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Problem 1

Question

Suppose a is an integer where ord2(a) = 1. Prove that there are no integer solutions to the equation
y2m = x2n + a for n,m ≥ 0.

Answer

Proof. 2 | K with multiplicity 1 is equivalent to K ≡ 2 mod 4. We recall that squares are either 0 or
1 mod 4, so x2n, y2m ≡ 0 or 1 mod 4. These two facts prove the result when looking at the equation
mod 4. ■

Problem 2

Question

Prove that there are no integral points on the elliptic curve y2 = x3 − 9.

Answer

Proof. Suppose we have an integer solution pair (x, y). Notice that x cannot be even; if it were, then
x3 ≡ 0 mod 4; on the other hand, y2 + 9 ≡ 1 or 2 mod 4.

Now, we rewrite our equation as follows:

(x− 2)((x+ 1)2 + 3) = y2 + 1.

Because x is odd, the term (x + 1)2 + 3 ≡ 3 mod 4; as such, there exists some prime p ≡ 3 mod 4
dividing (x+ 1)2 + 3. Then we get

y2 + 1 = x3 − 8 ≡ 0 mod p.

But of course, this is also impossible because −1 is a square mod p ̸= 2 if and only if p ≡ 1 mod 4. ■

Proof. Suppose we have an integral solution to x3 = y2 + 9. In Z[i], we would then have x3 =
(y + 3i)(y − 3i). First, we will show that 1 = (y + 3i, y − 3i). Letting d be the gcd in Z[i], we have
d | y + 3i − (y − 3i) = 6i. Now the only prime that lies over 2 in Z[i] is 1 + i, and as 3 is inert in
Q(i)/Q, we get that, because we may modify d by units, d = (1 + i)a3b. If b > 0, then 3 | d implies
that 0 ≡ y + 3i ≡ y mod 3. But then x3 = y2 + 9 ≡ 0 mod 9 implies that 3 | x as well, so by
replacing x by x/3 and y by y/3, we get solutions to the new equation 3x3 = y2 + 1. But then

y2 + 1 = 3x3 ≡ 0 mod 3
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implies that −1 is a quadratic residue modulo 3, which is obviously false. Thus we have d = (1 + i)a.
If a > 0, then

0 ≡ y + 3i ≡ y − 3 mod 1 + i.

Then for some α, β ∈ Z, we have y − 3 = (α + βi)(1 + i) = α − β + (α + β)i. This implies −β = α,
and then that 2α = y− 3, hence y ≡ 1 mod 2. Looking at the equation x3 = y2 +9, we then see that

x3 = y2 + 9 ≡ 0 mod 2

implying that x ≡ 0 mod 2. Therefore x3 ≡ 0 mod 8, but then

y2 + 1 ≡ y2 + 9 = x3 ≡ 0 mod 8

which is impossible as −1 is not a quadratic residue modulo 8. This proves that d = 1. Now that
y2 +9 = (y+3i)(y− 3i) is a perfect cube, and the latter two factors are coprime, each factor must be
a perfect cube. This assertion uses the fact that Z[i] is a UFD.

Thus, for some integers a, b and unit u ∈ Z[i]∗, we have a solution to

u(a+ bi)3 = y + 3i.

It’s easy to verify that the units in Z[i] are {±1,±i} by looking at the norms of elements in Z[i] and
recalling that an element of the ring of integers is a unit iff it has norm 1. Expanding the above
equation, we have

y + 3i = u(a3 − 3ab2 + i(3a2b− b3)).

Given our classification of what u must be, we must either have a solution to

±(3a2b− b3) = 3

or
±(a3 − 3ab2) = 3.

Let’s first show that there are no solutions to the first equation. If there were, we would have b3 ≡ 0
mod 3, and thus 3 | b. But then 9 | 3a2b− b3, so also 9 | 3 which is absurd.

Now let’s show there are not solutions to the latter equation. If there were then 3 | a by considering
the equation modulo 3, but then 9 | a3 − 3ab2 so 9 | 3 as well, again absurd. ■

Problem 3

Question

Prove that there are no integral points on the elliptic curve y2 = x3 − 62.

