(U;) such that for every p € U, if p € U; then [f;,U;] = s,. We claim that for any
i,, on U; N Uj it holds that fi|v,nv, = fjlv.nu,. To show this, for any p € U; N Uy,

[fi, Uil = sp = [f;,Uj]
Then by definition, there exists some open neighborhood V,, C U; N U; of p such that fi|Vp = fj|vp.
Letting p range freely over U; N U;, we get an open cover {V,} of U; NU,. Because f; and f; restrict
to the same thing on each V), by identity of .7 we get that f;|v,nv; = fjlu,nu;. With this result, by

gluability of .Z, there exists some f € F#(U) such that f|y, = f; for each i.
Then f — ([f,U])pep. By construction, for every p € U,

because again f|y, = f;. Thus indeed f maps to (s,), so the set of compatible germs is contained in
the image. O
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Exercise 2.4.C

Proof. We want to show that for arbitrary f € F(U), ¢1(U)(f) = ¢2(U)(f) given that ¢ and ¢
induce the same maps of stalks. Recall that the induced map of stalks by ¢ : % — ¥ is given by

[f. Ul = [o(U)(f), U]
Fix an arbitrary p € U. Then because the induced maps of ¢1, @2 agree, we get that

[01(U)(f), U] = [¢2(U)(f), U]

By definition, there exists some open neighborhood V,, C U of p such that ¢1(U)(f)|v, = ¢2(U)(f)lv,-

lv, = ¢2
Because p was arbitrary, we get an open cover {V, },ep for U. But because ¢1(U)(f)|v, = ¢2(U)(f)|v,
for every p, we get by identity of & that ¢1(U)(f) = ¢2(U)(f) as desired. Thus ¢1(U) = ¢2(U) because
f was arbitrary, hence ¢; = ¢ as U was also arbitrary. O

Exercise 2.4.D

Proof. For the forward direction, suppose ¢ : . % — ¢ is an isomorphism of sheaves in Setx. We want
to show that the induced map ¢, : F#, = ¥, is an isomorphism. We observe

¢po b, ([9,U]) = dp([67 (U)(9), U)) = [6(U) 0 6~ (U)(9), U] = [, U]

and
¢yt o dp(1f.U]) = ¢, L ([0(U)(f), U)) = [(¢71(U) 0 9(U))(f), U] = [, U]
so indeed the induced maps ¢, and ¢, ! are inverses, so ¢, is an isomorphism.
For the reverse direction, suppose ¢ : # — ¢ induces isomorphisms (natural bijections) of all
stalks. To shown that ¢ is injective, suppose ¢(U)(f1) = ¢(U)(f2) for any two f1, fo € F(U). Then
for each p € U,

¢p([f1,U]) = [o(U) (1), U] = [6(U)(f2), U] = ¢p([f2, U])

By injectivity of ¢,, we get [f1,U] = [f2,U]. Then there exists some neighborhood V,, C U of p such
that fily, = faly,. But because p € U was arbitrary, we have an open cover {V,} of U such that
filv, = faly, for all p, so by identity of .# we get that f; = fo as desired; thus ¢ is injective.

To show surjectivity, fix any g € 4(U), and we want to show that there exists some f € % (U)
such that ¢(U)(f) = g. For each p € U, [g,U] € ¥,; by surjectivity of each ¢y, let

¢p([fpv Up]) = [9,U]

Then the {U,} forms an open cover of U. We now claim that the f, together with the {U,} is a
compatible germ. To show this, we want to show that if p € U, that [f,,U,] = [f», Up| as stalks at p.
We notice that

¢;D[fqv Uq] = [¢(Uq)(fq)v Uq} = [¢(Up N Uq)(fq|UpﬁUq)v Up N Uq]
= [9|Upﬁqu Up N Uq] = [g|Up’ Up} = [¢(Up)(fp)7 Up] = ¢p[fvap]
By injectivity of ¢,, we get that [fy, Uyl = [fp,U,| as desired. By Exercise 7 this choice of

compatible germs is the image of some section f of % over U. We claim now that ¢(U)(f) = g, which
will come from identity on ¢. We have that for every p € U,

f|Up = fp
and
o(U)(N)lu, = o(Up)(flu,) = ¢(Up)(fp)

which agrees with g on some neighborhood V,, C U. In other words, ¢(U)(f) agrees with g on the
open cover {V,}, so that, by identity of ¢, ¢(U)(f) = g. This concludes the proof as we’ve shown ¢
is injective and surjective, hence an isomorphism. O
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Exercise 2.4.E

Proof.  (a) As suggested, let X = {p, ¢} be the two point space with the discrete topology. Below is

the diagram describing the presheaf — i.e. contravariant functor from Op(X) — Set —

F(X)={0,1}

TESX, {p} w}q}

7 ({p}) = {0} 7 ({q}) ={1}

res{p}, @ A‘g

F(2) = {x

—

It’s easy to check this is a presheaf by the functor definition. However, 0(,3 = 0 = 1|, and
0ty = 1 = 1[4}, so this is where identity fails. Thus a and b have identical germs at each
point. Therefore, under the natural map % (X) — ], x %2, we observe

0= ([0lgpy, {P}], [Ol¢qy, {g}]) = ([0, {p}]; [1, {g}])

and
L= (U gpy, {0} [Hgqy- {a}]) = ([0, {p}], [1,{a}])

S0 injectivity fails.

Let Z be defined as above, let ¢1 : F — F be the identity, and ¢o : F — Z be defined by
¢2(X) being the constant function to 0 € .#(X). This defines ¢, entirely because the other
values of ¢9 are uniquely determined since the sheaf .# evaluates every other set to be the final
object in Set. We notice that, as before, there is only one element in .#, and one element in
F4. Therefore ¢ and ¢o induce the same maps on each stalk as ¢1(0) = ¢2(0), and

[¢1(1)7X]P = [LX]P = [07 {p}]P = [OvX];D = [¢2(1)7X}P
where the subscript indicates the stalk we are looking at. Similarly
[¢1(1)7X]q = [LX]Q = [lv{Q}]q = [07X}q = [¢2(1)ﬂX]q

proves that, because ¢, agrees with ¢o on every other open set, that the two endomorphisms of
% induce the same maps on each stalk, but are not equal.

Let .# be as above, and let ¢4 be defined by the commutative diagram below:

9(X)=1{2}
rcsV xxitﬂ
Z({p}) = {0} Z({q}) = {1}
resm Aﬁ
F(2) = {x}

Now let ¢ : F — ¢ be the unique morphism of presheaves into ¢, because ¥ is the final object
in Set%°. Similarly to .%, there is only one element in &, as there is in ¢,. Thus, ¢ induces
bijections (isomorphisms in Set) on each stalk. However, ¢ : .# — ¢ is not an isomorphism
because ¢ is not the final object, while ¢ is, so indeed there cannot be an isomorphism between
them.

O
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Exercise 2.4.F

Proof. Suppose % is a presheaf, and ¢ : F — ¥4 and ¢ : F — A are two sheaves satisfying the
universal property of the sheafification .#*" of .%. Then, by the universal property of ¢, the following
diagram commutes:

N

|
NG
X‘ ‘5

H
On the other hand, by the universal property of 7, the following diagram commutes:

F 5w

El)
x j’

9
Now, consider the following commutative diagram induced by ¥:

F g

3
ol +

9
The identity morphism satisfies this unique arrow, as does bo ¢ because
$ogod=gop=¢.
By uniqueness, the two are equal. Similarly, the unique arrow in the commutative diagram below

F L7

|
!

H

is satisfied by both the identity morphism and ¢ o (5, so the two are equal. This proves ¢ and qB are
inverses, and thus ¥ = 7 as sheaves.

Also, if Z is already a sheaf, then we claim . with the identity is the sheafification of .%. Indeed,
for every other sheaf ¢ and f : . # — ¢, then the following diagram commutes:

idg

F — F

!

X‘ 3

9
because the unique arrow is f itself, and f is a morphism of sheaves because Set x is a full subcategory
of Set%*. O

Exercise 2.4.G

Proof. Suppose we have ¢ : .# — ¢4 where .# and ¢ are presheaves. Then we have the following
commutative diagram by the universal property of .#3":

T sheg <Q‘sh

(b 5!¢sh

e
@ shg gsh
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To show sheafification is a functor, we need to show that it preserves identity morphisms and respects
composition of morphisms. We observe that, by the commutative diagram above defining the in-
duced morphism, that sheafification preserves identities. To show sheafification respects composition,
suppose we have

FLa o
The following commutative diagram defines (g o f)*:

z shg g‘sh

lgoj" 3
R4 Sh‘%f} sh

By uniqueness of (g o f), it suffices to show that ¢*! o f*" satisfies this commutative diagram. We
compute that, by definition of ¢*" and f",

¢ o fPoshg =g oshyof=shypogof

as desired, so sheafification indeed preserves composition of morphisms and identities, and is thus a
functor. 0

Exercise 2.4.H

Proof. This construction is easily seen to be a presheaf, so we will just prove it satisfies identity and
gluability.

For identity, suppose we have two sections (f, € %#,)pcv and (g, € %,)pev and and open cover
{U;} of U such that (fp)pev and (gp)pev restrict to the same section on each Uj, i.e.

(fp)peUi = (gp)peUi

for each . But then indeed, since the U;’s form an open cover for U, for each p € U, p € U; for some
i implies f, = gp. Then indeed the two sections are equal because they project to the same sections
at each point, so identity holds.

For gluability, suppose we have a set of sections {(f,)per; }i for an open cover {U;} of U such that
on each U; N Uj, ‘ ‘

(f;))pGUiﬁUj = (fg)pEUmUj

where I am using the superscript as an index notation for the sections. Let (fy,)per be a choice of
sections such that for each p € U, f, is f, for some neighborhood U; of p. Notice that this is not
actually a “choice” because of the sections agreeing on their intersections, so that

fi=1

for every p € U;NU; where we would need to make a choice. We claim that (fp)pcr is indeed a section
of .Z*" over U. By the compatibility condition that for all p € U;, there exists an open neighborhood
V; C U; of p, and s € F(V;) such that s, = f; for all ¢ € V; an all ¢, we obtain that V; NV} is an open
neighborhood of p contained in U; N U;. Fixing p € U to be arbitrary, we know p € U; for some i.
Then there exists an open neighborhood V; C U; and s € .%(V;) such that fé = 54 for every ¢ € V;.
By construction of (f,)pev, we decided that f, is f; for every q € U;, hence f, = s, for every q € V;.
Then indeed (f,)pev consists of compatible germs of U, so (f,)per € FU(U). Finally, restricting
this section to each U; gives

(fp)peU,i = (f;)peUi
by construction, so gluability holds. O
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Exercise 2.4.1

Proof. The natural map sh : .# — 75" is defined by

sh(U)(f) = (fp)pev

Clearly the output consists of compatible germs. Furthermore, if V'V C U C X, we observe that for
any f € .7 (U),

sh(U)(f)lv = (fp)pev = (flv p)pev = sh(V)(f]v)
where the middle equality comes from the fact that germs are local, so the germs of f|y are equal to
the germs of f at points in V. This shows that sh is a natural transformation, and is thus a map of
presheaves. O

Exercise 2.4.J

Proof. Suppose we have a sheaf ¥ and a map of presheaves ¢ : F — 4. Then for any section
(fp € Zp)peuv consisting of compatible germs, for each p € U, let V}, C U denote the open neighborhood
of p and s? € F(V}) be the section such that sb = f, for every ¢ € V,. We define »**(U) to
take (fp)pev to the unique section of &4 over U obtained by gluability applied to the collection of
{6(V,)(sP) € 4(V,)}. Gluability is applicable here because on any V, N'V,, we observe

o(Vp)(s”)|v,nv, = o(Vp N Vo) (" lv,nv,) = 0(Vp N V) (v, nv,) = (V) (s9)|v,nv,

The reason ¢(V, N Vy)(sP|v,nv,) = o(Vp N Vy)(s|v,av,) is because by Exercise 2.4.JA, sections of a
sheaf is determined by its germs, and we know that for all » € V,, NV,

sh = fr = s}

In other words, for every r € V, NV, there exists some neighborhood W, C V, NV, of r such that
sPlw,. = s$|w,. Therefore

d(Vo NV (8P lv,nv, ) lw, = o(Vo N V) (P |w, ) = &(V, N V) (5w, ) = &(V, N V) (s v, v, ) lw,

so indeed the two sections have equal germs everywhere, which shows they are equal by Exercise A.

Notice that our function ¢*"(U) is well defined by identity of ¢, because our choice of gluability
is the unique section with this property. Now we have to show that ¢*" is natural. If we take V C U,
we want to show that

¢Sh(U)(fp)p€U|V = (bSh(V)(fp)pev (2)

To do this, it suffices by identity of ¢ to show that ¢**(U)(f,)pev|v agrees with ¢**(V)(f,),ev on
some open cover of V. By definition, we have that

¢Sh(U)(fp)peU|Vp = o(Vp)(s")
Now let W, :=V NV, for each p € V, so that {W,} forms an open cover of V. Then

FU)(fp)pevlw, = (Vo) ()|, = 6(Wp)(s”|w,) = & (V) (fy)pev|w,

To show the final equality, we use the fact that the choice of sections whose stalks yield any choice
of compatible germs is independent. This follows from Exercise [2.4]A, because if we pick some other
choice of representing sections , then we use the fact that sections of ¢4 are determined by their germs.
This will be made precise as follows: for each p € V, take U, C V to be a neighborhood of p and t?
to be a section such that for all ¢ € Uy, t§ = f,. Then W), N U, is a neighborhood of p contained in
V such that each germ of t¥ and sP are equal. This would enforce that

¢(Wp n Up)(tp) = ¢(Wp N Up)(SP)
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because their germs are the same everywhere by Exercise [2.4JA. Then we would replace our open
cover {W,} by {W, NU,}, and everything would be the same.

Now we have shown that ¢*"(U)(f,)per restricts the same as ¢*(V)(f,)pev on the open cover
{W,}, which by identity shows they are equal. Thus ¢*" is a map of sheaves.

To show ¢! satisfies the desired universal property, we take any U C X and any f € .%(U). Then
we observe that the following diagram commutes

7U) 29 )
o(U) [
9 U)

because

¢*'(U) osh(U)(f) = ¢ (U)(fp)per = S(U)(f).
The last equality holds because (f,)pev has the representative section f on the open cover {U} of U.
Then gluability of ¢(U)(f) on the open cover {U} of U trivially gives ¢(U)(f) back. Then because
the diagram commutes for every open subset and is natural, existence is proven.

The last thing to show is that ¢*" is unique. Suppose we had another map of sheaves ¢ : . #" — &
satisfying the universal property. To show ¢ = ¢*", it suffices to show for arbitrary U C X and
(fo)per € FN(U), that o(U)(fp)per = ¢ (U)(fp)per- Let {V,}per be an open cover of U and
sP € F(V,) be a section such that for each g € V), f, = sh. By the universal property that ¢ satisfies,
we obtain that

‘P(U)(fq)qu|Vp = S"(%)(fq)qevp = 90(‘/;;) © Sh(Vp)(sp)

= 0(Vp)(s") = (V) osh(V,)(s”) = ¢ (Vy) (fo)aev, = 6™ (U)(fo)gevly,,
Because the {V},} form an open cover of U, and we just showed that ¢(U)(fq)qecu restricts the same
as ¢*"(U)(f,)qev on each Vj,, thus proving by identity of ¥ that ¢*"(U)(f,)qevr = @(U)(f,). This

proves that, because U was arbitrary and (f,),er was as well, that ¢ = ¢*!, so uniqueness holds as
well. O

Exercise 2.4.K

Proof. We want to show that for any presheaves .# and ¢, any sheaves 2 and 7, ¢ : S — 7, and
09 — F the following diagrams commute:

shy*
Hom(Zsh, 7#) BZIN Hom(Z*", 7) Hom(ZF*", #) AP Hom(%sh, 72)

lﬂ%%’ l"'?,ﬂ l‘ry,%' l‘r(y,yf

*

Hom (%, .2 LN Hom(%#, 7) Hom(.Z, #) —— Hom(¥, #)

where in addition the 7’s are bijections. By the universal property of sheafification, we define f =
7;1 o ([f), where f: % — J; more explicitly, f is the unique morphism induced by the commutative
diagram below:

F b, gsh

\ﬁ!
f v

H

On the other hand, given a morphism f : .Z*® — #, then we define a morphism Ty%:(f) F = H
given by ~ ~
T7,.(f) = fosh

102



By uniqueness of the arrow induced by the universal property of .Z", we obtain that

T;}% o Tngo(f) = T;?%(fo sh) = f
and that also A )
7700 0Tz 0 (f) =77 w(f) = fosh=.
Now that the 7’s are bijections, we need to check that the first diagram commutes. We check that

17,700 (f) =7z 7(pof)=¢o fosh

and that

¢ 0Tz w(f) = ¢(fosh) =¢o fosh

so the first diagram does commute. To show the second diagram commutes, we see

.0 0 (6™ (f) = 19, (f 0 ™) = fo ™ oshy = f oshg op

while on the other hand

0 o1z w(f) =¢"(foshgz) = foshgop

so both diagrams commute, thus proving that sheafification is left-adjoint to the forgetful functor from
sheaves to presheaves. O

Exercise 2.4.L

Proof. Fix p € X as an arbitrary point, and consider the induced map sh,, : .%, — ﬁsh. To show shy,
is injective, suppose sh,(x,) = shy(y,) for z,y € #,. Using the constructive definitions, we have that
on some open neighborhood U of p, the germs of x agree with the germs of y at every point in U. In
particular, z, = y, so sh, is injective. To show sh,, is surjective, if we fix any [(f;)qev, U] € 9’;1“, we
know that by construction there exists some open neighborhood V' C U of p such that for every ¢ € V,
fq = sq for some s € F (V). We claim that sh(s) = (fy)qev. Indeed, (fy)gev = (Sq)qev = sh(s).
Therefore

shy([s, V1) = [sh(s), V] = [(fy), V] = [(£4), U]

proves the induced map is surjective as well. O

Exercise 2.4.M

Proof.

(b = a) Suppose we have morphisms of sheaves ¢, : 4 — 5 such that ¢ o ¢ = ¢ 01p. Our approach
will be to show that ¢ and v induce the same maps on stalks. Notice that induced maps of stalks
distributes over composition, so we get that on each stalk .%#,,

Gp © Pp = Pp 0 Py
By injectivity of ¢,, we get that for every p € X
op = Pp.

By Exercise 2.4]C, morphisms are determined by stalks implies that ¢ = 1, so indeed ¢ was a
monomorphism.
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(a = ¢) Let 2,y € #(U) be such that ¢(U)(z) = ¢(U)(y), and let ¢, 9 : Fy — F be morphisms from
the indicator sheaf .#;; at U such that ¢(U)(x) = = while ¢(U)(x) = y, thus determining ¢, v entirely
by the nature of them being natural transformations from .#;;. By definition, we obtain that

pop=¢oy
because Sy (V) = {x} if V C U and @ otherwise, so for V.C U we have
¢(V) o p(V)(x) = o(U) 0 p(U)(*) v = ¢(2)[v = ¢(y)|v = ¢(U) o p(U) (%) v = ¢(V) 0 (V) (%)
By ¢ being a monomorphism, we obtain that ¢ = 1, which implies
z=¢U)(x) =yU)(x) =y
so ¢(U)(z) = ¢(U)(y) implies z = y, or ¢p(U) is injective.
(¢ = b) Suppose ¢p(xp) = ¢p(yp) for some xp,y, € Fp. Then there exists some neighborhood V' of p

such that ¢(U,)(z)|v agrees with ¢(Uy)(y)|v, where we take x, = [z,U,] and y, = [y,U,]. By our
assumptions and the naturality of ¢, we get that

o(V)(zlv) = ¢(Us)(@)lv = o(Uy) (W)lv = ¢(V)(ylv)
Because ¢ is assumed to be injective on the level of open sets, we get that z|y = y|y. Therefore
xp = [2,Us] = [xlv, V] =[ylv, V] =y, Uy] = vp

so that indeed ¢, is injective. O

Exercise 2.4.N

Proof.
(b= a) Suppose ¥ o ¢ = @ o ¢ for some maps of sheaves ¥, p : 4 — . Then on each stalk at p € X,

Ypodp=(Yod)y=(pod),=wpody
Because ¢,, is surjective, also known as an epimorphism in Set, we get that ¥, = ¢,. By Exercise
[2:4]C, since p € X was arbitrary we get that ¢ = ¢, so ¢ is an epimorphism.

