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Let p, q be distinct, odd rational primes. Then(
q

p

)
= (−1)

p−1
2

q−1
2

(
p

q

)
.

In addition, (
2

p

)
=

{
1, if p ≡ ±1 mod 8

−1, if p ≡ ±3 mod 8

and (
−1

p

)
= (−1)

p−1
2 .

Proof. We let ζp denote a primitive p-th root of unity over Q. We assume these basic results from
algebraic number theory: Gal(Q(ζp)/Q) ∼= (Z/pZ)×, and if d is a squarefree integer then OQ(

√
d) =

Z[α] where α =

{√
d, if d ≡ 2, 3 mod 4

1+
√
d

2 , if d ≡ 1 mod 4
and ∆(Q(

√
d)) =

{
d, if d ≡ 1 mod 4

4d, if d ≡ 2, 3, mod 4
.

Lemma 0.1. For any group G,

#Hom(G,Z/2Z) = #{H ≤ G | [G : H] = 2}+ 1.

Proof. If ϕ : G → Z/2Z is a nontrivial group homomorphism, then kerϕ is an index 2 subgroup of
G. Moreover, if ψ is another such homomorphism, then there is a homomorphism ϕ + ψ given by
(ϕ+ ψ)(x) = ϕ(x) + ψ(x). Now if kerϕ = kerψ, then ϕ+ ψ = 0. To see this, divide into cases based
on whether or not an arbitrary x ∈ G is in kerϕ. As a consequence, ϕ+ ϕ = 0. Then

ϕ = (ϕ+ ψ) + ϕ = (ϕ+ ϕ) + ψ = ψ.

Therefore the set of nonzero homomorphisms injects into the set of index 2 subgroups. In addition,
since every index 2 subgroup is normal, every index 2 subgroup is the kernel of a homomorphism
G→ Z/2Z. Thus the set of nonzero homomorphisms is in bijection with the set of index 2 subgroups,
giving the result. ■

Lemma 0.2. The unique quadratic subfield of Q(ζp) is Q(
√
p̂) where p̂ := (−1)

p−1
2 p.

Proof. We see that Q(ζp) has a unique quadratic subfield Q(
√
d) (for some d ∈ Z squarefree) because

there is a unique subgroup of order 2 in Gal(Q(ζp)/Q). More is true; because p is the only prime that
ramifies in Q(ζp) by Proposition 6.2 in [1], it follows that p is the only prime that ramifies in Q(

√
d)

as well, so the discriminant must be a power of p (positive or negative). However, the discriminant
of Q(

√
d) is d if d ≡ 1 mod 4 and is 4d otherwise. From this it follows that d ≡ 1 mod 4 and that

d = ±p. In particular, the quadratic subfield of Q(ζp) is{
Q(

√
p), if p ≡ 1 mod 4

Q(
√
−p), if p ≡ 3 mod 4

= Q(p̂).
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First, we prove the easy result that
(−1

p

)
= (−1)

p−1
2 . One way to do this is by considering the field

Fp, and an algebraically closed field Ω containing Fp. We notice that

Fp = {x ∈ Ω | xp = x}

since the containment ⊂ is clear, and both are sets of size p, so they must be equal. From this we
deduce

F×
p = {x ∈ Ω | xp−1 = 1}.

Now let x ∈ F×
p be arbitrary, and y ∈ Ω such that y2 = x. We see that

(
x
p

)
= 1 iff y ∈ Fp iff yp−1 = 1.

Since yp−1 = x
p−1
2 ∈ {±1}, we get the exact sequence of groups

1 → (F×
p )

2 → F×
p

x7→x
p−1
2−−−−−−→ {±1} → 1.