Answer

Proof. First of all, we notice that a solution to the equation y2 = x3 − 62 if and only if there is a
solution to the equation y2 + x3 + 62 = 0, by replacing x by −x. Thus it suffices to show there is no
integer solution to the latter equation.

Supposing x, y are integers solving the equation, we can rule out x being even as follows: if x were
even, then

y2 − 2 = −(x3 + 64) ≡ 0 mod 8.

However, 2 is not a square mod 8.

Now we rewrite our equation as follows:

y2 − 2 = −(x+ 4)((x− 2)2 + 12).
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Because x is odd, (x− 2)2 ≡ 1 mod 8, so (x− 2)2 + 12 ≡ −3 mod 8. Then there exists some prime
p ≡ ±3 mod 8 dividing (x− 2)2 + 12 as the only solution to ab ≡ ±3 mod 8 is a ≡ ±1 mod 8 and
b ≡ ±3 mod 8. But then we get that

y2 − 2 = (x+ 4)((x− 2)2 + 12) ≡ 0 mod p

which is impossible because 2 is a square mod p if and only if p ≡ ±1 mod 8. ■

Problem 4

Question

Prove there are no integer solutions to the equation

y2 − 3 = x16 + 2x14 + 3x12 + 4x10 + 5 + 6x2 + 7x4 + 8x6 + 9x8.

Answer

Proof. We rewrite the equation as

y2 − 3 = (x8 + x6 + x4 + x2 + 5)(x8 + x6 + x4 + x2 + 1).

Notice now that the quadratic residues in Z/12Z are 0, 1, 4 and 9; moreover, x4 = x2 for every
x ∈ Z/12Z. Thus, supposing a solution pair exists,

y2 − 3 ≡ (4x2 + 5)(4x2 + 1) mod 12.

The right hand side is 5 mod 12 when 3 | x, which is impossible as 8 is not a quadratic residue in
Z/12Z. If 3 ∤ x, x2 ≡ 1 or 4 mod 12; in either case, 4x2 + 1 ≡ 5 mod 12.

Because every prime greater than 2 must be congruent to either ±1 or ±5 mod 12, we conclude
that there is some prime p ≡ ±5 mod 12 dividing 4x2 + 1 (because 4x2 + 1 is odd and has a prime
factorization), and thus also y2 − 3. We then have

y2 − 3 ≡ 0 mod p

which is impossible because 3 is a quadratic residue in Z/pZ if and only if p = 2, p = 3, or p ≡ ±1
mod 12. To prove this, we first easily notice that 3 is a quadratic residue modulo 2 and 3. For p > 3,
we compute that by quadratic reciprocity, if p ≡ 1 mod 4 we have ( 3p ) = (p3 ), and if p ≡ 3 mod 4,

then ( 3p ) = −(p3 ). It’s also easy to see that

(
p

3
) =

{
1, if p ≡ 1 mod 3

−1, if p ≡ 2 mod 3.

Now we can easily see that ( 3p ) = 1 precisely when p ≡ 1 mod 4 and p ≡ 1 mod 3, or when p ≡ 3
mod 4 and p ≡ 2 mod 3, or equivalently when p ≡ 1 mod 12 or p ≡ 11 mod 12. ■

Problem 5

Question

Prove that there are no integer solutions to 2y2 = 2x4 + 3x2 + 1.
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Answer

Proof. We first notice that a solution pair exists to our given equation if and only if a solution pair
exists for the equation y2 = 16x4 + 24x2 + 8. This is because if (x, y) satisfies our original equation,
then (x, 4y) satisfies the new equation as

(4y)2 = 16y2 = 8(2x4 + 3x2 + 1) = 16x4 + 24x2 + 8,

and conversely if (x, y) satisfies the new equation, then y ≡ 0 mod 4 since y2 ≡ 0 mod 8, hence
y
4 ∈ Z, and (x, y

4 ) is a solution pair to the original equation because

2(
y

4
)2 =

1

8
(16x4 + 24x2 + 8) = 2x4 + 3x2 + 1.