(a = b) We will show that each ¢, is an epimorphism in Set, also known as a surjective map. Suppose
there is some set S and maps of sets ¢, 9 : ¢4, — S such that ¢ o ¢, = 9 o ¢,. These maps of sets
induce maps of sheaves into the skyscraper sheaf ¢, .S uniquely defined by

o(U)(z) = ¢([z,U])
and
Y(U)(z) = ¢([z,U])

for any neighborhood U of p, and are otherwise determined since ¢, .S(U) = {*} otherwise. Indeed,
these are natural because for any V' C U both neighborhoods of p,

eU)(@)lv = e[z, Ulv = ¢([2,U]) = ¢([z]v, V]) = (V) (z|v)

and similarly for ¥ because the restriction maps on the skyscraper sheaf are just the identity on
neighborhoods of p. If V' is not a neighborhood of p, then the restriction is the unique map onto the
empty section * € ¢, (V). Notice then that

(U)o (U)(x) = ¢([¢(U)(x),U]) = podp([z,U]) = dodp([z,U]) = ¢([¢(U)(x), U]) = ©(U)o¢(U)(x)

by construction of ® and ¥. This shows that indeed ® o ¢ = W o ¢, which, by ¢ being an epimorphism,
proves that ® = W. In particular,

e([z,U]) = 2(U)(x) = ¥(U)(z) = ¢([z,U])
so indeed ¢ = 1, proving the result. O

104



Exercise 2.4.0
Proof. We will check that 0% is a quotient sheaf of Ox by looking at the level of stalks. At any point
z € C, we claim that for any [f,U] € 0% _, there is some g, € Ox . such that

exp(9): = f»

In U, we may take some small simply connected neighborhood V' of z contained in U. Then on V,
since f is non-vanishing, there exists a logarithm g of f|y [6], explicitly given by

o) =+ [ gy

for any choice of a branch of logarithm b of f(z). Then indeed
expp([g,V]) - [exp(g), V] - [f|V7V] - [f7 U]

which shows, because z € C was arbitrary, that exp is an epimorphism of sheaves by Exercise [2.4.]N.

However, exp is not surjective on the level of open sets. Consider U := C\ {0}, and consider the
identity function idy on U. Then indeed idy is nowhere 0, and is holomorphic, so idy € 0% (U).
However, because there is no branch cut in U, idy does not admit a logarithm on U, so idy is not in
the image of exp(U). O

Section 2.5

Exercise 2.5.A

Proof. Suppose we have a sheaf % on X, and a basis {B;} for the topology of X. To show we
can recover .# entirely from what it does to the basis, let U C X be open, and U = Uj B;. We
claim that .#(U) = S := {gluability applied to every{f; € .F(B;) : fj|B,nB, = fxlB;nB,.}. We see
that . (U) C S because each section s € .Z (U) restricts to sections of each % (B;) with the desired
property, and by the identity applied to s and gluability of {s|p,}, then s € S. It is clear by definition
that S C .#(U), so we have recovered .# (U) from the data of .# on the base of the topology.

First, we need to define what it means for a section to restrict to a basis element from U. Let
{B;} be an open cover of U, and fix any B; € {B;}. By the previous part, let s € .#(U) be gluability
of some collection of {s; € B;}. We then define s|p, = s;. Our choice of open cover doesn’t matter
by identity.

For arbitrary restriction maps, suppose we have some V' C U where U is as before. Let {B;} be an
open cover of V. We then define sy to be gluability applied to {s|p,}. By identity, our construction
yields the same result as the original s| 3, because our definition of s|y restricts the same as the original
sly to the open cover {B;} of V. Thus we can also recover the data of the restriction maps. O

Exercise 2.5.B

Proof. The natural map ¢ : F(B) — #(B) is given by s — (sp)pep. For injectivity, suppose
s,t € F(B) are such that their germs agree everywhere on B. Then for each point p € B, there exists
a base element U of p contained in B such that s|y = t|y. By identity of F', we get s = .

For surjectivity, if (s,)pep is a family of compatible germs with corresponding neighborhoods B,
for each p such that s, = fF for every ¢ € B, we apply gluability to {f? € F(B))}pep to get a section
[ € F(B) such that f|p, = f? for each p € B. Then

o(f) = (fo)pen = (f;z;)pEB = (Sp)peB-
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Exercise 2.5.C

Proof. (a) Suppose ¢, ¢ : F — & are morphisms of sheaves such that ¢(B;) = ¢(B;) for every i.

Now, fixing U C X to be an arbitrary open set, let U = Uj B,, and choose any s € % (U).
Letting glue be the gluability operation of ¢, notice we have

p(U)(s) = glue{p(U)(s)|s,} = glue{p(B;)(s|5,)} = glue{¢(B;)(s|5,)} = glue{o(U)(s)[5,} = ¢(U)(s)

where the first and last equalities come from identity of ¢.

If ¢ : F — G is a morphism of sheaves on the base, define ¢ : . % — & by (f,)pev — (0p(fp))pev-
Our image is indeed a choice of compatible germs because for every p € U, there exists a
neighborhood B C U of p and ¢(B)(s) € G(B) such that for every ¢ € B, ¢4(fy) = #(B)(8)4-
We used the compatibility of the germs in F' to obtain the section s € F(B) such that for every
q € B, 54 = fq, so in other words, for each ¢ € B, there exists some A C B containing ¢ such
that
fq|A = 5|A
so that
[¢(B)(s), B] = [6(B)(s)|a, A] = [¢(A)(s]a), A] = [6(A)(fal )] = ¢q(fq)-

Our map ¢Z is natural because

resy,v O‘z)(fp)peU = (¢p(fp))p€V = fE)O reSU,V(fp)p€U~

Exercise 2.5.D

Proof. By Exercise [2.4]N, a morphism of sheaves ¢ : .% — & is an epimorphism if and only if it is
surjective on the level of stalks. Let ¢ : F' — G be the morphism of sheaves on the base inducing %
and 4. If ¢ : F — ¢ is the induced morphism of sheaves, we want to show that every (gq)qev € %, is
in the image of ¢,. Because (g4)qcv is a choice of compatible germs, let B C U be the neighborhood
of p and s € G(B) be such that for every ¢ € B, s, = g,. By hypothesis, there exists some ¢t € F(B)
such that p(B)(t) = s, so in particular, for each ¢ € B,

Pq(tq) = ¢q([t, B]) = [#(B)(1), B] = [s, B] = s,

Then we observe

Gp(te)aes = [P(tg)gqen, Bl = [(q(tg))gen, Bl = [(8¢)qe B, Bl = [(99)qeB: Bl = [(94)qev, U]

which proves ¢, is surjective, finishing the proof. O

Exercise 2.5.E

Proof. We will first define a sheaf F' on the base of open sets contained in at least one of the U;. This
is indeed a base because for any open set U C X, we have {U NU;} is an open cover of U, and each
U NU; C U; implies that each is some proposed base element. For any open set U that is contained
in at least one U;, define [(U) to be the least index such that U C U;, which is well defined by the
well-ordering theorem (equivalent to the axiom of choice). Then we define

F(U) = <9”}((])((])

To define restriction for any V C U,

Z
restry == duuyv) (V) o resy )
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which makes sense because V' C U C Uy and V C Uy implies V' C Uy N Uyvy. To show our
construction is indeed a sheaf on the base, we will first show identity.

Suppose B is a base element covered by {B;} of other base elements, and f,g € F(B) are such
that f|p, = g|p, for each j. By definition,

1(B)

F F
P, (Bj) oresp'y) (f) = dumyus,) (Bj) oresp ') (9)-
Because each of the ¢;; are isomorphisms, we get that

F F
reSBlj(BB)(f) eSBlfBB)(g)

for each j. By identity of .%#;(p), we have that indeed f = g, proving identity holds for F.
To prove gluability holds for F', suppose we have a collection of f; € F(B;) with B; :=|JB; be a
basis element as well such that for each j, k, we have
F
Gy (B;nB) (B N Bi) o reSB s () = duBous,nBy (B 0 By) oresp Lo (fr)-

Notice that we then have isomorphisms
. g a7
¢l(Bj)l(Bi) : Jl(Bj)‘Ul(Bj)mUl(Bj) - </l(Bi)|UL<Bj)ﬁUz(Bi)

so in particular ¢y, y(B,)(B;) : F(Bj) = Fi(p,)(B;) is an isomorphism because B; C B; implies that
Bj C Uys,;) and B; C Uygp,) as Well In addition, its inverse is ¢,y (B,) by the cocycle condition.
By commutativity of the below diagram

Pr(i)i(4)
FuB,)|B;nBy,

~
(z)l(Bi)l(Bk)l Pu(B;)I(BjNBy) J/(bl(Bj)L(BjﬁBk)
~

‘gzl(Bk)|Bj ngl(JB?J-rwzek)|Bijk

—
NBy (BB NBY)

we obtain that

U(Bj)

7

GuBoi(B;nB:) (Bi N Br) © Gy, s, (B N Br) oresp g, (f;)
Fis

= ¢uB.)uB;nB:) (Bj N Bk) © ¢upu(s,) (B N By) oresp, s, (i)

or equivalently by naturality

Fun

GuBI(B;nB:) (B N Br) oresy B p odum,yics:) (By)(f5)
Fus.

= du(B.)i(B;nB;)(Bj N By) o YGSB,Z(,%’j)an odu(B,) (B (Br) (fr)-

Now we use the fact that the morphisms on the left of each side of the equation are isomorphisms (so
in particular monomorphisms) to get

ZFiB.
res 5 g, 0018, (8. (By)(f;)

F
= I"eSBk(B By, °Pu BB (Br) (fi)-

Now we consider the family {¢;5,)(B,)(B;)(f;) € Fup,)(B;)}. We can apply gluability of .#p,) to
this family by the previous observation. Let f € .%p,)(B;) be the result of this gluing. Then we
observe

resy, g, (f) = dusus,) (Bj) © fes}f( D(f) = dusous,) (Bi) (bus, s (i) = £

]
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which proves that gluability holds for F' as well.

Now that F'is a sheaf on a base, we get our induced sheaf .# on X. By Theorem 2.5.1, we have
that . extends I' up to isomorphism, so .7 (U;) = F(U;), and F(U;) = Zyu,)(U;) = F;(U;) because
even if [(U;) # i, then U; C Uyy,), then by the cocycle condition we obtain .7y, |u, = %; because

= Filv, = .

Qi) - Fuun) v,

Section 2.6

Exercise 2.6.A

Proof. Suppose ¢ : F — ¢ is a morphism of sheaves, and ¢, : #, = ¥, is the induced map on stalks.
To show (ker ¢), = ker ¢y,

op([f,U]) =0
= [p(U)(f),U] =0
<~ #(V)(f|v) =0 for some open V C U
— flv €kero(V)
= [flv,V] € (ker ¢),,.

Then our map ¢ : ker¢, — (ker¢), is given by [f,U] — [f|v,V] where V is some neighborhood
of p such that [f|yv,V] € (ker¢),. ¢ is well defined because if V' is another such neighborhood,
then [f|v, V] = [f|lv:, V'] because [f|v,V] = [flvav,V N V'] = [f|y, V'] so our choice of V doesn’t
matter, and furthermore if [f, U] = [f’,U’], then f|y = f'|v for some V C UNU’, then we can take
[f,U] = [f|v’, V'] where V' is again some neighborhood of p contained in V' so that f|y € ker ¢(V”)
ensures that also o([f,U]) = [f|lv/,, V'] = [f'Iv, V'] = ([, U')).

 can also be seen to be a homomorphism because

o([f, U] +g,V])

= o([flunv + glunv])

= [flw + glw, W]

= [flw, W]+ [glw, W]
=o([f,U]) + ¢(lg,V])-

To prove ¢ is injective, suppose ¢([f,U]) = [f|v,V] = 0. Then for some neighborhood W of p
contained in V, flw = 0. This implies that [f,U] = 0. To prove surjectivity, if [f,U] € (ker ¢), is
arbitrary f € ker ¢(U) implies that [f, U] € ker ¢, so ¢([f,U]) = [f,U]. Then ¢ is an isomorphism.

[
Exercise 2.6.B

Proof. If ¢ : # — ¢ is a morphism of sheaves, we will show cok ¢, = (cok ¢),, by showing (cok ¢),
satisfies the universal property of cok ¢,,. Suppose the following diagram commutes:

re

Fp —— Y.
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We consider the constant sheaf A, and let oy : 9(U) — ¥, be the map sending a section to its germ
and 17 : F(U) — &%, do the same. Then for z € 4(U), we let f, : U — A be the constant function
to 6 o oy (x). Clearly f, is continuous (where A is given the discrete topology), so we may define a
morphism ¢ : 4 — A given by ¢(U)(x) = f,. We verify that ¢ is natural because for z € 4(U),
o(V)(z|v) = fu|v, sending everything to 6 o oy (z|y) = 6 o oy(x), which is the same function as
p(U)(x) restricted to V. We also check that ¢ o ¢ = 0 because if z € .Z(U), then ¢ o ¢(U)(z) sends
everything in U to ooy o ¢(U)(x) = 6o ¢, oy (x) = 007y () = 0. By the universal property of the
cokernel presheaf, we get the below commutative diagram:

Because A is a sheaf, o = 3 o sh for a unique map 3 : cok¢ — A. Notice A, = A by taking a germ
to its value at p, so we have a natural map 3, : (cok¢), — A which we claim makes the following
diagram commute:

(cok @)p

/T

F, " g

where 1 = shor : 4 — cok ¢ is the map to the cokernel sheaf. Unraveling our definitions, we recall
Bopu=aom= . This is of interest because the below diagram commutes

AU) ——— A
cok ¢p(U) (cok @),

u@UT upT
9(

[ea

U) —— 9,

so we take any oy () € 9, and get 5, o (o (x)) = evpop(x) = 8(oy(x)) as desired, which proves
existence. To show /3, is unique, suppose some vy has 7 o y,, = 6. Because p is an epimorphism in the
category of sheaves by Proposition 2.6.1, Exercise tells us that p, is an epimorphism, hence we
get Bp o pp = 0 = v, o iy, implies v = (3, as desired. O

Exercise 2.6.C

Proof. We will first show the sheafification satisfies the universal property of the coimage sheaf. Let
¢ .F — 9 be a map of sheaves, i : ker ¢ — .# be the kernel, and ¢ : # — coimpye ¢ be the cokernel
of 7 in Ab%°. It’s clear to see the following diagram commutes in Abx:

(coimpye @)1

//////” T}hoq

kerp — F
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Now suppose 7 is a sheaf and ¢ : F — J# is a map such that 1 o4 = 0. By the universal property
of coimp,e ¢, we get the below commutative diagram:

Note that we have used the fact that the kernel presheaf is the kernel sheaf. Now, by the universal
property of the sheafification, the below diagram commutes:

. «
coiMpre p ————— S

A

\ 318
sh i

(coimpye @) "

Thus the below diagram commutes:

(coimpye ¢)

/ S“‘J

ker p —1— F

This shows existence. If there were another map 7 : (coimp,e ¢)" — # making the diagram commute,
since ¢ is an epimorphism we have v o shog = 9 = 8 o sh oq implies that v o sh = a = o sh, which
implies v = 8 by uniqueness of the arrow in the sheafification diagram, proving (coimp,e ¢)*" satisfies
the universal property of coim¢ in Abx. However, coimages are the same as images in abelian
categories by Theorem and Theorem 2.6.2 and Section 2.3 tell us Aby and AbY® are abelian
categories.

In addition, Exercises and say that stalks commute with kernels and cokernels, hence

(im @), = (ker cok ¢),, = ker(cok ¢), = ker cok ¢, = im ¢,,.

Exercise 2.6.D

Proof. For one direction, suppose .# — & E) J is exact, and let p € X be arbitrary. Exercise ‘
tells us that taking stalks at p is functorial so we have a sequence

o 8
Fp — G, 5 A,

and Exercises and give exactness since kernels and images commute with stalks.

For the other direction, suppose %, RN 9, ﬁ—p> I, is exact for all p € X. Exercise tells us
that since im v and ker 8 induce the same maps on stalks, they are equal by Exercise [2.4C. O
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Exercise 2.6.E

Proof. If
057595 750

is exact, Exercise tells us that taking stalks at p is functorial so we have a sequence
o oy
0— %) —%, — 5, —0

and Exercises and give exactness since kernels and images commute with stalks. O

Exercise 2.6.F
Proof. To show

0—=2Z -2 00 22 05 -0

is exact, we will first show -27i is a monomorphism by checking this on the level of open sets. If
U C C is an open set with connected components U;, then an arbitrary element of Z(U) is a choice of
n;’s with each n; € Z. Then (n;) - 2mi = (2min;) is trivial only if each n; = 0, proving exactness at Z.

Exercise gives exactness at . To show exactness at Oc, we first claim that imp, -27% is
a sheaf, which will then show imy,. -2mi = im-27i by Exercise 2.6]C. Because we have shown -27i
is a monomorphism, we use the fact that Abg° is an abelian category and apply Corollary
along with the 1IT to get an isomorphism between imp,. -2 and Z, proving the required statement.
Now that impe -27% = im-27% and kerp.. exp = kerexp, we need to show im-27i = ker exp, which
we will do on the level of stalks by Exercise 2.4]D. Let z € C and [f, U] € kerexp, be arbitrary, so
lexp(f), U] = [1,U]. It’s clear that im -27i, C kerexp,, so we will just show the reverse inclusion. The
fact that [exp(f), U] = [1,U] tells us that there is some open V C U containing z such that exp(f]|y)
is identically 1. This implies that f|y is some integer multiple of 27, so [f, U] = [2min, V] for some
n € 7Z, so [f,U] € im -2mi, as desired. O

Exercise 2.6.G

Proof. We suppose
0.7 59

is an exact sequence of sheaves. Exercise[2.4]M gives that since ¢ is a monomorphism, ¢(U) : #(U) —
%(U) is also a monomorphism. To show im ¢(U) = ker ¢(U), we have

ker (U)
we have an isomorphism « : im ¢ — kert with inverse ' : kerty — im ¢ which, in particular,

gives the desired isomorphisms a(U), a=(U).
To show the section functor need not be exact, again consider the exponential exact sequence

Oazﬂﬁcﬁﬁé—m.

However, 1(C) is not surjective because I¢ € O, but not in the image of ¢ because the C does not
admit a global logarithm. O

Exercise 2.6.H
Proof. Let

)
1=
K
l@
N

0—
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be exact. First, we will show that 7, commutes with kernels. If ¢ is some map of sheaves, then
7. ker p(U) = ker p(r~H(U)) = ker mo(U),

which relies on the fact that the kernel sheaf is the kernel presheaf. Indeed the restriction maps are
the same, which proves the claim. To show exactness at 7,.%, we use our result to see

kerm,¢ = my ker ¢ = 7,0 =0.

