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Problem 1

Question

Suppose a is an integer where ords(a) = 1. Prove that there are no integer solutions to the equation
y?™ = 22" 4 q for n,m > 0.

Answer

Proof. 2 | K with multiplicity 1 is equivalent to K =2 mod 4. We recall that squares are either 0 or
1 mod 4, so 22",y>™ =0 or 1 mod 4. These two facts prove the result when looking at the equation
mod 4. |

Problem 2

Question

Prove that there are no integral points on the elliptic curve y? = 2% — 9.

Answer

Proof. Suppose we have an integer solution pair (x,y). Notice that x cannot be even; if it were, then
22 =0 mod 4; on the other hand, 2 +9 =1 or 2 mod 4.

Now, we rewrite our equation as follows:
(x—2)((x+1)* +3) =y* + 1.

Because x is odd, the term (x + 1)? +3 = 3 mod 4; as such, there exists some prime p = 3 mod 4
dividing (x 4+ 1)? 4+ 3. Then we get

Y +1=2>-8=0 mod p.

But of course, this is also impossible because —1 is a square mod p # 2 if and only if p =1 mod 4. H

Proof. Suppose we have an integral solution to z° = 3? + 9. In Z[i], we would then have 2% =
(y + 3i)(y — 3i). First, we will show that 1 = (y + 3i,y — 3i). Letting d be the ged in Z[i], we have
d|y+3i—(y—3i) = 6i. Now the only prime that lies over 2 in Z[i] is 1 + ¢, and as 3 is inert in
Q(1)/Q, we get that, because we may modify d by units, d = (14 )*3%. If b > 0, then 3 | d implies
that 0 = y + 3i = y mod 3. But then 23 = 3> + 9 = 0 mod 9 implies that 3 | z as well, so by
replacing by x/3 and y by y/3, we get solutions to the new equation 3x® = y2 + 1. But then

P +1=32=0 mod 3



implies that —1 is a quadratic residue modulo 3, which is obviously false. Thus we have d = (1 4 7).
If @ > 0, then
0=y+3i=y—3 mod1l+i.

Then for some a, 8 € Z, we have y —3 = (a+ Bi)(1 + i) = @ — 8+ (a + B)i. This implies —3 = a,
and then that 2a = y — 3, hence y = 1 mod 2. Looking at the equation 3 = y? + 9, we then see that
22 =9y>4+9=0 mod 2

implying that £ = 0 mod 2. Therefore > =0 mod 8, but then
V+1=9y*+9=2>=0 mod38

which is impossible as —1 is not a quadratic residue modulo 8. This proves that d = 1. Now that
2 _ . . . .
y*+9 = (y+3i)(y — 3i) is a perfect cube, and the latter two factors are coprime, each factor must be
a perfect cube. This assertion uses the fact that Z[i] is a UFD.
Thus, for some integers a, b and unit « € Z[i]*, we have a solution to

u(a +bi)® =y + 3i.

It’s easy to verify that the units in Z[i] are {£1, +i} by looking at the norms of elements in Z[i] and
recalling that an element of the ring of integers is a unit iff it has norm 1. Expanding the above
equation, we have

Y+ 3i = u(a® — 3ab® + i(3a®b — b?)).

Given our classification of what « must be, we must either have a solution to
+(3a%b —b*) =3

or

+(a® — 3ab®) = 3.

Let’s first show that there are no solutions to the first equation. If there were, we would have b = 0
mod 3, and thus 3 | b. But then 9 | 3a%b — b3, so also 9 | 3 which is absurd.

Now let’s show there are not solutions to the latter equation. If there were then 3 | a by considering
the equation modulo 3, but then 9 | a® — 3ab? so 9 | 3 as well, again absurd. |

Problem 3

Question

Prove that there are no integral points on the elliptic curve y? = =3 — 62.

Answer

Proof. First of all, we notice that a solution to the equation y* = x> — 62 if and only if there is a
solution to the equation y? + 22 + 62 = 0, by replacing by —z. Thus it suffices to show there is no
integer solution to the latter equation.
Supposing x,y are integers solving the equation, we can rule out = being even as follows: if = were
even, then
Yy —2=—(2>+64)=0 mod 8.

However, 2 is not a square mod 8.

Now we rewrite our equation as follows:

y? —2=—(z+4)((z —2)* +12).