We will now consider the equation y2 = 16x4 + 24x2 + 8, and rewrite y2 = 16x4 + 24x2 + 8 as
y2 − 3 = 16x4 + 24x2 + 5 = (4x2 + 1)(4x2 + 5). Notice now that the quadratic residues in Z/12Z are
0, 1, 4 and 9. The right hand side is 5 mod 12 when 3 | x, which is impossible as 8 is not a quadratic
residue in Z/12Z. If 3 ∤ x, x2 ≡ 1 or 4 mod 12; in either case, 4x2 + 1 ≡ 5 mod 12.

Because every prime greater than 2 must be congruent to either ±1 or ±5 mod 12, we conclude
that there is some prime p ≡ ±5 mod 12 dividing 4x2 + 1 (because 4x2 + 1 is odd and has a prime
factorization), and thus also y2 − 3. We then have

y2 − 3 ≡ 0 mod p

which is impossible because 3 is a quadratic residue in Z/pZ if and only if p = 2, p = 3, or p ≡ ±1
mod 12. To prove this, we first easily notice that 3 is a quadratic residue modulo 2 and 3. For p > 3,
we compute that by quadratic reciprocity, if p ≡ 1 mod 4 we have ( 3p ) = (p3 ), and if p ≡ 3 mod 4,

then ( 3p ) = −(p3 ). It’s also easy to see that

(
p

3
) =

{
1, if p ≡ 1 mod 3

−1, if p ≡ 2 mod 3.

Now we can easily see that ( 3p ) = 1 precisely when p ≡ 1 mod 4 and p ≡ 1 mod 3, or when p ≡ 3
mod 4 and p ≡ 2 mod 3, or equivalently when p ≡ 1 mod 12 or p ≡ 11 mod 12. ■

Proof. Using the same rearrangement, we can prove that there are no integer solutions to 2y2 =
2x4 +3x2 +1 by only modular arithmetic. First, we notice that x ≡ 1 mod 2 by taking the equation
mod 2. Therefore x2 ≡ 1 mod 4, so we get 2y2 ≡ 2 mod 4. This implies that y ≡ 1 mod 2 as well.
Considering our equation modulo 3, we have

2y2 ≡ 2x2 + 1 mod 3.

Then x ≡ ±1 mod 3, implying y ≡ 0 mod 3. Now we consider our equation modulo 5. If x ≡ 0
mod 5, then

2y2 ≡ 1 mod 5

and as 3 = 2−1 mod 5, we would have y2 ≡ 3 mod 5 is impossible. Thus x ̸≡ 0 mod 5, hence x4 ≡ 1
mod 5 and then

2y2 ≡ 3x2 + 3 mod 5.

Multiplying each side by 3, we have y2 ≡ −(x2 + 1) mod 5. But as x2 ≡ ±1 mod 5, we notice there
is no solution if x2 ≡ 1 mod 5, and thus x2 ≡ −1 mod 5. Thus x ≡ ±2 mod 5 and y ≡ 0 mod 5.
Thus y ≡ 15 mod 30 and x can only be congruent to one of ±7,±13 mod 30. However, we then
check that 2x4 ■
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Problem 6

Question

Show that there are no integer solutions to the equation y2 = 4x4 + 9x2 + 5.

Answer

Proof. We rewrite y2 = 4x4 + 9x2 + 5 as y2 − 3 = 4x4 + 9x2 + 2 = (4x2 + 1)(x2 + 2). Notice that the
quadratic residues in Z/12Z are 0, 1, 4 and 9. The right hand side of the given equation is 2, 5 or 6
mod 12 if x2 ̸≡ 4 mod 12, which is impossible as neither are quadratic residues. Thus 4x2 + 1 ≡ 5
mod 12.

Because every prime greater than 2 is congruent to either ±1 or ±5 mod 12, we conclude that there
is some prime p ≡ ±5 mod 12 dividing 4x2 + 1 (4x2 + 1 is odd and thus has prime divisors strictly
greater than 2), hence also y2 − 3. We then have

y2 − 3 ≡ 0 mod p

which is impossible because 3 is a quadratic residue in Z/pZ if and only if p = 2, p = 3, or p ≡ ±1
mod 12. To prove this, we first easily notice that 3 is a quadratic residue modulo 2 and 3. For p > 3,
we compute that by quadratic reciprocity, if p ≡ 1 mod 4 we have ( 3p ) = (p3 ), and if p ≡ 3 mod 4,

then ( 3p ) = −(p3 ). It’s also easy to see that

(
p

3
) =

{
1, if p ≡ 1 mod 3

−1, if p ≡ 2 mod 3.

