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Let p, ¢ be distinct, odd rational primes. Then
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In addition,

and

Proof. We let (, denote a primitive p-th root of unity over Q. We assume these basic results from
algebraic number theory: Gal(Q((y)/Q) = (Z/pZ)*, and if d is a squarefree integer then Oy /g =
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Lemma 0.1. For any group G,
#Hom(G,Z/272) =#{H <G |[G: H =2} +1.

Proof. It ¢ : G — Z/27 is a nontrivial group homomorphism, then ker ¢ is an index 2 subgroup of
G. Moreover, if 1 is another such homomorphism, then there is a homomorphism ¢ + v given by
(¢ +¢)(x) = ¢(z) + ¥(x). Now if ker ¢ = ker ), then ¢ + 1» = 0. To see this, divide into cases based
on whether or not an arbitrary « € G is in ker ¢. As a consequence, ¢ + ¢ = 0. Then

¢=0@+P)+o=(0+¢)+v=1.

Therefore the set of nonzero homomorphisms injects into the set of index 2 subgroups. In addition,
since every index 2 subgroup is normal, every index 2 subgroup is the kernel of a homomorphism
G — Z/2Z. Thus the set of nonzero homomorphisms is in bijection with the set of index 2 subgroups,
giving the result. ]

Lemma 0.2. The unique quadratic subfield of Q((,) is Q(y/p) where p := (—1)1’2;1;).

Proof. We see that Q((,) has a unique quadratic subfield Q(v/d) (for some d € Z squarefree) because
there is a unique subgroup of order 2 in Gal(Q(¢,)/Q). More is true; because p is the only prime that
ramifies in Q({,) by Proposition 6.2 in [1], it follows that p is the only prime that ramifies in Q(vd)
as well, so the discriminant must be a power of p (positive or negative). However, the discriminant
of Q(v/d) is d if d = 1 mod 4 and is 4d otherwise. From this it follows that d = 1 mod 4 and that
d = £p. In particular, the quadratic subfield of Q((,) is

{@(\/ﬁ), ifp=1 modd
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First, we prove the easy result that (_71) = (—1)%1. One way to do this is by considering the field
F,, and an algebraically closed field Q2 containing F,. We notice that

F,={zeQ|a? =z}

since the containment C is clear, and both are sets of size p, so they must be equal. From this we
deduce

]F;:{acEQ|xp_1:1}.
Now let « € F); be arbitrary, and y € § such that y? = x. We see that (%) =1lifyeF,iffy?~! =1.
Since yP~! = 7 € {1}, we get the exact sequence of groups

1= (F)? - F; 22275 (41} - 1.

Thus we deduce more generally that for any = € F, (%) = 2" (identifying {41} with the copy
embedded in Fy).

Now to the problem of reciprocity. From Lemma 0.2, we have a nontrivial map res : Gal(Q((,)/Q) —
Gal(Q(v/p)/Q) (nontrivial since Q({,) is not a quadratic extension), a map (5) : (Z)pZ)* — {£1},
and isomorphisms Gal(Q({,)/Q) = (Z/pZ)*, Gal(Q(v/p)/Q) — {£1}. Because each composite is
nontrivial, Lemma 0.1, combined with the fact that for every cyclic group of order n and d | n has a
unique subgroup of order d, gives that the below diagram of groups commutes:

Gal(Q(¢p)/Q) — Gal(Q(vp)/Q)

5 8 5

(Z/p2)* ———— {£1}.

There exists a unique (Frob always exists uniquely up to conjugacy, but since Q(¢,)/Q is abelian
conjugacy classes are the same as elements) element Frob, € Gal(Q({,)/Q) such that for a (equiva-
lently, any, since Q((,) is abelian) Q((,)-prime q lying over ¢, Frob, acts as x + 2% on Og(c,)/q. In
particular, since Ogc,) = Z[(,] by Proposition 6.2 in [1], and there exists an automorphism defined
by ¢, = ¢ in Gal(Q((p)/Q) which visibly acts as x + 29 on Z[(,]/q for any prime q | ¢, we see that
Frob, is the automorphism given by ¢, — (f. The result will follow by tracking Frob, around both
sides of the diagram.

For the top side, since g is unramified in Q(y/p), it follows that either ¢ splits or is inert. Let q be
a Q(v/p)-prime lying over q. If ¢ splits, it follows (from Z%IP e fs = [L : K], i.e., Theorem 3.34 in
[1]) that Og( /a9 = Fy, in which case res(Frob,) is indeed trivial on the residue field, hence trivial
by uniqueness of Frob, in Gal(Q(y/p)/Q). On the other hand, if ¢ is inert, then Og(vp)/0 = Fgz, in

which case z +— 27 is nontrivial, so res(Frob,) is the nontrivial element of Gal(Q(1/p)/Q).
1+vp

2 K
]) has a root modulo q. Because this polynomial has discriminant p, this is

From Theorem 3.41 in [1], ¢ splits if and only if 22 — x + % (the minimal polynomial of

1+vp
2

if and only if (g) = 1 (any quadratic over a field of characteristic not 2 has a root if and only if its
discriminant is a square). Putting these results together, we deduce that res(Frob,) — (g).

For the other map to {1}, we see Frob, — ¢+ (%).
Thus commutativity gives

where Oq 5 = Z[
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()= (5279 = ()7 @) = (c0=) ™ () == (2).
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For the last claim, we will track Frobs, which again is defined by (, — C§~ Like before, 2 is either
split or inert in Q(v/p). From Theorem 3.41 in [1], we know that since O, ) = Z[a] where o = #
with minimal polynomial f(z) = 2% — x + %ﬁ, then 2 splits if and only if f(z) is irreducible modulo

2.If p=1 mod 8, ie., %ﬁ is even,

f@)=z(x+1) mod 2
so 2 splits. If instead p =5 mod 8, i.e., 1%’3 is odd,
f(x)=2>4+2x+1 mod 2

which is irreducible, so 2 is inert.
We also notice that p = 1 mod 8 if and only if p = £1 mod 8, so by the same commutativity
argument as before, we get that

2
<p):1 <= p==£1 mod8

which is the desired result. [ |
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