For exactness at 7,¥, we first notice that m, ker ¢ = ker 7,1 by our previous observations. Then by
hypothesis and Aby is an abelian category (we identify the image of a monomorphism with its source
by the 1IT and Corollary ),

ker mo) = mokery = m,im ¢ = m,.F = im ..

Alternatively, we could have used Exercise together with the fact that right adjoint functors are
left-exact as stated in 1.6.12. O

Exercise 2.6.1

Proof. Suppose .# € Abx, and

0o B ale

is exact in Abx, so we need to show
0 — Hom(Z, &) LN Hom(%#, B) RN Hom(%#,%)

is exact. By Exercise [2.4.M, it suffices to show ¢, (U) is injective for exactness at Hom (%, o). Let
n: F|luv = |y be a natural transformation. We note ¢|y is a monomorphism because it is injective
on the level of sections, both claims following from Exercise 2.4]M. Then 0 = ¢.(U)(n) = ¢|v o n
implies that, since ¢|y is a monomorphism, 7 = 0 so ¢.(U) is indeed injective.

To show ker ¢, = im ¢, now that we’ve shown ¢, is a monomorphism, we get im ¢, = Hom(.7, &)
which is in particular a sheaf, so im ¢, = impre ¢«. Then we need to show kerp,e 1. = impye @4 as
subsheaves of Hom(.%, %), which we can do by checking equality on the level of sections (both are
subsheaves of the same sheaf). For arbitrary open U C X, we have

ker . (U) = {n € Nat(F|y, Blv) | ¥|v on =0}
im ¢, (U) = {n € Nat(F|v, Bly) | I € Nat(F |y, o|v) where n = ¢|y on'}.

Its clear that the image is contained in the kernel. For the reverse inclusion, we pick any n : |y —
P|u such that |y on = 0. Since A = ker and ker(¢|y) = (ker )|y (seen because again the kernel
sheaf is the kernel presheaf), we get the below commutative diagram

Clu

e

0 T"“U
¢lu
%|U — $|U
X
3y’

o>

Flu. ;

Then 1 = ¢|y o1/, so the kernel is contained in the image.
Now suppose

AN BN N
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is exact, so we need to show
0 — Hom(¥, %) v, Hom(%, %) L Hom(«7, %)

is exact. It suffices to show 1} is injective for exactness at Hom(%', #) by Exercise [2.4.M. If [n, U]
is such that [ o ¥|y, U] = 0, then there is some open V' C U containing p such that 5y o ¥|y = 0.
Fixing p € X, we use Exercise to get vy, : By — Cp, s0 1y © Y, = 0 implies n, = 0. By Exercise
7 being a map of sheaves inducing trivial maps on all stalks means n = 0.

To show ker ¢* = im ¢)*, now that we’ve shown ¢* is a monomorphism, we get im ¢* = Hom(%, .%)
which is in particular a sheaf, so im¥* = imp..%*. Then we need to show kerp,e ¢* = impe Y* as
subsheaves of Hom(%, %), which we can do by checking equality on the level of sections (both are
subsheaves of the same sheaf). For arbitrary open U C X, we have

ker ¢*(U) = {n € Nat(ZB|vy, F|v) | no ¢|lv =0}
imy*(U) = {n € Nat(B|v, Z|v) | I € Nat(€|y, F|v) where n =n' 0|y }.

Its clear that the image is contained in the kernel. For the reverse inclusion, we pick any n: #|y —
Z |u such that n o ¢|y = 0. We have

% = coimy = cokker = cokim ¢ = cok ¢.

We define a sheaf .Z over X where .# (V) = .Z (U NV) for open V C X with the natural restriction
maps z|w = z|yqw (the left side is the definition of restriction in .7, and the right occurs in %),

and let 77 : Z — % be given as 7(V)(z) = n(UNV)(xz|ynv). That F is a sheaf follows from % being
a sheaf, and 7 is easily checked to be natural:

(V) (@)|lw = nUNV)(zlvav)|lvaw = n(U N W)(z|lvaw) = 7(W)(z|w).

We claim that 770 ¢ = 0 so that we can use our result that € = cok ¢ to get a desirable factorization.
To see this, we let V' C X be an open set, and see

i(V) o ¢(V)(z) =nUNV)(¢(V)(@)|unv) =nUNV) o dlu(UNV)(zluny) =0

by our assumption that n o ¢|y = 0. Then the below diagram commutes:

]

We now notice that j|U = Z|y and that 7|y = n by our constructions, and thus we have a map
1’ = [i|y such that n =’ o ¢|y as desired. O

Exercise 2.6.J

Proof. Let o/, %,%¢ be Ox modules with a,a’' : & — % and 3,8 : B — €, and V C U C X be
open sets. We will be using the fact that the category of &x (U) modules is an abelian category itself
implicitly.

First we will check additivity by showing hom-sets are abelian groups and composition distributes
over addition. We define o + ¢’ to be the morphism such that (o + o/)(U) = «(U) + &/ (U), which is
easily checked to be natural. We also observe that S o (a+ ') = foa+ 0’ because this equality
holds on the level of sections. Similarly (8+ f')oca=Foa+ ' oa.
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The zero object is the zero sheaf, which clearly has &x-module structure.

We define &7 x % as the sheaf where (& x B)(U) = &/ (U) & B(U), and where the restriction
maps are the direct sums of the restriction maps. That & x £ is a sheaf (not just a presheaf) follows
from &/ and & being sheaves. In addition, &/ x A is canonically an &x module by

Ox(U)
o (U) ga BU)
o (U) B(U).

This action commutes with restriction to V' because the actions on &7 and £ do.

We already know that kernels and cokernels exist in the category of sheaves, so we just need to
show ker 8 and cok « are Ox modules as well. Recall that cok « is the sheafification of the cokernel
presheaf, so an arbitrary element of cok a(U) looks like (Z7,),cv for some collection of compatible
germs 7;, € #,. Exercise , we have a natural action of Ox , on %, for each p € U, which induces
an action of @x (U) on (cokpe @)™ because the sheafification consists of choices of compatible germs.
Ox gets a canonical action on ker 3, since this is a subsheaf of A.

The last two axioms of every monomorphism being the kernel of its cokernel and every epimor-
phism being the cokernel of its kernel follow from our previous results, along with the fact that
monomorphisms and epimorphisms in Abx already have this property. O

Exercise 2.6.K

Proof. Categorically, if #,¥ are Ox modules, . ®¢, ¢ should be an &x module equipped with an
Ox-bilinear map from .# x & where we say ¢ is an Ox-bilinear map if ¢(U) is an Ox (U)-bilinear
map of Ox (U) modules for every open U C X. Moreover, for any &x module 5 with a €x-bilinear
map ¢ : F x4 — H, the below diagram commutes:

F XY —— FQRey Y

3
[ <+

.

As usual, this universal property defines our object up to isomorphism. To show existence, we
first define the “presheaf tensor product”. If #,¥4 are Ox modules, we let (F Qg ¥)pre(U) =
F(U) ®pxw)9(U) be the presheaf with restriction maps given by

FU)xG(U) —— FU) @oxw)9U)

|
3!
I‘m N

FV)xG(V)

|

F(V) Rox (V) Gg(V).
Then for 0'x modules .7,¥, we define the tensor product of .# and ¢ over Ox as (F ®¢, 4)5h,. It’s
clear our construction is a sheaf, so now we must show it is an &x module. We will call (F ®¢ %);};e
F Qe ¥ for ease of notation, keeping in mind that we have not shown this object satisfies the
universal property we originally defined. (F Qg 4)pre(U) is clearly an &x(U)-module. Then for
p € U, we claim there is an action of Ox (U) on (F Qg ¥), given by
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rlz, V] = [rlunve|uav, U N V]. To show this is well defined, if we picked some other representative
where [z, V] = [y, W], so there is some open S C V NW with z|s = y|s, we have

rly, W] = [rlvnwyluvnw, UNW] = [r|lunsyluns, UNS] = [rlunsz|uns, UNS] = [r|luave|uny, UNV] = rlz, V].

Then if (z) € [[ey/(F ®ox 9)prep is a choice of compatible germs, we define r(zp)pev = (rzp)pev
which defines an action of Ox on ¥ ®¢, ¢ (being the sheafification of (% ®ey ¥)pre). This action
commutes with restrictions because

(r([2p, Upl)pev) Iv = (([7’|U0prp|UﬂUpa un Up])pEU) lv = ([T|U0prp‘UﬁUpv UNUp))pev
= ([rlvov,zplvau,, V N Up))pev = (rv[2p, Up))pev = rlv (([2p, Up))pev) |v-

Then indeed F Rg, ¥ is an Ox module.

We now need to show .# @4, ¢ satisfies the universal property by supposing ¢ is an 0x module
and ¢ : F x9 — S is Ox-bilinear. Then for each open U C X, if there were a factor a : F Rg, Y —
2 through which ¢ factored, we would see that for (f,g) € ( ) x4 (U),

a(U)(([f © 9,Ulp)pev) = o(U)(f 9)

and we extend this linearly. By the universal property of tensor products, for each open U C X we
get amap B(U) : F(U) ®¢,w) ¥4 (U) — H(U) given by

FU) xG(U) — F(U) @oy ) 9(U)
M E!B‘EU)
2(U)

by assumption that ¢ is Ox-bilinear. We claim that 3 : (¥ Q¢ ¥)pre — € is a natural transforma-
tion. If V' C U is open, we see

(BN fiwan) v = (32 6@)(fing0) v = 3 60 (filvgilv) = S BV (fily @ gilv) =

as desired. Because 47 is a sheaf, we get a map o : ¥ ®g, ¥ — H given below:

(F oy Dpre —2o F @py 9

o
B ~

I

By our constructions, this shows existence for our universal property. To show uniqueness, suppose
we had another map ¢ : F ®g, 4 — H through which ¢ factors. By hypothesis, for any open set
U, we have

UND_ fi© 9 Ulp)per = > 0(U) ([fi ® 95, Ulp)pev) = > $(U)(fi, 9i)-

Our approach in showing that a = 1 will be to show that for every p € X, a,, = 1, which suffices
by Exercise -Fix z € U € X, and let [([X fip ® gip, Up)) ey » U] be an arbitrary element of
(Z ®ox 9)-. Because ([32; fi,p @ gip: Uplp) ey is @ compatible choice of germs, for each p € U there
exists an open set V), containing p and ), ; , ® y; p, such that

sz7p ®yz7pa Zfz,q ®gz7qa
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for all ¢ € V},. Then

(08 ([([Z fip ® 9ips Uplp)pev, U]) =1 ([([Z fip ® 9ips Uplp)pev., Vz})
= 2 (1D @i @y Velphpeva Vi) = 00V2) (0 12 @ i, Vilp)pers ) V2]
= [6(Vo) @iz yiz), Vil

But since

Zfz®gza pEU—Za(U) (([fi®gm pEU Z¢ fz7gz

for any open set U as well, we derive that

o (I Fip @ gips Unlplpers U1) = D [0(V2) (@i, 9:.2), Vi

as well, so a, = 1, as desired.

Lastly, we want to show that (F ®¢,¥9), = FpQex ,%,. We can reinterpret the universal property
defining .# ®¢, ¢ as the colimit indexed by the final category (the final object in the category Cat)
inside a category whose objects are pairs (2, ¢) where S is an Ox module and ¢ : F x G — H
is Ox-bilinear, and whose morphisms are maps of sheaves making the diagrams commute. Explicitly
if (o7, ¢) and (£,1) are objects of this category, then «a : &/ — % is a morphism of our category
whenever ao¢ = 1. In the language of category theory, our category is the coslice category of Mod g,
over .% X 4. By the dual of Exercise or Vakil (1.6.14), colimits commute with colimits, and as
taking the stalk at p € X is a cohmlt, we get our result. O

Section 2.7
Exercise 2.7.A

Proof. If U c U’ € U” are all open, we need to show existence of restriction maps so that

Tk (U”) Tk (V")

\ . )/

commutes. First of all, for arbitrary open V' C U, we have m(V) C «(U), hence every W € Op(Y)
containing 7(U) also contains 7(V'). In other words, we have the below commutative diagram:

cohme7T vy YW
3! resU v

COthDTr(U) %

id( / \ 7“

G(W GW").

The uniqueness of the restriction maps ensure that resy iy oresy yr = resy~ y as both maps satisfy
the unique arrow below:
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COthDﬂ-(U) g(W)

ld( / \ ,>ld
G(W) W)

Lastly, we need to show that W;rt preserves identity maps: this is clear by uniqueness of the restriction
maps, since the identity makes the diagram commute.

To see that m;.L need not be a sheaf, let X = C, and Y = {*}, 4 = Z be the sheaf associating Z
to {x}, and let 7w : C — {x}. Then for any nonempty open U C C, the only open V containing x(U)
is V = {x}, so m;,L(U) = Z (also 7,1 (&) = 0). In addition, the restriction maps are all the identity.
If we take disjoint open sets U,V in C and let 0,1 be sections of 7.1 over U,V respectively, we try
to glue 0 and 1 together on U UV (which we should be able to do if ¢ were a sheaf). If n € Z was
the glued section, then it would restrict to 0 and 1 on U and V respectively. However, as was shown
earlier, the restriction maps are the identity, so n would have to simultaneously be equal to 0 and 1,

impossible. O

Exercise 2.7.B

Proof. Following the notation in the hint, we will show each hom-set is in bijective correspondence
with Mory x (¢,.%). First, we note that for every open set U C X and V C Y, m(n~1(V)) C V and
7 Y7 (U)) D U, two facts we will use repeatedly throughout the proof.

Fix ¢ : 9 — 7.7, and for each open U C X and V' D 7w(U), we let ¢y = res-1(v),u op(V). We
claim our defined set of ¢y ¢’s are natural, hence define an element of Mory x (¢4, .%#). To show this,
fix open V' CV C Y and U’ C U C X such that V D 7(U) and V' D> «(U’). We want to show the
below diagram commutes:

(V) 2 F(U)
J{resv,v’ resy,
vy 2z W),
To see this, fix x € (V). Then

¢VU(JU)\U/ = TeSy—1(v),u’ op(V)(z) = TeSp—1(v"),U’ 0¢(V/)($|v') = v (xlvr)

as desired. Thus we have a map « : Mor(¥, .. %) — Mory x (¢, %) given by our above construction.
To show « is injective, suppose a(¢) = {¢pvuy} = a(y)’). Then for any open U C X and V C Y with
V D w(U), we have (V) (x)|v = ¢'(V)(z)|v for any x € 4(V). Letting p € Y be arbitrary, ¢, = v,
because if we take any germ [z, V], we let U = 7= 1(V) so that V D> 7(U). We then compute

Uplz, V] = [ (V)(2), V] = p(V)(@)|v, Ul = [/ (V) (@) |, U] = ' (V)(2), V] = ¢y [z, V].

Then by Exercise 2.4)C, we see 1) = ¢’ as desired. Now we claim « is surjective. Fix {¢yu} €
Mory x(¥4,.%). For each open V. C Y, we let U = 7= 1(V) so V D m(U), and then define ¢ (V) =
ovu :G(V) = F(U) = 1% (V). We now claim ¢ is a map of sheaves. For any open V' C V C Y,
we let U = 771(V) and U’ = 7= 1(V"’), so the following diagram commutes by naturality of {¢yy }:
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Y(V) 5 7 (V)
resVYV/ J{resv’v/
g YLz,
Thus « is indeed a bijection.
Now fix ¢ = {¢pvu} € Mory x(¥,.7). We will show there exists a unique element of Mor (7,14, .7)
corresponding to ¢. Fix open U C X, so for each open V O V' D n(U) we get the below commutative
diagram:

F(U)
o (U)
resy v
. Z(V) /m;%m\ T F (V')
\ V Hyr /
Pva=1(v) rese Dyr =1V
G(V) . F (V).

Indeed, the ¢(U)’s are natural: if U’ C U, then both resy y op(U) and ¢(U’) o resy - satisfy the
unique arrow in the below commutative diagram:

F(U)
:
resy v/
7T>|<¢g.(vv) ///W;g([])\) ﬂ_*y(vl)
\ V Myt /
Pv.e—1(v) res by =1V
G(V) ny F (V).

Thus we have a unique map of presheaves ¢ (uniqueness is because each map of sections is uniquely
determined), which induces a unique 1 : 7714 — . by the universal property of sheafification. We
let B(¢) = 1, so by uniqueness 3 is injective. For surjectivity, fix ¢ : 7719 — .%#. By precomposing
with sh: 7719 — 7719, we get a collection of ¢yy’s by ¢y = ¢(U)osh(U) oty where py : 4(V) —
ﬂl;lc%(U). These ¢yy’s define an element ¢ € Mory x (¥, %) by naturality of ¢, and we will now
see that 8(¢) = . This is because on the level of sections, the unique arrow ¢(U) is satisfied by
P(U) osh(U), so ¢ = osh, i.e. B(¢p) = 1.

We now need to show the bijections 7 = [ o v are functorial. First, let ¢ : # — ¢ be a map of
sheaves, and we need to show

Mor(#, 1, F) —2 s Mor(#, 7.,.F)

J{T‘é’ F J{Tﬁf’ F

Mor (7194, 7) (o Mor(r=17, F)

commutes. We fix ¢ : 4 — m,.%#, and notice that the below four commutative diagrams summarize
all of the constructions in play for any open U C X with n#(U) C V' C V:
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/ \ ;r}ag sh - —1g
I

7o 7 (V)
71'* ;‘zg k‘ﬁi
F

rebv v’
;é%
/ ;rle¢ \ ﬂ-;rle% sh ? 7(-71%
resy,v: I
1 J,”gfe(ﬁ e
Tore (U t
Wpreg —h g,
rCSV v’ )

Our strategy in showing commutativity will be checking equality on the level of stalks, which suffices
by Exercise 2.4]C. For p € Y, we want to show

_ ol Toee €
Tgtg(qmp © (77 1¢)p © Shpp = Tﬂ?(w © ¢)p © Shp

N . . . .
because sh;rpre is an isomorphism by Exercise I . For the left-hand side, we compute for an
arbitrary germ [0y (2), U] that

T (V) 0 (710), oshy™ ™ ([oy (2), U]) = 7.2 (), 0 Sh;‘;lﬂ o(Tpee®)p([ov (), U])
= Up([v 0 6(V)(2),U]) = (V) 0 ¢(V)(@)|vr, U]
For the right-hand side, we compute

T3 (@ 0 &) 0 b (loy (), U]) = § 0 6, ([ov (), U]) = (V) 0 6(V)wr, U.

Now let ¢ : F — S be a map of sheaves, so we need to show the below diagram commutes:

o

Mor (¥4, m..%) BULL2LN Mor (¥4, w5

l”"ﬁ F l‘r‘ﬁ A

Mor (14, F) —2 Mor(n—19, 7).

Fix ¢ : 9 — m.%. In a similar vein, we want to show 7¢ ¢ (m.p01) = o7z (1) by checking stalks.
Again, it suffices to show

e Zlg
T 0 (Taip 01)p 0 8hp™™ " = 0, 0 Tp 7 (1) 0 shy”

For an arbitrary germ [HV( ) U], we compute that

T (o 0 )y 0 5057 ([ (), U]) = map 0 00, ([ (2), U]) = [map(V) 0 (V) (@), U]

= [p(m (V) 0 ¥ (V)(@)|u, U] = @p 0 7.5 (1) 0 sh™? [y (2), U] = 0 0 B ([ (), U])
= oo (lp(V)(@)|0]) = [p(U) 0 resy1 (.0 0¥ (V) (), U] = g ([ (V)er, U])
= 0 0 Dy ([ (2), U]) = gy 0 7. (1) 0 shy™™ (v (), U)).

119



Lemma 2.1. If X Ly s, Z, then (gf)« = g« f« as functors.