Now we can easily see that ( 3p ) = 1 precisely when p ≡ 1 mod 4 and p ≡ 1 mod 3, or when p ≡ 3
mod 4 and p ≡ 2 mod 3, or equivalently when p ≡ 1 mod 12 or p ≡ 11 mod 12. ■

Problem 7

Question

Find the greatest positive integer n such that p is a fourth root of unity in Z/nZ for every prime
p ≥ 11.

Answer

Proof. We claim n = 240 is the solution. First, we will show that n = 240 works by proving that
for every p ≥ 11, p4 − 1 ≡ 0 mod 240. Notice that p4 − 1 = (p2 + 1)(p − 1)(p + 1), where for each
prime p > 2, each factor is even. If p ≡ 1 mod 4 we have p− 1 ≡ 0 mod 4 and the other factors are
even implies p4 − 1 is equivalent to 0 mod 16, and if p ≡ 3 mod 4 then p + 1 ≡ 0 mod 4 and the
other factors even imply the result is divisible by 16 as well. Separately, because p > 3 implies p ̸≡ 0
mod 3, we have p2 ≡ 1 mod 3, so indeed 3 | p4 − 1. Lastly, since x4 ≡ 1 mod 5 for every integer x
indivisible by 5, we automatically get p4 − 1 ≡ 0 mod 5 since p > 5. Now because 16, 3, and 5 are
pairwise coprime and p4 − 1 is divisible by each of them, we see p4 − 1 ≡ 0 mod 240.

For the reverse direction, suppose p4 − 1 is divisible by n for every p ≥ 11. Let n =
∏

pαi
i be its

prime factorization. Then p4 − 1 is divisible by n if and only if it is divisible by pαi
i for each i by the

Chinese remainder theorem. We have then for any p ≥ 11 and any i that

pαi
i | p4 − 1 = (p2 + 1)(p− 1)(p+ 1)
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only if pi divides at least one of p
2+1, p−1, or p+1 for each i. If any pi ≥ 11, then we let p = pi and

arrive at a contradiction because pi does not divide p
2
i +1 or pi−1 or pi+1. Thus n = 2α13α25α37α4 .

We have by assumption that 2α13α25α37α4 | (112 + 1)(11− 1)(11 + 1) = 122 · 10 · 12 = 24 · 3 · 5 · 61 so
indeed the maximum values for α1, α2 and α3 are 4, 1 and 1 respectively while α4 must be 0. Then
n ≤ 24 · 3 · 5 = 240, giving the result. ■

Problem 8

Question

Show that the only integral points on the elliptic curve y2 = x3 − 11 are (3,±4) and (15,±58).

Proof. Suppose x, y ∈ Z are such that y2 = x3 − 11. First, we recall that Z[ω] = OQ(
√
−11) has class

number 1 where ω = 1+
√
−11
2 , i.e., is a PID. Then in Z[ω], we have

(y +
√
−11)(y −

√
−11) = x3.

For ease of notation, we let z = y +
√
−11, d = gcd(z, z̄), and α = z/d ∈ Z[ω]. We observe that

d | z − z̄ = 2
√
−11, and that

N(2) = 4

and
N(

√
−11) = 11

So N(
√
−11) prime implies

√
−11 is irreducible. To show 2 is irreducible, it suffices to show there is

no element in Z[ω] with norm 2. Indeed, for ζ = a+ bω, we compute

N(ζ) = ζζ̄ = (a+ bω)(a+ bω̄) = a2 + ab+ 3b2

which cannot equal 2, because a solution would enforce

a2 + ab+ b2 ≡ 0 mod 2

which implies that a ≡ b ≡ 0 mod 2. But then 4 divides the left hand side, while 4 does not divide 2
obviously.