Thus we deduce more generally that for any x ∈ F×
p ,

(
x
p

)
= x

p−1
2 (identifying {±1} with the copy

embedded in Fp).
Now to the problem of reciprocity. From Lemma 0.2, we have a nontrivial map res : Gal(Q(ζp)/Q) →

Gal(Q(
√
p̂)/Q) (nontrivial since Q(ζp) is not a quadratic extension), a map

( ·
p

)
: (Z/pZ)× → {±1},

and isomorphisms Gal(Q(ζp)/Q)
∼−→ (Z/pZ)×, Gal(Q(

√
p̂)/Q)

∼−→ {±1}. Because each composite is
nontrivial, Lemma 0.1, combined with the fact that for every cyclic group of order n and d | n has a
unique subgroup of order d, gives that the below diagram of groups commutes:

Gal(Q(ζp)/Q) Gal(Q(
√
p̂)/Q)

(Z/pZ)× {±1}.

∼

res

∼
( ·
p)

There exists a unique (Frob always exists uniquely up to conjugacy, but since Q(ζp)/Q is abelian
conjugacy classes are the same as elements) element Frobq ∈ Gal(Q(ζp)/Q) such that for a (equiva-
lently, any, since Q(ζp) is abelian) Q(ζp)-prime q lying over q, Frobq acts as x 7→ xq on OQ(ζp)/q. In
particular, since OQ(ζp) = Z[ζp] by Proposition 6.2 in [1], and there exists an automorphism defined
by ζp 7→ ζqp in Gal(Q(ζp)/Q) which visibly acts as x 7→ xq on Z[ζp]/q for any prime q | q, we see that
Frobq is the automorphism given by ζp 7→ ζqp . The result will follow by tracking Frobq around both
sides of the diagram.

For the top side, since q is unramified in Q(
√
p̂), it follows that either q splits or is inert. Let q be

a Q(
√
p̂)-prime lying over q. If q splits, it follows (from

∑
B|p eBfB = [L : K], i.e., Theorem 3.34 in

[1]) that OQ(
√
p̂)/q

∼= Fq, in which case res(Frobq) is indeed trivial on the residue field, hence trivial
by uniqueness of Frobq in Gal(Q(

√
p̂)/Q). On the other hand, if q is inert, then OQ(

√
p̂)/q

∼= Fq2 , in
which case x 7→ xq is nontrivial, so res(Frobq) is the nontrivial element of Gal(Q(

√
p̂)/Q).

From Theorem 3.41 in [1], q splits if and only if x2 − x + 1−p̂
4 (the minimal polynomial of 1+

√
p̂

2 ,
where OQ(

√
p̂) = Z[ 1+

√
p̂

2 ]) has a root modulo q. Because this polynomial has discriminant p̂, this is
if and only if

(
p̂
q

)
= 1 (any quadratic over a field of characteristic not 2 has a root if and only if its

discriminant is a square). Putting these results together, we deduce that res(Frobq) 7→
(
p̂
q

)
.

For the other map to {±1}, we see Frobq 7→ q 7→
(
q
p

)
.

Thus commutativity gives(
q

p

)
=

(
(−1)

p−1
2 p

q

)
=

(
−1

q

) p−1
2
(
p

q

)
=

(
(−1)

q−1
2

) p−1
2

(
p

q

)
= (−1)

p−1
2

q−1
2

(
p

q

)
.
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For the last claim, we will track Frob2, which again is defined by ζp 7→ ζ2p . Like before, 2 is either
split or inert in Q(

√
p̂). From Theorem 3.41 in [1], we know that since OQ(

√
p̂) = Z[α] where α = 1+

√
p̂

2

with minimal polynomial f(x) = x2 − x+ 1−p̂
4 , then 2 splits if and only if f(x) is irreducible modulo

2. If p̂ ≡ 1 mod 8, i.e., 1−p̂
4 is even,

f(x) ≡ x(x+ 1) mod 2

so 2 splits. If instead p̂ ≡ 5 mod 8, i.e., 1−p̂
4 is odd,

f(x) ≡ x2 + x+ 1 mod 2

which is irreducible, so 2 is inert.
We also notice that p̂ ≡ 1 mod 8 if and only if p ≡ ±1 mod 8, so by the same commutativity

argument as before, we get that (
2

p

)
= 1 ⇐⇒ p ≡ ±1 mod 8

which is the desired result. ■
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