Proof. This is clear: if .# is a sheaf over X and U C Z is open, then

9 fF(U) = [T (g7 (U)) = Z(f g7 (U)))

while simultaneously

(95):Z(U) = Z(g)" (U) = F(fH g~ (U))).

Lemma 2.2. If X ERAER Z, then (gf)~t = f~lg~! as functors.

Proof. Recall that being an adjoint defines a functor up to natural isomorphism. In particular, the
left adjoint of (gf)« is defined up to natural isomorphism. By Exercise , (gf)~1is a left-adjoint,
so to prove the claim it suffices to show f~l'g~! is also a left-adjoint of (gf).. Again by Exercise
[2.7]B, we have functorial bijections

Mor(ftg™' o, F) = Mor(g ', fo.F) = Mor(H, g. f.F)

for arbitrary sheaves 7 over Z and .# over X. By Lemma 2.1, Mor(2, g..f..% ) = Mor (A, (gf)+.F)
which completes the claim. O

Lemma 2.3. Leti: {x} < X have image p, and let F be a sheaf over X. Then i *.FZ ({x}) = Z,.
Proof. By definition, i L ({}) = colimy~,y # (V) = .%,. Then it just remains to show i~ 1.7 ({*}) =

pre
Fp, 1.e. the set of all compatible germs over {*} is just .%,. Since {} is a single point, a choice of
compatible germs is just a single germ at *. But (ir,t.%). = colim.ey inb. 7 (V) = i .7 ({x}) = %,

as desired. O

Exercise 2.7.C

Proof. Fix p € X and let ¢ = w(p), and choose ¢ to be a sheaf over Y. We then have the chain of
continuous maps

P> X 5SY
By Lemma[2.2] we get (mi)~'% = i~'7~'9. In particular, (mi)"'9({p}) =i~ 7% ({p}). We notice

i has image ¢ and 4 has image p, so we apply Lemma to get that (mi)~'9({p}) = ¥,, whereas
i~lr7 19 ({p}) = (77'9), as required. O

Exercise 2.7.D

Proof. We will show that ¢|y = i-1%, which completes the result because the restriction of a sheaf
is again a sheaf. We can do this by showing ¥|y (V') = colimyy ;)4 (W) = colimy 5y & (W) for an
arbitrary open V' C U, where the index is over all open V'.C W C U. By definition, 4|y (V) = 4 (V).
But indeed because 4 (V) is in the index and every ¢4 (W) has a unique restriction map to 4(V), we

can easily see our requirement

A
!
(V)
g(v) res g(W)
is satisfied. It’s also easy to see the induced restriction maps are the same as those of ¥|y. O
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Exercise 2.7.E

Proof. Suppose 0 — .F — ¢ — # — 0 is an exact sequence of sheaves. By Exercise 2.6]E, 0 —
Fq — Gy — Ay — 0 is exact. Then by Exercise , 0= (71 7)) = (7719, = (n71#), — 0
is exact. Then Exercise [2.6.D gives that, since p € X was arbitrary and ¢ = w(p), that indeed
0= 71\ = 1719 = 771 — 0 is exact. O

Setting 1. Let & be a category and B be a 2-category. Assume R : of — B and L : /P — A
are functors such that for each f : X =Y in ¢, LX = RX and (Ly, Rf) is an adjoint pair, i.e.
there are a 2-morphisms n/ : idy = RyLy and ¢/ : LyR; = idx such that Rye! on/ Ry = idg,
and e/ Ly o Lyn! = idy, where a I-morphism next to a 2-morphism denotes whiskering. We let o
denote vertical composition and * denote horizontal composition of 2-morphisms. We slightly abuse
notation and omit explicit notation denoting composition of 1-morphisms. However, whiskering is
still distinguishable from composition of 1-morphisms. Finally, 1), denotes the identity 2-morphism
of idys for an object M € A.

Lemma 2.4. As in Setting if X Ly % 72 €, the below diagrams of 2-morphisms commute:

quRq
LyRy =2 RyLsLyR,

ﬂﬁg ﬂRfoEg
!

idry £> Rfo

f
LR, “X RyLyL,R,

ﬂeg ﬂeg RyLy
f

idLy $> Rfo.
Proof. We have

nfoed =/ x1py)o(lry x€?) = (nf olpy)* (Ipy o€?) = (idr,z, onf) x (e oidr,r,)
=RyLyse% 0 nngRg
because horizontal composition by 1 does nothing, as does vertical composition by identities by [4].

Commutativity of the second diagram is analogous. To see diagrammatically what we are doing for
commutativity of the second diagram, we observe

LY id LY

LZ Ly
ﬂnf ﬂld
Ly 2orx By Bz L1y
ﬂid ﬂey
Ly 2 ox My id Ly
is the same as
Ly id Ly Ly 2o,z Loy
E i
Lf Rf Ry Ly
Ly LX Ly % Ly S,z Loy
ﬂid ﬂeg
Ly Y rox M1y Ly — 4 1y
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is the same as

Ly id Ly Ly S,z Loy
ﬂﬂLY €9
id id
Ly Ly « Ly — 4 1y
ﬂnf \H/]ILY
Ly 2 x oy Ly — 4 1y
is the same as
Ly id Ly ey pz Loy py
ﬂﬂLY ﬂeg
LY id LY id LY
ﬂnf M]ILY
Ly 2, x My id Ly
is the same as
Ly id Ly oy pz Loy
M]ILY Meg
LY id LY id LY
O
LY id LY id LY
ﬂnf MILLY
Ly 2 ox My id Ly

is the same as

which is simply 1/ o €9.

Ly 2o,z Loy 1y

69

Ly — 4 1y

Ly — 4 .1y

77f

Ly 2 ox My

O

Lemma 2.5. As in Setting if X Ly % zin %, then €9 = e/ o Lye9Ry and n9' = Ryn/ L, onI.
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Proof. By uniqueness of the unit and counit, it suffices to show that ¢f o L 7€9Ry (as a counit €) and
Ryn' Lyon? (as a unit n) satisfy the triangle identities, namely eLgso Lqn =idy,, and RypeonRyys =
idg,,. Using Lemma [2.4 we see

LyeRyLyyoLyRyn' Ly =Lye?RyLyLyo LyLyRyn’L,
=Li(e’RsLsoLyRym' )Ly =L¢(n) 0e9)L, = Lin/Lyo LyeIL,.
Using this observation, we compute
(Ef oLfe?Rp)Lgys o Lgf(Rgnng on?) = 6ngf oLge?RyLgy o Lnggnng o Lgsn?
=e'LiLyo L LyoLye9Lyo LyLyn® = (/Lo Lyn/)Ly0 Li(e9Ly o Lyn?)
= (idg,)Ly o Ly(idy,) = idy,,-
Again using Lemma [2:4] we observe
R,RfLie9Ry o Ryn' L,R Ry = Ry(RsLse? on LyR,)Ry = Ry(n' 0 €?)Ry = Ryn’ Ry o Rye9 Ry
Using this, we compute that on the other hand,
Ryp(ef o LyedRs) o (Ryn' Ly on?)Ryy = RyRypel o RyRyLye?Ry o Ryn/ LyR Ry o RyRy
= RyRief o Ry’ Ry o Rye? Ry o/ RyRy = Ry(Rypel o/ Rp) o (Rye? oI R,) Ry
= Ry(idg,) o (idg,) Ry = idg,, .
O

Corollary 2.5.1. As in Setting if Bo/ = af W — Z in €, the below diagram of 2-morphisms
commutes in B:

La/éﬁRa/
Lﬁa/Rﬁa/ =——" LRy
Lﬂ/eaRﬁlH, ﬂsﬂ,
BI
Lﬁ/Rﬁ/ E ldLW
Proof. Immediate from Lemma [2.5] O

Lemma 2.6. As in Setting if Bo/ = af’ W — Z in €, the below diagram of 2-morphisms
commutes in B:

LsRan®
LsRe —2="— LsR.p L

n”'LBRaﬂ ﬂna'LBRWLB,

RO‘,LBQI%&D‘/ ﬁan@a/ Lﬁa’Rﬁa’ LB/

Proof. In a similar vein as the proof of Lemma we compute
na,LBRQRB/LB/ ) L/@Ranﬁl = (7]0‘, olpy) *idr,r, * (idRa/Lﬁ/)
= (idr,,1,, o) *idrym, * (0" 0 1rx) = RarLarLgRan® o1 LgRa.

O
ﬂ,
W ——X
Lemma 2.7. Suppose la/ la commutes in €. As in Setting |1 the below diagram of 2-
y 25z

morphisms commutes in B
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(x/L Ra
LgRo =25 Ry Lo R

LBRGnﬁ/HY HRQ/LB/ea

S Rer Ly
LBRaﬁ/Lﬁ/ :> R(,/Lﬂ/

Proof. By the above Lemmas and Corollary, we get the below commutative diagram of 2-morphisms
in A:

n L[} R /L/j/S
LgRy =5 Ry Lo Ry ——"— R/ Ly
LﬁRa”]ﬂM HR /LBa/RMI HRQ/L[S,”/;/
L R a / 1 Lgre*Rg ’
LﬁR BIL,B/ B:B> éa’Lﬁa’RBa’Lﬁ’ B:>ﬁRﬂ/Lﬁ/Rﬁ/LB/
€ Rrx’L[:i’M MRO/Lﬁ/E Ra/Lﬁ/ ﬂRales/LL‘f’
Ro Ly === RosLorRar Ly === Ro/Lp:
7] R ’L[j’ a/E Lﬁ’

where the bottom left and top right boxes commute by Lemma the bottom right box commutes
by Corollary 2.5.1] and the top right box commutes by Lemma [2.6] By the triangle identities, we
realize the bottom row and the rightmost column are both the identity 2-morphisms by the triangle
identities, which concludes the result. O]

Exercise 2.7.F

Proof. The result is now immediate by Lemma [2.7] since Lemmas [2.1] and [2.2] tell us that we have
functors L : Top°® — Cat and R : Top — Cat each assigning a topological space to the category
of sheaves over it, and where L, = 7~! and R, = m,, which satisfy Setting [1| by Exercise [2.7.B.
To be explicit, the composition running across the bottom and left of the commutative diagram is
Vakil’s construction, whereas the composition running across the top and right is the dual construction
mentioned in the exercise. O

Exercise 2.7.G

Proof. The claim is equivalent to showing supp s contains all of its limit points, so suppose ¢ € X is
a limit point of supp s, i.e. for every neighborhood U of ¢, there is a point p € U such that s, # 0.
Towards a contradiction, suppose s, = 0. Then there is some neighborhood U of ¢ such that s|y = 0.
By hypothesis, there is some p € U with s, # 0, so in particular s|yy # 0. This is a contradiction . [

Exercise 2.7.H

Proof. (a) First, we show that if ¢ ¢ Z, then (i..%), = 1. Because Z is closed and ¢ ¢ Z, then ¢
is not a limit point of Z, hence there is some neighborhood V of ¢ such that V N Z = &. Then
F(V)=F(VNnZ) =.%(&) =1 because 1 is the terminal object in Grp and .# is a sheaf.
Let U C Y be a neighborhood of ¢ and let s € i..%#(U) be an arbitrary section. We observe
I‘eSUUm/ i FU) - .. F{UNV)=FUNVNZ) = F(@) =1 gives that slyny = 1, so

= 1. As s was an arbitrary section, we conclude (#,.% ), = 1.
NOW suppose q € Z. Then the neighborhoods U C Y of ¢ are in bijective correspondence with
the neighborhoods V' C Z of ¢ given by V «~ U N Z, hence

(ixF)q = colimy5ysq8..F (U) = colimzoy s, F(V) = Z,.
(b) By Exercise it suffices to show the natural map induces isomorphisms on the level of stalks.

FixqeVY.If g ¢ Z, then ¢ ¢ supp¥, so 4, = 1, and (i.i~'¥), = 1 by (a). Then any morphism
induces an isomorphism of stalks outside of Z.
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Now suppose g € Z, and let [s,U], € ¢,. For each open V containing U N Z, let uy : 4(U) —
i;rleg (U N Z) be the map sending a section to its equivalence class, and similarly define vy :

G(U) = i5,.9(V N Z) for any open V containing V' N Z. Then if our natural map sends [s, U]
to 1, by definition of the map we have [uy(s),U N Z] =1, i.e. there exists some neighborhoods
V of ¢ such that py(s)ly = 1, i.e. vy(s) = 1. By this definition, there exists an open W
containing V N Z such that sy = 1. This demonstrates our germ was trivial to begin with,
showing injectivity.

For surjectivity, an arbitrary element of i,i~'%(U) is a choice of compatible germs of i- 1% .
Thus picking an arbitrary element of (i,i~'%),, we can take the compatible germ at ¢ and
restrict to its open neighborhood, so an arbitrary germ can be taken to be [uy(s), U N Z], which

is exactly the image of s under our natural map.

Since ¥ is naturally isomorphic to i,i~'%, we don’t lose any data by just considering i~'¢,
because we can always push-forward this sheaf over Z and recover ¥.
O

Chapter 3

Section 3.1
Exercise 3.1.A

Proof. By |[3], we need to show that for every p € X, there are smooth charts (U, ¢) containing p and
(V, 1) containing ¢ = 7(p) where 7(U) C V and ¢pom o=t : p(U) — (V) is smooth.

Fix p € X, and choose a smooth chart (V, 1)) containing q. By assumption, yonm : 7= 1(V) — (V)
is smooth, hence for every point in 771(V) there is a smooth chart (U, ) containing the point such
that Y oo : (U) — (V) is smooth. This gives the desired result, taking the point to be p. O

Exercise 3.1.B

Proof. Define 7% (f,) = (f o 7),. To show this is well defined, if g, = f,, there is some neighborhood
W of ¢ with f|lw = g|W. Noticing gom = fonm on 7~ (W), we see the map is well defined. Let * be
either multiplication or addition. We compute

7r#(f*g)q =((fxglom)p=(forxgom)y=_(fom)p*(gom), :W#(fq>*7r#(9q)~

It’s clear 77 (0) = 0 and 77 (1) = 1, which proves 7# is a morphism of stalks.
In addition, f, € my, if and only if f(q) =0, i.e. fom(p) =0, so 7#(f,) = (fom),isin my, as
well. Thus 7# is a local ring homomorphism as well. O

Section 3.2
Exercise 3.2.A

Proof. (a) Prime ideals of k[e]/e? are the same as prime ideals in k[e] containing (€2). Such a prime
p containing €2 then contains e. Thus if f € p, we do the division algorithm and write f = ge+m
for some m € k, so we see m € p implies m = 0. Then € | f, and as f € p was arbitrary, we get
p = (¢). Thus Speckle]/€* = {(€)}.

(b) Prime ideals of a localized ring are the same as prime ideals not intersecting the multiplicative
subset by Exercise . Thus the elements of Spec k[z],) are the same as prime ideals contained
in (x). Because k[z| is a PID, let (f) be an arbitrary prime contained in (x). If f # 0, then z | f
means we can write f = g-x for some g € k[z]. As degg < deg f, we see g ¢ (f), so x € (f) by
assumption of being prime. Thus (f) = (z), hence Spec k[z],) = {0, (v)}.
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Exercise 3.2.B

Proof. Using the fact that C = R, we get a tower of extensions

where the numbers indicate the degree of the field extensions, and where k = R[z]/(2? + ax + b).
Because extension degrees are multiplicative, we see [C: k] =1, i.e. C X k.

An explicit isomorphism & — C could be given by x +— —35 +1i4/b — %2, but will not be checked in
this proof. |

Exercise 3.2.C

Proof. Qlz] is a PID, so primes of Q[z] are the same as irreducible polynomials over Q. Because
irreducible polynomials in Q are uniquely determined by their roots in @ (an irreducible polynomial
splits in Q), we get a bijective correspondence between orbits of Galois conjugates and prime ideals
of Q[z]. Thus we may view Spec Q[z] as Q modulo the orbits of the Gal Q/Q. O

Exercise 3.2.D

Proof. Suppose, aiming for a contradiction, that fi,..., f, is a complete list of all of the nonzero
primes in k[z], i.e. irreducible polynomials since k[z] is a PID. Then set g = 1 + [], fi, and notice
g =1 mod p for each p € Spec k[z], so g is indivisible by each f;. However, we then see that g cannot
be written as a product of irreducibles as we have a complete list f1,..., f,, which is a contradiction
because PID implies UFD. O

Exercise 3.2.E

Proof. We claim that every p € Spec C|z, y] is principally generated by an irreducible polynomial or
of the form (x — a,y — b) for some a,b € C. It’s clear that if a prime ideal is principally generated,
its generator must be irreducible, so we fix a nonprincipally generated prime p and first suppose for
a contradiction that for every f,g € p, there is a nonconstant common factor in Clz,y]. We will
make some inductive constructions here. p must contain two elements fq,¢; such that (f1,¢1) is not
principal because Clz,y] is Noetherian by the Hilbert-basis theorem. We then set I} = (f1,¢1) and
Iy =0.

Now we inductively have some I,, = (fn, gn) that is not principally generated, is contained in p,
and properly contains I,,_;. By hypothesis, we can find some nonconstant factor h of f,, and g,, so
we can write f,, = ph and g,, = gh for some polynomials p, q. Since p is prime, either h € p or p,q € p.
If h € p, we see (h) C p, so there exists some b’ € p\ (k). Then we set I,+1 = (h, k'), which satisfies
our hypothesis. If h ¢ p, then both p and ¢ are in p. If (p,q) = (h) for some h € p, we are able to
find some A’ € p\ (h), and let I,,41 = (h,h’'), which again satisfies our hypothesis. If (p,q) is not
principal, we set I,,11 = (p,q). The only non-immediate condition to check is that (fp,9n) S (p,q)-
If the containment is not proper, we replace (fn, g,) with (p, q), and do the same case division. After
a finite number of case divisions, the containment either becomes proper or we move into one of the
other outlined cases. This is because each common factor is nonconstant, and if we always were able
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to write (fn,9n) = (p,q)h = (p,q), we observe that (p,q) have either smaller x or y-degree than f,
and g, so we cannot do this procedure for infinity. Then the induction hypothesis holds.

We have now constructed an infinite ascending chain of proper ideals in C[z, y], which is impossible
by the Hilbert basis theorem.

Now we can find some f, g € p which have no non-constant common factor in C[z,y]. Considering
these polynomials as elements of C(z)[y], which is a Euclidean domain, there is a greatest common
factor b’ € C(z)[y] and may write b’ = a’f + b'g for some o’,b’ € C(z)[y]. Since A’ is defined up to
unit, we may take ' € C[z,y]. We will now show that A’ € C[z]. Since C[z,y] is a UFD, we write
f=11" fig =111 9i, and I/ = Hi:l h; where each f;, g;, h; is irreducible in C|x, y]. We rearrange
the indices to be such that f; = h; for 1 < i < m/, and g; = h; for m' +1 < i < n/. It then follows
that

_ fm’+1fm’+2 s fm

B+ 1 o2 - - B

and
b= 9192 - - - Gm'Gn’+19n’+2 - - - gn

Y Y e T

But because the denominators of b can only be in the variable x, we see each h; must be in the variable
x only. Thus b’ € Clx] as desired. Now that

hI:alf+blg

we may clear the denominators of both @’ and ¥ (remember, the denominators are in C[z]) to get
some expression

h=af+pg

for some «, 8 € C[z,y] and h € Clz]. Thus h € (f,g) C p, and as C is algebraically closed, h splits
into a product of linear factors, one of which, say = — a, must be in p because p is prime.

An identical proof, swapping the roles of z and y, shows that some y — b is in p as well. However,
as (x — a,y — b) is maximal (C[z,y|/(x — a,y — b) = C is a field), we get p = (z —a,y — b).