Therefore d = 1 or 2 or
√
−11 or 2

√
−11. This shows d̄ = ±d. Therefore gcd(α, ᾱ) = 1 since

ᾱ = z̄/d̄ = ±z̄/d. Since
x3 = zz̄ = d2αᾱ

it follows that for any irreducible π ∈ Z[ω],

2νπ(d) + νπ(α) + νπ(ᾱ) ≡ 0 mod 3

and also that at most one of νπ(α), νπ(ᾱ) is nonzero.
If d = 1, then νπ(d) = 0 for all π implies νπ(α) ≡ 0 mod 3 for all π, hence

z = dα = α = ζ3

for some ζ ∈ Z[ω].
If d = 2, then

νπ(d) =

{
1, if π = 2

0, otherwise

so

νπ(α) + νπ(ᾱ) ≡

{
1, if π = 2

0, otherwise
mod 3.
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However, 2 | α iff 2 | ᾱ, which forces ν2(α) = ν2(ᾱ) = 0. This contradicts the above equation for
π = 2, so d ̸= 2.

If d =
√
−11 or d = 2

√
−11, a very similar proof yields a contradiction, so we conclude d = 1 and

z = ζ3 for some ζ ∈ Z[ω]. We have

2
√
−11 = z − z̄ = ζ3 − ζ̄3 = (ζ − ζ̄)(ζ2 + ζζ̄ + ζ̄2).

Letting ζ = a+ bω with a, b ∈ Z, we compute

ζ − ζ̄ = b
√
−11

ζ2 = a2 − 3b2 + (b2 + 2ab)ω

ζζ̄ = a2 + 3b2 + ab

ζ̄2 = a2 − 3b2 + (b2 + 2ab)ω̄

ζ2 + ζζ̄ + ζ̄2 = 3a2 − 2b2 + 3ab

2
√
−11 = b

√
−11(3a2 + 3ab− 2b2)

which by the unique factorization gives the integral equation

2 = b(3a2 + 3ab− 2b2)

which leaves four possibilities for b: ±1 or ±2. If b = 2, then

1 = 3a2 + 6a− 8 ⇒ a2 + 2a− 3 = 0 ⇒ a = −3 or 1.

If b = −2, then
−1 = 3a2 − 6a− 8 ⇒ 3a2 − 6a− 7 = 0

has no integer solutions because we would get 0 = 3a2 − 6a− 7 ≡ −7 mod 3 is impossible.
If b = 1, then

2 = 3a2 + 3a− 2 ⇒ 3a2 + 3a− 4 = 0

also has no integer solutions since we would get −4 ≡ 0 mod 3.
Lastly, if b = −1, then

−2 = 3a2 − 3a− 2 ⇒ a(a− 1) = 0 ⇒ a = 0 or 1.

Thus the only possible values of ζ are

ζ = 1 + 2ω or − 3 + 2ω or − ω or 1− ω.

Then
y +

√
−11 = z = ζ3 = −58 +

√
−11 or 58 +

√
−11 or 4 +

√
−11 or − 4 +

√
−11.

Thus y = ±4,±58 are the only possible values, and correspondingly we get x = 3, 15. ■

Problem 9

Question

Show that f(X) = X6 − 108 ∈ Q[X] is irreducible.
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Proof. By Gauss’ Lemma, this polynomial is irreducible over Q iff it’s irreducible over Z, since it’s
primitive. Thus it suffices to show its irreducible over Fp for some prime p, since factorization over Z
gives factorization in Fp. For p = 7, we get f̄(X) = X6 − 3 ∈ F7[X]. We recall that F×

q is cyclic for

every prime power q. Thus f̄ has no roots in F7 since x6 = 1 for all x ∈ F7
×. If f̄ had a quadratic

factor in F7, then by modding out this quadratic factor from F7[X], we would get a root of f̄ in F72 .
Thus let x ∈ F×

72 be such that x6 = 3. But since F×
72 is cyclic of order 48, it follows that the sixth

powers form a subgroup of order 8, so then 1 = 38 = 32 = 2, a contradiction.
Then the only remaining possibility is that f̄ has a cubic factor. As before, this implies that f̄

has a root in F×
73 . Since F×

73 is cyclic of order 342, the sixth powers form a subgroup of order 57. But
357 = (36)9 · 33 = 19 · 27 = 3 which again is a contradiction. ■
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