A very short proof can also be given assuming two powerful results, being the weak Nullstellensatz
and that the dimension of k[z1,...,x,] is n for every field k. If we take a nonprincipal prime ideal
p € Clz,y], we can find some irreducible element f € p. Then we get the ascending chain

0C (f) Sp.

We see p must be maximal since dim C[z,y] = 2, and by the weak Nullstellensatz, since C is alge-
braically closed, p = (x — a,y — b) for some a,b € C. O

Exercise 3.2.F

Proof. Suppose Hilbert’s Nullstellensatz, stating that for any field &, every maximal ideal of k[x1, . .., 2]
has residue field a finite extension of k. To prove the weak Nullstellensatz, let £ be an algebraically
closed field. It’s clear that each ideal of the form (z7 — a1,22 — ag,..., &, — a,) is a maximal ideal
because its residue field is isomorphic to k, a field. Conversely, we fix an arbitrary maximal ideal m of
klx1,...,2,]. By the Nullstellensatz, we have k[xy,...,2,]/m is a finite extension of k, and thus an
algebraic extension of k. However, since k is algebraically closed, the inclusion k — k[z1,...,2z,]/m
must then be an isomorphism. Thus for each index 7, there is some a; € k such that x; = a; mod m.
Then z; —a; =0 mod m, i.e. z; — a; € m. Then m contains the ideal (z; — aq,...,2z, — a,), which
is also a maximal ideal, hence m = (x1 — ay,..., T, — ay). O
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Exercise 3.2.G

Proof. Tt’s a general fact in dimension theory that if A is a finitely generated k-algebra that is also
a domain, then dim A = tr.deg,(Frac A). In our case, A is finite dimensional over k means A is
algebraic over k, thus dim A = 0. Then A being Noetherian and dimension 0 is the same as A being
Artinian, and A a domain implies that A is reduced. Because reduced Artinian rings are the same
thing as fields, we see A is a field as well. O

Exercise 3.2.H

Proof. The maximal ideal of Q[z, %] corresponding to (v/2,/2) is the ideal (22 — 2,z — y) because in
modding out by this ideal, we get that z = y and that z = /2.
The maximal ideal corresponding to (v/2, —v/2) is (22 — 2,z + y) so that 2 = —y and x = v/2.
It’s easy to see both residue fields are isomorphic to Q(v/2). O

Exercise 3.2.1

Proof. With a slight generalization to the proof of Exercise (replacing C by an arbitrary field k),
we see every non-principal prime ideal p in Spec k[x, y] contains some irreducible f(x) and g(y). How-
ever, klx,y]/(f,g) = k shows that (f,g) is maximal, and as p D (f, g), equality holds. To summarize,
every non-principal p € Spec k[z, y] can be written as (f(z), g(y)) with f, g both irreducible.

(a) We claim ¢(m,7%) = (22 — y), with one containment clear. Suppose for a contradiction that
¢(m,m2) were non-principally generated. By our lemma, we would then be able to find some
f(x) € ¢(m,n?), which implies 7 is algebraic over Q, impossible. Then ¢(m,72) contains the
prime 22 — y and is principal, so indeed ¢(m, 72) = (2% — y).

(b) First, we show that 0 € SpecQ[z,y] is equal to ¢(m,0). Similarly to (a), if there were some
nontrivial f € ¢(m,0), then 7 would be algebraic over Q, contradiction, so ¢(m,0) = 0.

Now we take p = (f) for some irreducible f € Q[x,y]. We consider f mod z—m, i.e. substituting
7 for x in f which gives us a polynomial in C[y]. Because C is algebraically closed, there is some
root « of this polynomial in C. We then claim ¢(7,«) = (f), where it’s clear by construction
that (f) C ¢(m,«). If ¢(m, ) were non-principal, we would get some g(z) € ¢(rm, @), again
contradicting that 7 is transcendental over Q. Thus ¢(7, «) is principal and contains the prime
(f), hence must equal (f).

For the last case, we take p to be non-principal. Our lemma then tells us that p = (f(z), g(y))
for some irreducible f,g. Let a € C be a root of f(x) and 5 € C be a root of g(y). We then
claim ¢(a, 8) = (f,g) = p. This is easy to see as (f,g) C ¢(a, (), and (f,g) is maximal since
Qlz,yl/(f9) = Q(a, B) is a field.

O

Exercise 3.2.J

Proof. Fix p € Spec A/I, and first we show ¢~1(p) is an ideal of A. If 7,y € ¢~ 1(p), then ¢(z —y) =
é(x) — ¢(y) € p by hypothesis, so x —y € ¢~ 1(p). In addition, if r € A, we have ¢(rz) = ¢(r)d(z) € p
sorz € ¢ 1(p).

Next, we show that ¢~!(p) contains I. This is simply because preimages are inclusion preserving,
and ¢~1(0) = 1.

Now we show ¢~!(p) is prime. Suppose zy € ¢ 1(p). Then ¢(x)d(y) € p implies that either
é(x) € p or ¢(y) € p, i.e. one of z or y is in ¢~ 1(p).

It remains to show ¢! is a bijection. Suppose p, q are two prime ideals of A/I such that ¢~ (p) =
¢~ 1(q). Fixing x + I € p, we have z € ¢~ 1(p) = ¢1(q). Then x + I € q by definition, so p C q. The
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reverse inclusion is completely analogous, so indeed p = q. For surjectivity, fix a prime ideal q € Spec A
containing I. We claim that ¢(q) is prime. In general, images of ideals under ring homomorphisms
are not ideals, so we have to show ¢(q) is an ideal of A/I. For z,y € q (so that x + I and y + I
are arbitrary elements of ¢(q)), we have x —y € q, so ¢(z) — ¢(y) = ¢(z — y) € ¢(q) as well. For
r+IeA/l,(r+1)(x+I)=rz+1=¢(rx)isin ¢(q) because rz € q. Thus ¢(q) is an ideal of A/I.
Suppose xy + I € ¢(q), so there is some element z € I such that xy + z € q. Because z € I C q, we
also get zy € q. By q being prime, one of z or y is in g, so one of  + I or y + I is in ¢(q). Now we

claim ¢~ 1(¢(q)) = q. By general set theory, ¢~ 1(¢(q)) contains q. If z € p~1(¢(q)), i.e. z+ 1 € ¢(q),
again there exists some z € [ such that x4+ z € q. Since z € q, © € q, which shows equality holds. [

Exercise 3.2.K

Proof. As usual, the map ¢ : A — S'A induces a map ¢! : SpecS~'A — Spec A by Exercise
.\/l In addition, if q € SpecS™ 1A #»~1(q) cannot intersect S To see this, if some z were in the
intersection, by definition ¢(z) = £ € q, and as x € S, we have L € 5714, s0 1 - £ =1 € q, implying
q is not prime. By general set theory, ¢~ ! is also inclusion preservmg

Next, we will show ¢! is injective by supposing ¢! (p) = ¢~!(q) for some p,q € Spec S™' A. Fix
2 € p. Then by multiplying by { € STLA, we get 7 € paswell. Thena € ¢ 1(p) = ¢~ 1(q), so i €aq
Then upon multiplication by % € S71A, we get ¢ € g, 50 p C q. The reverse inclusion is entirely
analogous, so p = q and thus ¢! is injective.

For surjectivity, fix p € Spec A with pNS = @. We defineq={2 e S 'A|ac p} Indeed, we can
make this definition, i.e. if ¢ = b , then ¢ having numerator in p is equivalent to 3 havmg numerator
in p. This is because by assumptlon there is some r € S such that r(at — bs) = 0 ie. art = brs. By
assuming a € p, the left hand side is in p, so brt € p. By p being prime, b € p or rt € p. But because
rt ¢ p (SNp = @), by primeness b € p. That b € p implies a € p is completely analogous, so our
definition makes sense. Next we will show q € Spec S~1A.

If 2,2 € q, then 2 — 2 = #=bs € g because at — bs € p by assumption that a, b ep. IfLeS A4,
then - ¢ = 22 € g because ra e p since a € p. To show q is prime, suppose ¢ - Z € q. Then ab ep
by definition, and by primeness of p, we get a € p or b € p, so ¢ € q or % €q.

Now, we claim that ¢~'(q) = p, which would show ¢~ is surjective onto {p € Spec A | pNS = &}.
It’s clear ¢~'(q) C p by construction (an element z € A sent to % in q implies z € p). The reverse
inclusion is also easy (fix « € p, and then ¢(z) = £ € q, i.e. z € ¢~ '(q)). O

Exercise 3.2.L

Proof. To show (Clz,y]/(zy)). = Clz],, we first notice every element of Clz,y]/(xy) has repre-
sentative Y a;x’ + y > bjy’ since a C-basis for the i-th graded piece of Clx ,y]/(:ry) is just z?, 9"

Saizt+y > by’
.’Ek

Then an arbitrary element of the localization by x is of the form . We define a map

¢ (Clz,y)/(zy))s — Clz], given by = aﬂiizzb"yj — Z;,jwi , and claim this is a ring homomorphism,
where it is immediate that ¢(0) =0 and ¢(1) = 1. We compute that

Eﬁioaix"erZ?:objyj +Zz 0 4" 'HJZJ o bjy

Zz Oa’lm +Z’L Oa;‘rl_‘—d

& ):

xzk ¥ xk
_ Do @i ! > ie oaszd _ Do a;z’ > Oalx
= ok + ok = F + F
_ i aid’ +yZ}Lo by’ Zz 0 a;" +y2] oy
— o a )+ o — g
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where we have assumed without loss of generality that k' < k and where we set d = k—k&’. In addition,

, . . ’ . ’ . l+ 1/
Z;ﬂ:o a;z’ +y Z;L:o by’ ' Zinio a;z' +y Z?:o b;'yj ) = Z;n:om (Zi+j:a aia;-)xo‘

& ok ok - pRTE
_ ity i ) Yoo aiat _ ¢(ZZO aix’ +y Z?:o by’ Yo it aizt +y Z?:o bej )
B xk xk’ B xk xk '
O
m i n ]
Now suppose Lizo % J;i/ 27=0%Y i in the kernel of ¢, hence
Yimg @it + Y2 o by’ _ Y2 o by’ _ vy >0 by’ _ 0 0
zk - zk - rk+1 gkl

so the map is injective. It’s immediate that ¢ is surjective, and thus ¢ is an isomorphism.

Exercise 3.2.M

Proof. Fix p € Spec A, and first we show ¢~1(p) is an ideal of B. If z,y € ¢~1(p), then ¢(x —y) =
é(x) — ¢(y) € p by hypothesis, so z —y € ¢~ (p). In addition, if r € A, we have ¢(rz) = ¢(r)p(z) € p
so rz € ¢~ 1(p).

Now we show ¢~ !(p) is prime. Suppose zy € ¢~1(p). Then ¢(z)p(y) = d(xy) € p implies that
either ¢(x) € p or ¢(y) € p, i.e. one of z or y is in ¢~1(p), so ¢~1(p) € Spec B.

Next, we show that ¢! is inclusion preserving by supposing q C p. Then ¢~!(p) contains ¢~1(q)
simply because preimages are inclusion preserving by general set theory. O

Exercise 3.2.IN
Proof.  (a) By the proof of Exercise [3.2]].
(b) By the proof of Exercise [3.2JK.

Exercise 3.2.0

Proof. Let ¢ : C[y] — C[x] be given by y — 22. By Exercise [3.2)M, we get a map ¢~ : Spec C[z] —
Spec C[y]. Our goal is to show the preimage of (y — a) under ¢! is the set containing (z — v/a) and
(z + v/a). First, we will show that ¢~ (z — \/a) = (y — a). Indeed, y —a € ¢~ (z — \/a) because
¢y —a) =2° —a = (x —a)(x+ a) € (z —a). Thus ¢~ (x —/a) D (y —a), but as y — a is
maximal, equality holds. An analogous argument shows that ¢~!(z + v/a) = (y — a).

Now suppose p € SpecC[z] is in the preimage of (y — a) under ¢=1, i.e. ¢7(p) = (y —a). By
general set theory, we get

PO o7 (p) = oy —a) = (z° - a).

Then (z — v/a)(z 4+ v/a) € p and p prime implies that one of © — y/a or z + \/a is in p. Because these
elements generate maximal ideals, we get that either p = (x — v/a) or p = (x + v/a) as desired. O

Exercise 3.2.P

Proof. (a) Suppose ¢ : B — A is a ring homomorphism, and J C B and I C A are ideals such that
¢(J) C I. We claim that ¢ induces a map Spec A/I — Spec B/J.

By Exercise [3.2.M, it suffices to show ¢ induces a ring homomorphism B/J — A/I given by
x+ J — ¢(x) + I. This map is clearly additive and multiplicative because ¢ is, and is well
defined because if we instead pick a representative x 4 j with j € J, then

r+i+JI=dlx+i)+I=¢@)+ () +1=0¢@)+1
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since ¢(j) € I by hypothesis.

(b) Suppose ¢ : Ek[y1,...,yn] — k[z1,...,2,] is a morphism of k-algebras with f; = &(y;) for

each 1 < i < n. We need to show ¢! : Speck[z1,...,2m] — Speck(y1,...,yn] sends (x1 —
1y T — Q) b0 (y1 — fi(a1, ... am)y - yYn — fulal,...,am)). Because the latter ideal is
maximal, it suffices to show y; — fi(a1,...,am) € ¢~ (x1 —ai,...,Tm — a,) for each i. This is
because

(b(yi_fi(ah'"vam)) :fi_fi(ah'"vam) S (‘rl_ala”wxm_am)

because (21 — a1,...,Zm — @) is the kernel of the evaluation at the tuple (aq,...,an) € k™,
and f; — fi(a1,...,an) is clearly in this kernel. Note we used that ¢ is a morphism of k-algebras
so that ¢ is k-linear, and in particular fixes elements of k like f;(a1,...,am).

O]

Exercise 3.2.Q

Proof. Notice that 77 1(p) = {q € AZ | qNZ = (p)} = {q € AZ | p € q}, with the last equality holding
because p € q implies q N Z is an ideal containing the maximal (p). By Exercise [3.2JJ, we have a
bijection between SpecZ[z1,...,x,]/(p) = Ap and {q € A7 | (p) C q} = {q € A [ p € q}, which is
equal to 7~ 1(p).

We claim 771(0) corresponds to A%, and notice that 7=1(0) = {q € AZ | gqNZ = (0)}. We
view Q[z1,...,2,] as ST'Z[z1, ..., 1,] where S = Z \ 0. By Exercise , AG = SpecQ[z1, . .., zy]
corresponds with {q € SpecZ[z1,...,z,] |qNS =2} ={q€ A% |qNZ =0} = 7~ 1(0). O

Exercise 3.2.R

Proof. (a) Suppose I is an ideal of nilpotents. By Exercise , Spec B/I = {p € SpecB |p D I}.
Let p € Spec B be arbitrary. Then for each x € I, there is some n € N with 2" = 0 € p, hence
by primeness, z € p. Thus I C ﬂpespecB p, and in particular, {p € Spec B | p D I} = Spec B.

(b) To show M(B) is an ideal, suppose 2™ = 0 = y", and let a € B be arbitrary. To show
x —y € N(B), we compute

m—+n m+n o -
(x_y)m-&-n — Z (_1)m+n 1xzym+n %

‘ 1
=0

and notice that if ¢ > m, then 2* = 0 and if { < m, then m+n—1% > n, so y’”"’”_i = 0. In other
words, every term of our sum vanishes, so indeed x —y € M(B). To show ax € M(B), we easily
see

(az)™ =a™a™ = 0.

Exercise 3.2.S

Proof. By the proof of Exercise , M(A) C Npespec 4 Ps S0 it remains to show the reverse inclusion
by fixing = ¢ M(A), and showing = ¢ ﬂp espec 4 P- What we want is equivalent to showing there exists
a prime not containing z, and to do this, it suffices to show A, # 0, for then there is a maximal ideal
of A, which corresponds to a prime ideal of Spec A not intersecting {1, z,2,...} by Exercise 7
i.e. a prime not containing x. Showing A, # 0 is equivalent to showing 0 # 1 in A,, so we will show
the latter. Supposing for a contradiction that 0 = 1, then by definition of localization, there is some
2™ such that 2™(1 — 0) = 0, i.e. ™ = 0. This is impossible by assumption that x ¢ 9(A). O
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Exercise 3.2.T
Proof. Fix f =" ,a;z" € k[z]. Then

n

f(ac—&—e):Zai(x—i—e)i: a;

i=0 i=0  j=0

3
VRS
. .
~_

™M
.

g&h
d,

Because €2 = 0, every ¢/ = 0 for j > 2, so we have

i y n n n
“ Z <;> ot = Zai [xl + iGJJi_l] = Zaixi + GZaiixi—l = f+ef
i=0 i=1

n
i=0  j=0 i=0

where f’ is the formal derivative of f. O

Section 3.3
Section 3.4

Exercise 3.4.A

Proof. The x-axis is the ideal (y, z), which is clearly prime. In addition, (y,z) D {zy,yz} because y
divides each of these elements, and y € (y, z). By definition, (y, z) € V(zy, yz). O

Exercise 3.4.B

Proof. Suppose p € V(S), i.e. p D S. Then for an arbitrary element Y ., a;s; with each s; € S and

a; € A, each s; € p by hypothesis, hence > | a;s; € p as well. This shows p D (5), so p € V((9)).
On the other hand, suppose p € V((5)), i.e. p D (S). Because (S) D S, we get p D S, so

p e V(9). O

Exercise 3.4.C

Proof.  (a) Spec A is closed because Spec A = V(&) as every prime contains @. Thus & is open. @&
is closed because @ = V(A), since every prime is proper. Thus Spec A is open.

(b) Fix p € Spec A. It’s easy to show that p D I; for each ¢ if and only if p O >, I;. For the forward
direction, we let ZZ:O Ty, € ZZ I; be an arbitrary element with x;, € I;, for each k. As each
x; € p, indeed the sum is in p, showing p O >, I;. For the reverse direction, as ), I; D I; for
each index ¢, we see p D I; for each ¢ as well. By definition, p € (), V(I;) is equivalent to p D I;
for each 4, and p € V(3_, 1;) means p D >, I;. Thus arbitrary intersections of closed sets is
closed, which is equivalent to arbitrary unions of open sets being open.

(C) To show V(Il) @] V(IQ) = V(Illg), first fix p e V(Il) U V(IQ) pr € V(Il), ie. p DO 1y, then
as I1 D 115, we get p D I11s, so p € V(I[1I2). The case where p € V(I3) is analogous, so
V(I) UV (I3) C V(I113). For the reverse inclusion, suppose p A I; and p 2 I,. Then we let
x € I and y € I be such that z,y ¢ p. Then by primeness of p, zy ¢ p, and as zy € I1 15, we
see p 2 I1 15, so p ¢ V(I1I5). Thus finite unions of closed sets are closed, or equivalently, finite
intersections of open sets are open.

O
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Exercise 3.4.D

Proof. To show /I is an ideal, fix 2,y € VI, and a € A, and assume 2™ € I and y" € I. To show
x —y € VI, we compute

m+n — m+n m4n—i,.i, m+n—1i
@—y)™=> (" )= z'y

- (]
=0

and notice that if 4 > m, then 2’ € I and if i < m, then m+n —i > n, so ym+"_i € I. In other
words, every term of our sum is an element of I, so (z —y)™™" € I, proving z — y € V1. To show
ax € V1, we easily see

(ax)™ =amzx™ eI
because z™ € I.

It’s clear that I C /T, so easily V(v/I) € V(I). To show the reverse inclusion, suppose p € V(I),
so p O I. Then for any element = € /I, we have " € I C p, which implies by primeness of p that
x € p. Therefore p O /I, and thus p € V(VT).

Since an ideal is always contained in its radical, we have immediately that VI C \/ﬁ . For the

reverse inclusion, suppose & € V1, so there exists some m > 0 such that ™ € v/I. By definition
of VI, there exists some n > 0 such that (z™)" = 2™" € I. This implies that 2 € /I, proving

VVIC VI
To show prime ideals are radical, it suffices to show /p C p for p € Spec A. If x € /p, then let
2™ € p. By primeness of p, we get x € p, so /p C p as desired. O

Exercise 3.4.E

Proof. For \/(i—, Ii C Ni—, V'I;, suppose x € A is such that 2™ € I, for each i. Then z € \/I; for
each ¢, proving this inclusion.
For the reverse inclusion, suppose x € A is such that for each i, € v/I;. Then for each i, there

is some m; > 0 such that ™ € I;. Letting m = max{mi, ma,...,m,}, we then observe 2™ € I, for
each i. Then z € \/(;_, I; as desired. O

Exercise 3.4.F

Proof. By Exercise3.2.S, we have M(A/I) = N cgpec 47 9 We have z+1 € N(A/I) if and only if there

is some n > 0 with 2™ + I = I if and only if 2" € I. Thus € /T if and only if z + I € ﬂqGSpecA/I q.
By Exercise , Spec A/T = {p € SpecA | p D I}. Moreover, by the proof of this result, the
bijections are taking images and preimages under the quotient map. Thus x + I € ﬂqespec AT if and
only if x € ﬂpDIGSpeCA p. To see this, for the forward direction, if there is some prime p O I such that
x ¢ p, we then get © + I ¢ p/I € Spec A/I. For the reverse direction, if x € p D I, then z + I € p/I,

and as every q € Spec A/I is realized as the quotient of a prime containing I, the result follows. [

Exercise 3.4.G

Proof. Recall that Al is just the set of irreducible polynomials of k[z] (the maximal ideals), along
with 0. As Exercise , points out, there are infinitely many points in A}. Because V(S) = V((S))
by Exercise for an arbitrary subset S C A, an arbitrary closed set is of the form V' (I) for some
ideal I C A. We inspect an arbitrary closed set V(I), where we have:

If1=0,V(I)=AL

frI=AV(1I) =0

If0CICA I=(f)for some f € k[z] since k[x] is a PID, and as f has finitely many irreducible
factors, we see I is contained in finitely many maximal ideals. Thus V(I) = {m;,ms,...,m,}, a
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finite set of maximal ideals, i.e. a finite set of points of A} \ [0]. Then we know the only possible
closed sets of A} are the empty set, A} itself, and a finite set of points of A} \ [0]. It thus remains
to show every set of the above form is closed. @ and A} are closed by Exercis, and as

{my,...,mp} = {m}U---U{m,} and each {m;} = V(m;), we get from Exercise that since
finite unions of closed sets are closed, indeed {my,..., m,} is closed. We remark that since the only
closed set that contains the generic point [0] is A}, [0] is in every nonempty open set. O

Exercise 3.4.H

Proof. We take V(I) to be an arbitrary closed set (allowable by Exercise as V(9) = V((9))),
hence it suffices to show 7= }(V(I)) = {p € SpecA | n(p) D I} is closed. We claim V(¢(I)) =
7 1(V(I)), which would conclude our proof, and remark that ¢(I) may not be an ideal, so we just
consider ¢(I) as a set. If p € Spec A is such that ¢~1(p) = 7(p) D I, by general set theory we
get p D (¢ L(p)) D ¢(I), thus showing p € V(é(I)). On the other hand, if p D ¢(I), then
¢~ (p) D¢~ (¢(I)) DI, 50 p € 7 (V(D)).

Then Spec : Ring — Top assigns rings to topological spaces and ring homomorphisms to contin-
uous maps in a contravariant fashion. It’s clear that the induced map on spectrum of the identity is

again the identity, and if C B A, then we get Spec A =5 Spec B = SpecC' and also a map
o : Spec A — Spec C induced by ¢o1). Moreover, for p € Spec A, Ton(p) = 7(¢~1(p)) = v~ 1o~ (p)),
and a(p) = (po)~L(p) =~ (¢~(p)) so o = T o7, thus showing Spec is functorial. O

Exercise 3.4.1

Proof. (a) By Exercise[3.2]N, Spec B/I is in bijection with {p € Spec B | p D I}. By definition, the
latter subset is V(I), which is closed in Spec B.

We take S = {1, f, f?,...}, and in addition, by Exercise , Spec ST B is in bijection with
{p €SpecB | pNS =0} ={p €SpecB | f ¢ p}, where pNS = & if f ¢ p by primeness
of p (f™ € p implies f € p). To show the latter set is open, we will show its complement
{p € Spec B | f € p} is closed. The subset is V({f}), hence closed.

To show for arbitrary S, Spec S™'B need not be open nor closed in Spec B, we take B = Z
and S = Z\ {0} so S71B = Q. We notice SpecQ = {0} since Q is a field, so we must show
{0} C SpecZ is neither open nor closed. As is mentioned on page 116 in Vakil, the open sets
of SpecZ are the empty set, and SpecZ minus a finite number of “ordinary” ((p) where p is
prime) primes. Indeed {0} is not of the form above (since Spec Z has infinitely many “ordinary”
primes), so {0} is not open. Equivalent to the statement in Vakil is that the closed sets of Spec Z
are SpecZ itself, and a finite number of “ordinary” primes. Also {0} is not of this form, so {0}
is not closed.

(b) We first consider Spec B/, and want to show Spec B/I is homeomorphic to {p € Spec B | p D I}
as a subspace of Spec B. By Exercise 7 if we let ¢ : B — B/I be the quotient, taking ¢
and ¢! give an inclusion-preserving bijection. Thus we need to show each map is continuous.
That ¢! : Spec B/I — Spec B is continuous is by Exercise . Then it remains to show
¢ : {p € SpecB | p D I} — SpecB/I is continuous. By Exercise [3.4]B, it suffices to show
¢~ 1(V(J)) is closed for an ideal .J of B/I. By definition, $~1(V(J)) = {p € Spec B | ¢(p) D J}.
In addition, ¢(p) D J if and only if p D ¢~1(J) because by the proof of Exercise , we have
¢~ 1(¢(p)) = p and we can similarly show ¢(¢p=(J)) = J (v + 1 € J implies z € ¢~(J) so
x4+ 1€ ¢(¢p~1(J)), and it’s always true that ¢(¢=1(J)) C J). Thus ¢~ 1(V(J)) = {p € Spec B |
pDoH(J)and p DI} =V (¢p~1(J))N{p € Spec B | p D I} is closed.

Now we consider Spec S~ B, and want to show Spec S~!B is homeomorphic to {p € Spec B |
pNS = @} as a subspace of Spec B. By Exercise , ¢ : B — S7'B induces a bijection
between Spec S~'B and {p € Spec B | pNS = @}, and is continuous by Exercise . Then it
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remains to show the inverse map ¢ : {p € Spec B | pN S = @} — Spec S~ B sending such a p
to ¢(p) is continuous. By Exercise , it suffices to show ¢~1(V(J)) = {p € Spec B | ¢(p) D
J and pN S = @} is closed for an arbitrary ideal J of S~'B. We claim {g |[bept=9¢(p)DJ
(the first equality by the proof of Exercise ) if and only if p D ¢~1(J), assuming pN S = 2.
By the proof of Exercise , we have ¢~1(4(p)) = p, so the forward direction is immediate,
and if p contains ¢~1(J), if we fix 2 € J, we get b € p, so indeed 2 € {4 | b € p} = ¢(p).
Thus {p € SpecB | ¢(p) D Jand pNS =2} ={p € SpecB|pD ¢ (J)and pNS =g} =
V(= Y(J))N{p € Spec B | pN S = @} is closed.

O

Exercise 3.4.J

Proof. f vanishes on V(I) by definition if and only if f =0 mod p for every p € Spec B_containing
I, ie. f €p for every p € Spec B containing I, i.e. f € ﬂpDIGSpecB p = /1 by Exercise . O

Exercise 3.4.K

Proof. Exercise tells us that Spec k[x] () = {0, (z)}: let’s classify the closed subsets of Spec k[] 5.
Let V((f)) be an arbitrary closed subset by Exercise . If f =0, then V(0) = Speck[z],). If
fe(@x)\0, then V(f) = {(x)}, and if f ¢ (z), (f) = E[z](), hence V((f)) = &. Then the only pos-
sible closed subsets are @, {(z)}, and Spec k[z] ;). Indeed, each of these are realized as the vanishing
set of 1, x, and 0 respectively, so these are the three closed subsets. O]

Section 3.5
Exercise 3.5.A

Proof. That the distinguished open sets form a base for the Zariski topology is equivalent to showing
that every closed set can be written as an intersection of complements of distinguished open sets. Let
V(S) be an arbitrary closed set. Then

V(S)={peSpecA|p>S}=(){peSpecA|p> f}=()SpecA\D(f).
fes fes

Exercise 3.5.B

Proof. For |J,c; D(fi) = Spec A implies ({fi}ics) = A, suppose |J;c; D(fi) = Spec A. Then for each
p € Spec A, there is some ¢ € J such that p € D(f;) = {q € Spec A | f; ¢ q}, i.e. f; ¢ p for some
i € J. Then if ({f;}ics) was proper, we would have ({f;}ics) C m for some maximal m € Spec A,
which contradicts our assumption that there is some f; ¢ m because each f; € ({fi}ics) C m. Then

indeed ({fi}ies) = A.

Conversely, suppose | J;c; D(fi) # Spec A, so there is some p € Spec A such that p ¢ D(f;) for
each i, or equivalently f; € p for each i. Then A 2 p D ({fi}tics), implying ({fi}ics) # A.

That ({fi}ics) = A is equivalent to the existence of some a; (i € J), all but finitely many 0, such

that ). ;a;fi = 1 is by definition of ({fi}ics). O

Exercise 3.5.C

Proof. Suppose Spec A = UjeJ D(f;). Equivalently by Exercise [3.5.B, there are some a; (j € J),
all but finitely many 0, such that Zje]ajfj = 1. By reordering J, suppose fi,..., f, are such
that E?Zl ajf; = 1. Then no proper ideal can contain every f; for j = 1,...,n, and for arbitrary
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p € Spec A (being proper), we see there must be some j = 1,...,n such that f; ¢ p, i.e. p € D(f;).
Since p € Spec A was arbitrary, we get Spec A = U?:1 D(f;). O

Exercise 3.5.D

Proof. p € D(f)ND(g) if and only if f ¢ p and g ¢ p, if and only if fg ¢ p by primeness, if and only
itp e D(fg). 0

Exercise 3.5.E

Proof. For D(f) C D(g) equivalent to f™ € (g) for some n > 1 is the same as the statement “For
every p € Spec A, f ¢ p implies g ¢ p if and only if f € \/@”. For every p € Spec A, f ¢ p implies
g ¢ p is equivalent to the statement “For every p € Spec A, g € p implies f € p.” By Exercise |3.4.F,
\/@ = ﬂpa o P hence f € \/@ if and only if f is in every prime containing ¢ if and only if for every
p € Spec A, g € p implies f € p.

g is invertible in Ay if and only if there is some a € A and n > 0 such that 1 = % if and only if
there is some m > 0 such that f™(f™ — ag) = 0 if and only if there is some n > 0 and a € A with
f™ = ag if and only if there is some n > 0 with f* € (g). If f© =1 € (g), then (g) = A implies
that also f! € (g). Thus there is some n > 0 with f™ € (g) if and only if there is some n > 1 with

fre(g). O

Exercise 3.5.F

Proof. Notice D(0) = @ since every prime contains 0. Then D(f) = @ if and only if D(f) C D(0) if
and only if f € v/0 = 9(A) by Exercise .

Exercise 3.5.G

Proof. Suppose B C A. We want to show that the induced map 7 : Spec A — Spec B has dense
image. By Exercise [3.5]A, the distinguished open sets form a base for the Zariski topology, so our
claim is equivalent to showing that for every p € Spec B and every f € B such that p € D(f),
D(f) N (Spec A) # &. Suppose this is false, so there is some p € Spec B and some f ¢ p such that
for every q € Spec A, g N B contains f, i.e. f € NyegpecadN B = BNMN(A) by Exercise . But
then f* =0 € p for some n > 0 implies by primeness of p that f € p, a contradiction. O

Section 3.6
Exercise 3.6.A

Proof. Let A=Ay x ---x A,, and let p; : A - A; be the projection. Then for each i, we get maps
¢i : Spec A; — Spec A. By Exercise[3.4][, we have that each ¢; is a homeomorphism onto the subspace
Vikerp;) = {q € SpecA|qD]];,; A;} ={a €SpecA|q>D{f;,j#i}l} where f; = (;;)i_; and § is
the Kronecker delta. We claim that q € Spec A contains each f; for j # ¢ if and only if f; ¢ q. For the
forward direction, if a q containing each f; for j # 7 in addition contained f;, then q > fi+---+f, =1,
contradicting that q is proper. For the backwards direction, we suppose q € Spec A does not contain
fi. Then for any j # i, we have q 3 0 = f;f; implies by primeness that f; € q. Then we have
homeomorphisms ¢; : Spec A; — D(f;) as required.

We now want to show Spec A = H?:l D(f;). Because the distinguished open sets are open, all
that remains is for i # j, D(f;) N D(f;) = @ and that Spec A = |J;_, D(f;). By Exercise ,
we have D(f;) N D(f;) = D(fif;) = D(0) = @. Suppose for a contradiction that some q € Spec A
contains each f;. Then q > f1+---+ f,, = 1, a contradiction to the assumption that ¢ is proper. Thus
q € D(f;) for some i. O
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Exercise 3.6.B

Proof. (a) Let U C X be nonempty and open. If U is not dense in X, then there is some p € X
and neighborhood V' of p such that V NU = &. Then X is reducible.

(b) We first claim that for any open U C X, UN Z # @ if and only if UN Z # @. Let Z’ be the
set of limit points of Z in X, i.e. the set of all points x € X such that every neighborhood U
of x intersects Z at some point other than itself. Because Z = Z U Z’, so Z C Z, the backward
direction is immediate. For the forward direction, suppose x € UN Z. If € Z, the claim
follows. If x € Z’, then as U is a neighborhood of z, there is some y € U N Z, proving the
forwards direction.

By definition of the subspace topology, Z is irreducible if and only if for every open U,V C X
with UNZ # @ and VNZ #9, UNV)NZ =UNZ)N(VNZ) # @. Similarly, Z
is irreducible if and only if for every open U,V C X with UNZ # @ and VN Z # o,
UNV)NZ=UNZ)N(VNZ)+# . The result now follows easily from our claim.

O

Exercise 3.6.C

Proof. Suppose Spec A = V(I) UV (J) and A is a domain, i.e. 0 € SpecA. If 0 € V(I), then 0 D I
implies I = 0 implies V(I) = Spec A. Similarly if 0 € V(J) then V(J) = Spec A. Thus Spec A cannot
be written as the disjoint union of two proper closed subsets. O

Exercise 3.6.D

Proof. Suppose X is not connected, so X = U UV with U,V open an nonempty. Then UNV = &
by assumption, so X is not irreducible as two nonempty open subsets do not intersect. O

Exercise 3.6.E

Proof. Let A = Clx,y]/(y*> — 2?). By Exercise , we have Spec C[z,y] consists of principally
generated ideals and the ideals of the form (z — a,y — b). In addition, by Exercise , we have
Spec A = V(y? —a?) = V(y—x)UV (y+2) as a subspace of Spec C[z, y], with the equality by Exercise
[.4]C. Thus Spec A = {(y — z),(y + ), (x — a,y — a),(x — a,y + a)} where a € C ranges over all
possible values.

To show Spec A is connected, suppose Spec A = V(I) UV (J) and V(J) and V(J) are proper
subsets of Spec A. Notice that if (y + =) and (y — z) are both in V(I), then V(I) = Spec A contrary
to assumption, so by symmetry we assume (y + ) ¢ V(I), so (y —x) € V(I) and (y + x) € V(J).
But (z,y) = (y+ )+ (y —x) D I+ J means (z,y) € V(I +J) = V(I)NV(J) by Exercise [3.4]C. We
have shown Spec A cannot be written as the disjoint union of two proper closed subsets, i.e. Spec A
is connected.

To show Spec A is reducible, we will give two nonempty open sets with empty intersection. Let
f=y—zand g=y+z 50 (y+z) € D(f) and (y — ) € D(g9). But @ = D(0) = D(y* — 2?) =
D(fg) = D(f) N D(g) by Exercise [3.5]D. O

Exercise 3.6.F

Proof. (a) Weshow I = (wz—xy, wy—x?, xz—y?) is prime by showing K |w, x,v, 2]/I = K[a®, a®b, ab?, b?],
a subring of the integral domain K[a,b]. We have a map ¢ : K[w,z,y, z] — K[a3, a?b, ab?, b3
taking the tuple (w,z,y,2) to the tuple (a3, a?b,ab? b3). Indeed each generator of I is in the
kernel of ¢, and if we can show ker ¢ = I, we are done. We have f = g mod I where g has mono-
mials indivisible by any of wz,wy, and zz (a vector space basis for K[w,x,y, z]/I consists of
monomials indivisible by those three). A monomial wix/y*2! is indivisible by each of wz, wy, rz
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if and only if its not the case that i > 1l and k> 1orj>1and!>1or¢>1and ! > 1 if and
onlyifi=0and j=0ori=0andl=0o0r k=0 and [ = 0, i.e. the set of monomials of the
form y*2! or 29y* or wiz?. Then g is a K-linear combination of {y*2!, z9y* wiz’ | i,j, k,l € N}.
We will now show that ¢ is injective on these monomials, thus implying g = 0 and then that
f € I. We compute that ¢(y*2!) = aFb?* 3L ¢(27y*) = a? k628 and ¢(w'a?) = a®T27b7.
It’s clear ¢(y*2') = ¢(y* 2!') implies k = K’ and | = I, and similarly ¢(wiz?) = ¢(w® z7") implies
1=1 and j = j'.

a2itkpit2k — 20" +K pi'+2K" if and only if 2§+ k = 2§’ + k" and j+ 2k = j’ +2k’. These equations
imply j' = 7 + 2k — 2k’ which implies 25 + k = 2j + 4k — 4k’ + k', which is true if and only if
k=K. Now that k = k/, we see j = 5/ as well.

ak 2R3l — 20"k pi' 2K i and only if k = 2§’ + k' and 2k + 31 = j’ + 2k’. These equations
imply that 45’ + 2k’ + 31 = j' + 2K/, or equivalently 3(j' +1) =0, thus j =1 =0and k = k.

ak 2R3l = 37 +25"pi" if and only if k = 3i’ 4+ 25’ and 2k + 31 = j’. These equations imply that
6" + 47" + 3l = ' or equivalently 2i’ + j' +1 =0, hence i’ = 7' =1 = 0 and thus k¥ = 0 as well.

Lastly, a2 tFpi+2k — ¢37'+25 " if and only if 2j 4+ k = 3i’ + 2§’ and j + 2k = j/. These equations
imply that 2j + k = 3¢’ + 2j + 4k, or equivalently 3(' + k) =0so ¢ =k = 0. Thus j = j’ as
well.

We have now shown that if the images under ¢ of the monomials g is written in are linearly
dependent, they must have had 0 coefficients to begin with. But they all must cancel by
hypothesis that g € ker ¢, so g = 0 as desired.

ro ... Tp—1
xr1 ... In

has rank at most one if and only if any two columns are scalar multiples of each other, which
Ty

The matrix

is true if and only if the determinant of i is zero for every 0 < i < j <n—1,ie.

Ti41 Tj41
hij = 22541 — 252541 = 0. We claim the ideal I generated by all h;;’s is prime. We will show
that Klxo,...,zy]/I injects into a subring of a domain, thus implying the source is a domain as
desired. We define a morphism of K-algebras ¢ : K|xo, ..., 2,] — K]a,b] defined by z; — a" b
for each 0 < ¢ < n. Indeed, each h;; € ker ¢ because

O(hiy) = 6(2:)9(141) — 9(2,)$(@is1) = A" hia" I LY+ — qnmip gnmilpie]
_ a2n—i—j—1bi+j+1 _ a2n—i—j—1bi+j+1 =0.

We now claim that ker ¢ C I, which would then prove I is prime. Fix f € ker ¢, and so there
exists some g such that f = ¢ mod I and that each monomial in g is indivisible by each x;x ;11
for 0 <4,j <n—1. This is allowed because K|z, ...,2,]/I is spanned as a K-vector space by
the monomials indivisible by each z;x;1;. Our goal is now to show that g = 0, using the fact
that g € ker ¢ since I C ker ¢ and f € ker ¢. Notice that a monomial xlgo ...zkn is indivisible by
x;xj41 for each 0 <4 < j <n—1 only if it’s not true that there are such indices 4, j with k; > 1
and kjy1 > 1, or equivalently for every 0 <i < j <n—1, k; =0 or kj41 = 0. Then for every
index 0 <4 < n —1if k; # 0, we observe that every k; = 0 for j > ¢ + 2. Similarly, for every
index 1 <14 <, if k; # 0 then k; = 0 for every j < i —2. Therefore g is a K-linear combination
of monomials of the form x?_lmf x], . Moreover, it cannot be that «,y > 1 otherwise the
monomial is divisible by x;_1x;41. Thus g is a K-linear combination of monomials of the form
x] ok 1 with 0 <@ <n—1and j,k € N. We will now show that ¢ preserves linear independence

138



of this set, which would then imply g = 0 as g € ker ¢. Because ¢ takes monomials to monomials
(which are always linearly independent), it suffices to show ¢ is injective on the monomials g
is in. We will achieve this by looking at two cases, one where the index i is the same, and one
where it is different.

Suppose

a(=DG+E)—kpi(G+k)+k _ ¢(xzzf+1) — d,(xz/xf_;_l) — a(n*i)(jl+k')*k'bi(j'+k')+k'7

or equivalently (n —i)(j+k)—k=(n—0) (' + &) -k and i(j + k) + k =4(j’ + k') + k¥’. Then
E=i(j+k—3 —-kK)+kson—0)0G+k)—k=n—-0)G' +K)—G+k—3 —k)—k, or
equivalently n(j + k) = n(j' + k') so j + k = j' + k’. Substituting back, we see k = k’, which
then implies j = j'.

Suppose

DGR —RpiGHR R g (4

ik _ K (=i G K=K 13 (5 K +E
ixi—i-l) = ¢($i/xi/+1) = a X )k ) )

or equivalently (n—i)(j+k)—k = (n—¢)(j'+k)—k and i(j+k)+k =i (5 + k") + k" with ¢’ > 4.
Then k' = i(j+k)—i'(j’+K)+k,s0 (n—d)(j+k)—k=(n—9) G +k")—i(j+k)+i (' +k)—k,
or equivalently

n(j+k)=n(j' + k).

This implies j + k = j' + &/, so substituting back, we see
k=" —i)(j+k) +k.

Asi' —i>1and j+k >k, wesee (i’ —4)(j + k) > k with equality if and only if ¢/ —i =1 and
j=0. As k' >0, we get i’ =i+ 1 and j = k' = 0. Then our original monomials are z¥, ; and

v

x] 41+ By our previous work, we get k = j as desired.

As mentioned before, this shows g =0so f € I.

Exercise 3.6.G

Proof.  (a) Suppose {U,};cr is an open cover of Spec A. By Exercise , for each i € I, we may

write U; = ;e ;, D(fij). Then as {D(fij)}ier,jeu; is an open cover of Spec A by distinguished
open sets, by Exercise , there is a finite subset I’ C I such that for each i € I’, there is
a finite subset J! C J;, such that {D(fij)}ier jes; is an open cover of Spec A. We claim that
{U;}icr covers Spec A. If we fix o € Spec A, then x € D(f;;) for some i € I’ and j € J, C J;.
As UjeJi D(fi;) = Ui, we get « € U;, and thus indeed {U; }iep covers Spec A.

Let A = klx1,x9,...] for a field k, and let m = (z1,22,...) be the irrelevant ideal. We also
let p, = (x1,x2,...,x,) for each positive integer n. We claim the Spec A \ V(p,)’s cover
Spec A \ V(m), all of which are open, i.e. SpecA\ (,—, V(pn) = U,—,Spec A\ V(p,) =
Spec A \ V(m), which is equivalent to the claim that () —, V(p,) = V(m). This is simply
because m = |J07_, py,.

However, we will also show that if J C N is a finite subset, then |J;. ; Spec A\ V(p;) = Spec A\
Njes V(p;) # Spec A\ V(m), or equivalently (;.; V(p;) # V(m). Notice that for each i > j,
V(pi) C V(p;) because p; D p;. Therefore if m = max J, we get (\;c; V(pj) = V(pm). However,
pm € V(pm) and p,, € m implies p,,, ¢ V(m). Therefore Spec A \ V(m) has an open cover not

admitting a finite subcover.
O
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Exercise 3.6.H

Proof.  (a) Suppose X = J;_, X;, where each X; is quasicompact, and we have an open cover
{U;}ierU;. Then for each j =1,...,n,

X;=XnX;=Jxinx;,
icl

so there is a finite I; C I such that X; = {J,¢,, UiNX;. To show the set of all Uy’s for i € U?:l I;

covers X (and the number of such ¢’s are finite because each I; is also finite), if we pick any
z € X, then z € X for some j = 1,...,n, and then x € U; N X for some ¢ € I;.

(b) If Z C X is closed and X is quasicompact, then let {Z N U,;};cr be an open cover of Z (with

the subspace topology). Then {U;}icr U{X \ Z} is an open cover of X, so there is some finite

J C I such that {U;}jes U{X \ Z} covers X. Then {U,}cs covers Z, hence {Z NU,}jes is a
finite subcover of Z.

O

Exercise 3.6.1

Proof. On one hand, suppose p € Spec A is a closed point, so there is an ideal I such that {p} = V(I).

Because there is a maximal ideal m containing I, we see m € V(I), and thus p = m so p is maximal.
Conversely, if m € Spec A is maximal, then {m} = V(m) because no prime can contain m other

than itself. O

Exercise 3.6.J

Proof. (a) As suggested, we will show that for any f € A\ 9(A), D(f) contains a maximal ideal.
We notice that Ay is a finitely generated k-algebra as well by the map klzi,...,Zn41] & Ay
sending z; to ¢(x;) (where ¢ : k[zi1,...,2,] - A by hypothesis) for each 1 < i < n, and
Tpy1 — % In addition, Ay # 0 else 0 = 1 in Ay, which would imply that f™ = 0, or
equivalently f € M(A) = ﬂpespecAp by Exercise [3.2.5, i.e. D(f) = @. Then there exists a
maximal m € Spec Ay = D(f) by Exercise B.2]N. We will show that m N A € D(f) is maximal,
which would prove the desired result.

Notice that if A — B < C'is a chain of subrings and A — C is a module-finite extension,
then B — C is also a module-finite extension. Then as we have the chain of inclusions k& —
A/(mNA) — Ay/m and Af/m is a finite field extension of k by the Nullstellensatz, it follows
that A;/m is a finite A/(m N A)-module, or equivalently A/(m N A) — A;/m is an integral
extension. By Theorem 5.7 of [2], stating that if A < B is an integral extension of rings, then
A is a field if and only if B is. We then get that A/(m N A) is a field, i.e. mN A is maximal as
needed.

(b) We will show the k-algebra k[z](,) does not have its closed points dense. By Exercise , we
have Speck[z];) = {0, (2)}. Then D(z) = {0}, and 0 is not a closed point by Exercise
since 0 is not maximal. Then 0 € Spec k[z](,) has a neighborhood D(x) with no closed point.

O

Exercise 3.6.K

Proof. If f # gin A, then f — g # 0, and as M(A) = 0, we have D(f — g) # @ (a distinguished open
subset is empty if and only if the element is nilpotent by Exercise ) By Exercise m](a), there
is a maximal ideal m € D(f — g). Then f — g £ 0 mod m, so f £ ¢g mod m, so f and g differ at a
closed point. Note there was no need for the algebraically closed assumption. O
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Exercise 3.6.L

Proof. For one direction, assuming q is a specialization of p if and only if q € nV(I)Bp V() = @,
then q € V(p), i.e. q D p.
Conversely if g D p, then for any V() containing p, we would then see ¢ D p D I, hence q € V(1)

as well. Then q € (55, V(I) = {p}.
Then q € V(p) if and only if q D p if and only if q € {p}, hence V(p) = {p}.

Exercise 3.6.M

Proof. By Exercise|3.6.|L, it suffices to show (y —2?) is prime. But Clz,y]/(y —2?) = C[z] is a domain
is equivalent to (y — %) being prime. O

Exercise 3.6.N

Proof. Letting ¢ € K be arbitrary, we have K = {p} = {p} U {p}’ where here {p}’ denotes the set of
limit points of {p}, i.e. the set of all elements of X \ {p} whose neighborhoods all contain p. Then
either ¢ = p or every neighborhood of ¢ contains p, and in either event the claim holds.

Now for any ¢ € X \ K, as K is closed, X \ K is a neighborhood of ¢ not containing p. O

Exercise 3.6.0

Proof. Fix p € X, and let I be the set of irreducible subsets of X containing p, partially ordered by
inclusion. If Z; C Z, C ... is a chain in I, there is an upper bound in I, namely Z = J; Z;. This is
irreducible because if we have some closed U,V C X where UNZ C Z and VNZ C Z, then for large
indices i, UNZ; C Z; and VN Z; C Z; because UNZ =UN,; Z; = J; U N Z; (the same is true
replacing U by V).

Then we cannot write Z = (U N Z) U (VN Z), else we would get

Z;=Z;NZ=Z;Nn((UUV)NZ)=UNZ)u(VNZzZ)

for all 4, a contradiction to the irreducibility of Z; for large 1.

Then Zorn’s Lemma gives an irreducible set Z containing p, maximal in I. Then if Z’ > Z and
Z' is irreducible, then p € Z C Z' implies Z’ € I so by maximality Z’ = Z. Thus Z is a maximal
irreducible subset that also contains p, i.e. an irreducible component containing p. O

Exercise 3.6.P

Proof. By the Hilbert Basis theorem 3.6.17, C[z, y| is a Noetherian ring. Then by Exercise we
get that A% is a Noetherian topological space.

However, C? with the classical topology is not Noetherian because for each n € N, S,, = {(2,0) €
C? | z € N>, } is closed since for any (21, 22) € C?\ S, if 22 # 0 we take B, (21, 22) which does not
even intersect C x {0}, and if zo = 0, then 2z; ¢ N>,,, in which case we may find the integer m closest
to z1, and then B, _p,|(21,0) does not even intersect Z x {0}. Then we have

S1285 258 2...,

showing C? is not Noetherian. O
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Exercise 3.6.Q

Proof. (i) To show that every connected component of a topological space X is the union of irre-

(iii)

ducible components of X, we first recall Remark 3.6.13, which says that connected components
are closed. Thus closed subsets of a connected component C' of X are just closed subsets of
X contained in C. Now by Exercise , we can write C' = J, Z; where each Z; C C' is an
irreducible component of C'. We will now show that each Z; is actually an irreducible component
of X.

For any fixed index 4, suppose Z; = U UV where U and V are closed subsets of X. It follows
that U and V are closed subsets of C, and thus by irreduciblility of Z; in C, we get U = Z;
or V = Z;, so Z; is an irreducible closed subset of X. Now suppose we have some irreducible
component Z of X containing Z;. Supposing for a contradiction that Z; C Z, then we see
Z ¢ C, else we would contradict maximality of Z; in C. Then Z U C must be disconnected
because C' is a connected component, so ZUC = (UN(ZUC))U (VN (ZUC)) for some open
UVin X withUN(ZUC) # @ and VN (ZUC) # &. In other words, ZUC C U UV and
UNV Cc X\ (ZuUQC). In particular, Z CUUV and UNV C X \ Z. Hence U N Z # & because
otherwise we would have ZUC = (UNC)U (VN (ZUC)), so by intersecting each side with
C, we have C = (UNC)U (VNC)and UNC # & implies that V N C = & by connectedness
of C. However, having U and V cover Z U C and being disjoint on Z U C' is impossible because
@ # Z; C ZNC, and so for an element x € Z;, we get z € U or xz € V, but then as z € ZNC,
we get UNZ # @ or VN C # @, a contradiction. Similarly, it must be that V N Z # &. But
then we have Z = (UNZ)U(V N Z) with each side nonempty, which contradicts Exercise [3.6]D.

We have now proven that Z; = Z, so Z; is indeed an irreducible component of X, which gives
the result since the index ¢ was arbitrary.

Now suppose U is simultaneously closed and open in X. For each p € X, there is a connected
component Z,, of X containing p. Then U C UpeU Zy,. For fixed p € U, Z, NU is an open
subset of Z,. In addition, Z, N (X \ U) is an open subset of Z,, (because p ¢ X \ U but p € Z,).
But now we see that

(Z,NU)U(Z,N (X\V)) = 2,

and
(2,0 U) N (Z,N (X \U)) = 2,

SO as
Zy=(Z,NU)U(Z,nX\U),

either Z, NU = @ or Z, N X \ U = @ by connectedness of Z,. But p € Z, N U implies
that the latter intersection is empty, or equivalently Z, C U. As p € U was arbitrary, we get

U=U,ev Zp-

Now suppose X is a Noetherian topological space. Each connected component of X can be
written uniquely as a finite union of irreducible subsets of X contained in the connected compo-
nent by Proposition 3.6.15 and (i), and as X has only finitely many irreducible components by
the same proposition, it follows that X only has finitely many connected components because
distinct connected components are disjoint. Then X = [[I, Z; where each Z; is a connected
component of X (and hence closed). Thus any union of connected components is both open
and closed (a finite union of closed subsets whose complement is also a finite union of closed
subsets).

O

Exercise 3.6.R
Proof. Immediate by Exercise [3.6.5. O
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Exercise 3.6.S

Proof. First suppose the ascending chain condition fails, so there is an infinite ascending chain I; C
I, C ... ofideals in A. Then I = |J;, I,, cannot be finitely generated; otherwise I = (fi,..., fj) for
some fi,..., fr € A. Moreover, there exists some m € N such that each f; € I;, because each f; is in
I =2, I,. Then for each n > m, we have

IO Ln D (fi,. o fo)=JL D I
=1

so I, = I, and thus the chain becomes stationary past m. This is a contradiction, so I is not finitely
generated.

Conversely, if there is an ideal I of A that is not finitely generated, we inductively define f; = 0,
and for n € N, letting I,, = (f1,..., fn), pick fnt1 € I\ I, (such an element must always exist
otherwise we get a finite generating set for I, which is impossible by assumption). Then we have
constructed an infinite ascending chain

LChLC...,

demonstrating the ascending chain condition on ideals fails. O

Exercise 3.6.T
Proof. By Exercise [3.4]B, we may take
V(Il) D) V(IQ) ...

to be an arbitrary descending chain of closed subsets in Spec A where each I,, is an ideal of A. For
arbitrary ideal I,.J of A, Exercise tells us that /I = Npor Py so we see V(1) C V(J) if and

only if v/T D +/J. The forward direction is clear since the set of primes being intersected for /T is
contained in the set of primes being intersected for v/J. For the backward direction, assume we have
some p € V(I) and that /T D v/J. Then

pOVIDVIDJ

so p € V(J) as well. Then we have an infinite ascending chain
LcvIC...

of ideals in A, which by hypothesis stabilizes at some m € N. Then for every k > m, VI, = VI
implies that V(1) = V(Ij), so the chain of closed sets stabilizes at m.

For a ring A with Spec A not a Noetherian space, we let A = k[zq,22,...] for k a field. Then
Spec A contains the descending chain

V(z1) 2 V(xr,22) 2 V(w1,22,23) 2 ...

because both (z1,...,z,) and (z1,...,2,4+1) are prime (and
Z1,...yTpt1) implies V(zq,...,z,) 2 V(z1, ..., Zpy1)- O

where V(z1,...,2,) 2 V(21,...,Zpnt1)
hence primary), we see (x1,...,2,) C (
Exercise 3.6.U

Proof. Suppose X is a topological space and A C X is any subspace. We will show that if A is not
Noetherian, then neither is X. By assumption, there exists an infinite descending chain AN Z; 2
ANZy D ... where each Z; is closed in X. Then for each n € N,

n+1 n

ﬂZigﬂZi,

i=1 =

—
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where containment is clear, and the containment must be proper else we would see that

n+1 n+1 n n
ANZyyy = ﬂAmZi:Am ﬂZi:AmﬂZi:ﬂAmZi:AmZn,

i=1 i=1 i=1 i=1
contradicting our assumptions. Then we have an infinite descending chain
W 221 NZy D2 Z1NZaNZs 2D ...

of closed sets in X. O

Exercise 3.6.V

Proof. The equivalence of the ascending chain condition on submodules and every submodule being
finitely generated is a direct generalization of Exercise by replacing “ideal” by “submodule” and
the elements f; € A instead by elements in the A-module M. O

Exercise 3.6.W

Proof. Suppose
0—->M —-M-—M"—0

is an exact sequence of A-modules (and we will take M’ C M and M" = M/M' by the first isomor-
phism theorem). Given an ascending chain of submodules M; C My C ... of M, we get two more
chains

MinM CcMynM' C...

and
M1+M/CM2+M/C...

of submodules of M’ and M" respectively. Then assuming M’ and M” are both Noetherian A-
modules, there is some m € N such that both chains have stabilized at m. In addition, we have a
short exact sequence in Comy :

L0

0 —— M;NM' M; M, +M —— 0
0 — My 1 NM —— Myyy —— M1+ M —— 0

S

where commutativity of the left square is because each map is simply an inclusion, and each path of
the right square sends an element m € M; to m + M’. Then for n > m, the below diagram commutes
and is exact on the horizontals:

0 —— M,,NnM' M,, M, +M —— 0
lid l lid
0 —— M, NnM' M, M, +M —— 0.
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By the five lemma, we see that M, — M, is also an isomorphism, and being an inclusion, it is the
identity. Thus the original chain My C Ms C ... stabilizes at m.

Conversely, since submodules of M’ are submodules of M and submodules of M" correspond to
submodules of M containing M’ by the lattice isomorphism theorem, it’s clear that if M is Noetherian
than so too are M’ and M". O

Exercise 3.6.X

Proof. We will show that if M and N are Noetherian A-modules, than M @& N is also a Noetherian
A-module. We get a short exact sequence

0-Mae0—->MbdEN—-0DN —0,

and immediately notice that M @& 0 and 0 & N are both Noetherian, being isomorphic to M and N
respectively. Then by Exercise [3.6]W, we get that M & N is also Noetherian.

By induction, any finite direct sum of Noetherian modules is Noetherian, and because a ring A
is a Noetherian A-module if and only if A is a Noetherian ring, we immediately get that A®" is
Noetherian. O

Exercise 3.6.Y

Proof. Suppose A is a Noetherian ring and M is finitely generated by fi1,..., fn as an A-module. Given
an ascending chain M; C My C ... of submodules of M, for each index k we let I, = {a1 ®--- B a, €
A®" | ayfi + -+ + anfn € My}, Each Iy is a submodule of A®", and we also notice that for any
m >k, I, D I. Thus the ascending chain of ideals

LCclC...

stabilizes at some m € N because A®™ is a Noetherian A-module by Exercise [3.6]X. Thus for indices
k > m, we take > ; a;f; € M}, to be an arbitrary element because every element of M (and thus any
of the M;’s) can be written as an A-linear combination of the f;’s. Then a; ®---®a, € Iy = I, so by
definition of I, we get Z?:l a; fi € M, as well, thus showing M = M,, so the chain has stabilized
at m. O

Section 3.7

Exercise 3.7.A

Proof. We claim I(S) = (y) N (z,y — 1) = (zy,y? — y). It’s clear that D holds, so our job is to show
C. Thinking of elements of k[x,y] as elements of k[z][y], we take an arbitrary element

m n m n—1
S PR@y + -1 Qi) => (Py') +Quy™™ + > ((Q5 — Qiv)y’ ™) — Qo
i=0 §=0 i=0 J=0

of (z,y — 1) (so each P; is divisible by ), and furthermore assume that this element is divisible by y,
i.e. that Py = Qg so there are no monomials appearing without y. As x | Py, we see x | Qo as well.
We may now rewrite our element as

m n—1 m n—1
S Py +Quy"™ +D (Qi—Qip )y =D (P ) +Qny™ T+ ((Q5 — Qip 1)y ) —Quy+Qoy.
i=1 j=0 i=1 j=1

We notice that zy | >1", Py, and zy | Qoy as well. Lastly,

n—1 n-!
Quy™™ + > ((Q) = Q™) = Quy = (1) Y Qv
j=1 7=
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showing our arbitrary element is in (zy,y? — ). O

Exercise 3.7.B

Proof. We claim 1(S) = (z,y) N (z,2) N (y,2) = (zy,xz,yz), where D is clear. We take
S5 aaty
1=0 i+j+k=l

to be an element of (z,y) N (xz,2) N (y,z). It must then be that

n
E aiooxz =0
=0

i.e. each a;00 = 0 by considering our element mod (y, z). Similarly each agjo = 0 and each agor, = 0
by considering our element mod (z, z) and (z,y) respectively. For each 0 < < n, let ¢; denote the
set of all nonnegative integers 7,7,k with i + j+ k =, not j = k = 0 and not 4 = k = 0 and not
i =j = 0. Then we can rewrite our element as

n

S S agurty

=0 ¢

For any [ and any i, j, k € ¢;, we notice that if i # 0, then also j # 0 or k # 0, so 2%y’ 2" is divisible
by either xy or xz. If i = 0, then j # 0 and k # 0, so yz | 2°y72*. Then as each term of our element
is in the ideal (zy, zz,yz), our entire element is in the ideal. O]

Exercise 3.7.C

Proof. For a subset S C Spec A, we want to show V(I(S)) =S =SUS" = Mv(r>s V), where 5" is
the set of limit points of S in Spec A. If p & V(I(S5)), i.e. p 2 (yes 9, then clearly p ¢ S, and there
exists some f € (,c5q \p. We then see D(f) does not intersect S, but simultaneously p € D(f), so
p is not a limit point for S either. Thus p ¢ S.

Conversely, if p ¢ S, then there is some V() D S with p ¢ V(I). Then for each q € S, we have
q D I implies that I(S) D I as well. Because V'(-) is inclusion reversing, we then have

V(I(S)) c V()
and as p ¢ V(I), we get p ¢ V(I(9)). O
Exercise 3.7.D
Proof. Exercise tells us that f € v/J if and only if f € Npos P, or equivalently f € I(V(J)). O

Exercise 3.7.E

Proof. Notice that J = (z2+y*—1,y—1) = (2%,y—1) sincey> —1 = (y+1)(y—1). Thus = ¢ J (else
J would be the maximal ideal (z,y — 1), but k[z, y|/(z?,y—1) = k[z]/(2?) is not even a domain), but
x € I(V(J)) because I(V(J)) = +/J by Exercise [3.7.D, and 22 € J means z € v/J. O
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Exercise 3.7.F
Proof. Exercises and tell us that V(1(S)) = S and I(V(J)) = v/J, we know prime ideals

are radical, and Theorem 3.7.1 tells us that V(-) and I(-) are inclusion reversing bijections between
closed subsets of Spec A and radical ideals of A. Thus it suffices to show that V(-) takes prime ideals
of A to irreducible closed subsets of Spec A, and that I(-) takes irreducible closed subsets of Spec A
to prime ideals of A.

Let S C Spec A be any subspace. If 1(S) is not prime, there are primes p,q € S and some f ¢ p
and g ¢ q with fg € I(S). But then we have nonempty open subsets D(f) NS and D(g) NS with
D(f)NnD(g)NS =D(fg)NS =@ (the second equality is by Exercise ) Having two nonempty
open subsets that do not intersect means S is reducible by 3.6.4. Thus I(-) takes irreducible closed
subsets of Spec A to prime ideals.

Now suppose V(J) is reducible, so there exist f,g € A with D(f) NV (J) and D(g) NV (J) both
nonempty, and D(fg) NV (J) = @. The last condition is equivalent to the statement that fg € v/.J
by Exercise [3.4.F. Then J cannot be prime, else J = v/.J, and then fg € J means f € J or g € J
by primeness, which contradicts that D(f) N V(J) and D(g) NV (J) are nonempty. Thus V(-) takes
prime ideals to irreducible sets, and it’s clear V(-) takes prime ideals to closed subsets.

Because prime ideals are by definition the points of Spec A, we get a bijection between points of
Spec A and irreducible closed subsets of Spec A. For any point p € Spec A, we have I({p}) = p, and
thus V(p) = {p} is the described bijection.

O

Exercise 3.7.G

Proof. Given an irreducible component S C Spec A, then I(S) must be a minimal prime. To see this,
if g C I(S) (q € Spec A), then S = S = V(I(S)) C V(q) by Exercise , and V(q) is an irreducible
closed subset by Exercise [3.7JF. Then by maximality of S amongst the irreducible subsets, we see that
S = V(q). By applying the inverse I(-) to both sides, we get I(S) = g, so indeed I(S) is a minimal
prime.

Conversely if g € Spec A is a minimal prime, then V (p) is an irreducible closed subset. To see this,
if S is an irreducible subset of Spec A containing V(p), then S is also irreducible by Exercise ,
and then by the bijection described in Exercise B.7JF, we get

I(S) c I(S) c I(V(p)) =
implies by minimality of p that I(S) = p. Then applying the inverse V (-), we get S = V(p), so
V(p)cScS=V(p)

shows V(p) = S, so indeed V (p) is maximal amongst irreducible subsets, and is thus an irreducible
component. O

Exercise 3.7.H

Proof. By Exercise , we equivalently need to show that the minimal primes of A = klx1,...,2,]/(f)
are the irreducible factors of f. Letting fi,..., fin be the distinct irreducible factors of f. In a
UFD (such as k[z1,...,2,], irreducible elements are the same thing as prime elements. Because
Spec A/ f = V(f) C A}, any prime p € Spec A/ f must contain at least one f; (because f =[], fi € p,
and p is prime). Now if we have some p € V(f) contained in some (f;), i.e. we have the chain
(f)y CcpC(fi)inklzy,...,z,]. If f; ¢ p, then f; € p for some j # i, so then we get the chain

(f) C(fiy) cpC(fi)

thus implying f; | f;, contradicting that f; and f; are distinct irreducible factors. Thus indeed f; € p,
so p = (fi), proving each (f;) is a minimal prime.
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An if p € V(f) is a minimal prime, as we noticed earlier, there is some f; € p, so (f;) C p implies
by minimality that p = (f;).

Thus we have show the minimal primes of A/f are exactly the irreducible factors of f, and remark
that the only important feature of k[x1,...,x,] is that it is a UFD. O

Exercise 3.7.1

Proof. By the proof of Exercise [3.7]H, the minimal primes of k[z,y]/(zy) are the irreducible factors
of zy, being (x) and (y). O

Chapter 4

Section 4.1
Exercise 4.1.A

Proof. By Exercise , we have that D(f) C D(g) if and only if f € \/(g) if and only if g is a unit
in Ay. Then for the map Ay — O(D(f)), we let S be the set of elements of A that are units in Ay,
which is also the same as the set of all elements g such that D(f) C D(g) by the exercise. Then by
definition, we have &(D(f)) = S™!A, so we wish to show Ay = S~1A. We have a natural candidate,
ﬁ — f% This map is injective because f% is 0 in S7'A if and only if there is some unit g € Ay
that annihilates a. Then either Ay = 0 (or equivalently f is nilpotent, so D(f) = @) in which case
O(@) =0, so we have an isomorphism, or necessarily a = 0 in Ay. This shows injectivity.

For surjectivity, fix ¢ with g '€ As. Then ag™' = S in S7'A so ag™! 4 as needed. O

Exercise 4.1.B

Proof. Suppose Spec Ay = D(f) = J, D(f;), or equivalently by Exercise , there is a finite subset
fi.-.., fn of these f;’s that generate Ay, or equivalently |J!_, D(f;) = Spec Ay = D(f). Suppose
we are given 7 € Ay = O(D(f)) that vanishes upon restriction to each Ay, = ¢(D(f;)). To show

ﬁ = 0, we notice that there is some large m € N with f/"s = 0 for each i = 1,...,n. In addition,

..., [ generate Ay since Spec Ay = ., D(fi) = Uj_, D(f"), so we apply Exercise [3.5.B,
again. Thus there exists r1,...,r, € Ay with 2?21 r; f{" = 1. But then

5= (Zn:mfim> s = i:“(fims) =0.
i=1

i=1

Exercise 4.1.C

Proof. Suppose J; D(fi) = D(f) = Spec Ay, and suppose further that we are given elements in each
Ay, that agree on the overlaps Ay, r,. Assume first that the index set is finite, say {1,...,n}. Then

ai
gi

as an element of Ag,. The assumption that 2- and % agree on A, . means that for some m;; € N,

we have elements 2¢ € Ay, where g; = fll *, agreeing on overlaps Ay, s, and we may consider each g—

(9i95)™" (g9ja; — giaj) =0

in A. By letting m be the maximum of the m;;’s (allowed because the index set is assumed to be
finite), we have

(9:95)™ (gjai — giaj) =0
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for each 4, j. We now let b; = a;g/" and h; = g"** (so D(h;) = D(gi)). Then on each D(h;), we have
a function 2=, and the overlap condition now is that h;b; = hb;. Because |J; D(h;) = \U; D(f;) =
Spec A, by Exercise 7 there are some r;’s in Ay such that 1 = Y  r;h;. Now the overlap

condition h;b; = h;b; gives that if we define r = E?:l r;b;, then

T'hj = i:?"lblhj = zn:TZhlb] = bj,
i=1 i=1

so indeed r restricts to Z—J foreach j=1,...,n.

For the case where the index set is infinite, we are able to choose a finite generating set f1,..., fn
for Ay by quasi-compactness of Spec Ay, and again let r = Z:;l r;b; as before. Then for any index z
not in {1,...,n}, we claim that r restricts to %= in Ay, . Then because {1,...,n, 2} is again finite, we

lz

Qg

do the same process and obtain an 7’ € Ay which restricts to

(proven in Exercise ), we see r = 1/, and the claim follows. O

for each ¢ = 1,...,n, z. By identity

L

Exercise 4.1.D

Proof. Suppose D(f) = U,c; D(fi), so there exists a finite {1,...,n} C I such that fi,..., f, generate
Ay (by quasi-compactness and again Exercise )N

Fm € My = M(D(f)) such that #[p(s) = 0 for each i €
{1,...,n}. To show f% = 0, we notice that we have a large m € N with f/"s = 0 for each such .
Now because Spec Ay = i, D(f;) = Ui, D(fI™), we see that also fi", ..., f™ generate Ay, so there
exists some r;’s in Ay with Z?:l r;f{* = 1. Then

For identity, suppose we are given

5= (Z rifit)s = Zrl(fzms) =0.
i=1 i=1

For gluability, suppose we are given elements in each My, that agree on My, f.. First, we suppose
m;
gi

My, g,. We now consider 7+ as an element of Mg,. Then

some m;; € N,

that I = {1,...,n} is finite, and so we have elements

€ My, where g; = fli, agreeing on overlaps

7

i and 22 agree on My, ,. means that for
g'L g] rJ97

(9i9;)™ (g5mi — gim;) = 0
in M. Letting m be the maximum of these m;;’s (allowed because I is finite), we have
(9i95)™ (9jmi — gim;) = 0.

Letting b; = g™m; and h; = g/, we notice D(h;) = D(g;). Then on each D(h;), we have a section
b " and the overlap condition is now h;b; = h;b;. Now |J; D(h;) = Ay implies that there are some

R
n
1= E T,‘hi.
i=1

r;’s in Ay with

Defining r = Y., 7;b;, we notice

Thj = i’l‘lhjbl = irihibj = bj
=1 i=1

by the overlap condition, so r restricts to Z—J for each j € I.
J

For the case where I is infinite, we again let (f1,..., f,) generate Ay with {1,...,n} C I by
quasi-compactness, and define r = Y"1 | r;b; as before. Then for any index z € I\ {1,...,n}, we
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= ;’fj . Because {1,...,n, z} is also finite, we obtain some ' which has the

desired property. By identity, we get that r = r/, which gives the result.

Now that M is a sheaf on the distinguished base of Spec A, we want to show that it is also a
Ospec A-module. It suffices to show this on the distinguished base, for the sheaves on Spec A are
defined in the natural way by the action on compatible germs. We can see this because Exercise 4.1 ]
gives that M, = M,. Therefore

want to show that 7|p (.

M(U) = {(my, € M) |Vp € U,3f € A with p € D(f) CU and 3s € My such that sq = f4Vq € D(f)},

i.e. just the compatible germs. Then (fy)pev - (Mmyp)per = (femyp)per is the action, and indeed the
below diagram commutes

(fo)pev X (Mp)pevr —— (fpmp)pev

! !

(fo)pev X (mp)pev —— (fpmp)pev

as needed. That the action is &' (U)-linear is easy to see. O

Exercise 4.1.E

Proof To show Mp

Mp = colimysy M(U (U) = colimpf)sp = colimsg, My = M,. The last equality comes from the fact
that

My, we will show M, satisfies the universal property of MIJ Notice that

MF‘
N
My —— M,
commutes, and if
N
My —— M,

commutes, i.e. IV satisfies the same commutative diagram that defines colim g, My, then we define
@: M, — N by I = ¢o(%). Indeed, this is required by the condition that the below diagram must
commute

15,

Pr M,

e

which proves uniqueness. To show this map is a module morphism, we check explicitly

My

e may g fmey g = fme gma fmg
Pl =) = e ) = 0 (T ) = 000 () — 00 ()
ml m2
—(/>f(f) ¢g( )—90(7)—%0(7)
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and also that
m
a—

o f)=¢f(

am

) = agr(2) = ap(

Exercise 4.1.F

Proof. (a) Let m € M be an arbitrary nonzero element. We want to show that there is some p € Spec A
such that m # 0 in M,, i.e. for all ¢ p, xm # 0. Notice that Ann(m) is a proper ideal (since
1-m = m # 0), so there is some maximal m € Spec A with Ann(m) C m, i.e. @ = m°N Ann(m).
This gives the result, for then there is at least one component of Hp espec 4 My with the image of m
not zero, so the kernel is trivial. .
(b) Exercise says for a sheaf 7, 7 (U) < [[ cr; #p. Then by Exercise , we have M, = M,,
SO
M(SpecA) = M — H M, = H M,.
pESpec A peSpec A
O

Lemma 4.1. If o7 is a full subcategory of # and P is equivalent to € (i.e. there exists a fully faithful
and essentially surjective functor F': B — € ), then F () is a full subcategory of €, equivalent to A.

Proof. Tt’s clear that F (&) ~ A since F is assumed to be fully faithful so its restrictions retain
that property, and is surjective by construction. We use the fact that an equivalence of categories is
the same as the existence of a fully faithful and essentially surjective functor (a surjective functor is
essentially surjective). Then if ¢ : F(X) — F(Y) is a morphism in % and where X,Y € %, we get
a unique morphism ¢ : X — Y in Z such that F(p) = ¢. Because & is a full subcategory of £, ¢
is also a morphism of &/. Thus F(¢) : F(X) — F(Y) is equal to ¢, and shows ¢ is a morphism in
F(d). O

Exercise 4.1.G

Proof. By Remark 2.5.3, the category of sheaves on a base is equivalent to the category of sheaves
on the whole space. Therefore it suffices by Lemma [I.1] to work over the category of sheaves on the
distinguished base. On one hand, if we’re given a map ¢ : M — N, for any f € A, we get a map
@(D(f)) : My — Ny given by the localization functor so the following diagram commutes:

M—*25 N

oo d

M; 20U Ny
Moreover, if D(f) C D(g) (i.e. g € A; by Exercise ), the below diagram commutes:

M, @(D(g; N,

2(D(N)

M; Ny.

To see this commutativity explicitly, (D(f))(Fx) = “DJ(CT), and by g € A7 we have that % = f=
for some n € Z, and a € A, so that under the vertical maps anything of the form qu is sent to
‘;!;T Now commutativity is easy by A-linearity of ¢ and by our constructions. Therefore we get

a map Hom(M,N) — Hom(M, N) given by ¢ — &. Since M(SpecA) = M(D(1)) = My = M,
any map ¢ : M — N already encodes the data of a map ¢ (SpecA) : M — N, which gives a
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map Hom(M N ) = Hom(M, N). We will now show these maps are inverses to each other. For any
¥ : M — N, we want to show ¢(Spec A) = 1. We check

f f f f
where the last equality is by Aj-linearity of ¢(D(f)) and the middle equality is because ¢ is a map
of sheaves, and thus commutes with the restriction from Spec A to D(f).

On the other hand, if ¢ : M — N is a morphism, we want to show $(Spec A) = ¢. This is easy to
see by our construction of ¢ and that Spec A = D(1). O

w(Spec A)(D(f))(

)

Section 4.2

There are no exercises in this section.

References

[1] John Armstrong. The First Isomorphism Theorem (for Abelian Categories). Accessed on: August
26, 2023. 2007. URL: https : //unapologetic . wordpress . com/ 2007 /09/25/the-first -
isomorphism-theorem-for-abelian-categories/.

[2] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-Wesley Pub-
lishing Co., Reading, Mass.-London-Don Mills, Ont., 1969, pp. ix+128.

[3] John M. Lee. Introduction to Smooth Manifolds. 2nd ed. New York: Springer, 2003.

[4] Saunders Mac Lane. Categories for the Working Mathematician. 2nd. Vol. 5. Graduate Texts in
Mathematics. Springer-Verlag, 1998. 1SBN: 978-0387984032.

[5] Kyle Miller. Right exactness of tensor functor. Accessed on: July 25, 2023. 2016. URL: https:
//math.berkeley.edu/~kmill/notes/tensor.pdf.

[6] Donald Sarason. Complex Function Theory. American Mathematical Soc., 2007.

152


https://unapologetic.wordpress.com/2007/09/25/the-first-isomorphism-theorem-for-abelian-categories/
https://unapologetic.wordpress.com/2007/09/25/the-first-isomorphism-theorem-for-abelian-categories/
https://math.berkeley.edu/~kmill/notes/tensor.pdf
https://math.berkeley.edu/~kmill/notes/tensor.pdf

	
	
	
	A
	B
	C
	D

	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	
	A
	B
	C
	D
	E
	F
	G
	H

	
	A
	B
	C
	D
	E
	F
	G
	H

	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N

	

	
	
	A
	B

	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J

	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J

	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O

	
	A
	B
	C
	D
	E

	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K

	
	A
	B
	C
	D
	E
	F
	G
	H


	
	
	A
	B

	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T

	
	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K

	
	A
	B
	C
	D
	E
	F
	G

	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	
	A
	B
	C
	D
	E
	F
	G
	H
	I


	
	
	A
	B
	C
	D
	E
	F
	G

	