Because 7 is odd, (x —2)2 =1 mod 8, so (z —2)? + 12 = —3 mod 8. Then there exists some prime
p = £3 mod 8 dividing (z — 2)? + 12 as the only solution to ab = +3 mod 8 is @ = £1 mod 8 and
b= £3 mod 8. But then we get that

v —2=(r+4)((z—2)>+12)=0 mod p

which is impossible because 2 is a square mod p if and only if p = +1 mod 8. ]

Problem 4

Question
Prove there are no integer solutions to the equation

y? —3 =2 422 4+ 3212 + 421° + 5 + 622 4 T2t + 825 + 928,

Answer
Proof. We rewrite the equation as
y? —3=(28+ a8 + 2t + 22 +5)(a® + 2% + 2t + 2% 4+ 1).

Notice now that the quadratic residues in Z/12Z are 0,1,4 and 9; moreover, x* = 2 for every

x € Z/12Z. Thus, supposing a solution pair exists,
y? — 3= (4% +5)(42® +1) mod 12.

The right hand side is 5 mod 12 when 3 | z, which is impossible as 8 is not a quadratic residue in
ZJ12Z. 1f 3t z, 2> =1 or 4 mod 12; in either case, 422 +1 =5 mod 12,

Because every prime greater than 2 must be congruent to either £1 or £5 mod 12, we conclude
that there is some prime p = £5 mod 12 dividing 422 + 1 (because 422 + 1 is odd and has a prime
factorization), and thus also y? — 3. We then have

> —3=0 modp
which is impossible because 3 is a quadratic residue in Z/pZ if and only if p =2, p =3, or p = +1

mod 12. To prove this, we first easily notice that 3 is a quadratic residue modulo 2 and 3. For p > 3,

we compute that by quadratic reciprocity, if p = 1 mod 4 we have (%) = (%), and if p = 3 mod 4,

then (%) = —(£). It’s also easy to see that

(p)_ 1, ifp=1 mod 3
-1, ifp=2 mod3.

Now we can easily see that (%) = 1 precisely when p =1 mod 4 and p =1 mod 3, or when p =3
mod 4 and p =2 mod 3, or equivalently when p =1 mod 12 or p =11 mod 12. ]

Problem 5

Question

Prove that there are no integer solutions to 2y? = 2z* + 322 + 1.



Answer

Proof. We first notice that a solution pair exists to our given equation if and only if a solution pair
exists for the equation y? = 16x* + 2422 4 8. This is because if (z,y) satisfies our original equation,
then (z,4y) satisfies the new equation as

(4y)% = 16y> = 8(22* + 322 4+ 1) = 162 + 2422 + 8,

and conversely if (x,y) satisfies the new equation, then y = 0 mod 4 since y> = 0 mod 8, hence
4 €Z,and (x,%) is a solution pair to the original equation because

1
2(%)2 = 2 (162" 4 240% 1 8) = 20* + 3% + 1.
We will now consider the equation y? = 162* + 242% + 8, and rewrite y? = 162* + 2422 + 8 as
y? — 3 = 162* + 2422 + 5 = (422 + 1)(422 + 5). Notice now that the quadratic residues in Z/127Z are
0,1,4 and 9. The right hand side is 5 mod 12 when 3 | z, which is impossible as 8 is not a quadratic
residue in Z/12Z. If 3t x, 22 =1 or 4 mod 12; in either case, 42 + 1 =5 mod 12.

Because every prime greater than 2 must be congruent to either £1 or +5 mod 12, we conclude
that there is some prime p = +5 mod 12 dividing 422 + 1 (because 422 + 1 is odd and has a prime
factorization), and thus also y?> — 3. We then have

y>—3=0 modp

which is impossible because 3 is a quadratic residue in Z/pZ if and only if p =2, p =3, or p = +1
mod 12. To prove this, we first easily notice that 3 is a quadratic residue modulo 2 and 3. For p > 3,
we compute that by quadratic reciprocity, if p = 1 mod 4 we have (2) = (%), and if p = 3 mod 4,

P

then (%) = —(%). It’s also easy to see that
(p)_ 1, ifp=1 mod 3

37 1-1, ifp=2 mod3.

Now we can easily see that (%) = 1 precisely when p =1 mod 4 and p =1 mod 3, or when p =3
mod 4 and p =2 mod 3, or equivalently when p =1 mod 12 or p =11 mod 12. |

Proof. Using the same rearrangement, we can prove that there are no integer solutions to 2y? =
224 + 322 4+ 1 by only modular arithmetic. First, we notice that = 1 mod 2 by taking the equation
mod 2. Therefore 22 =1 mod 4, so we get 2y?> = 2 mod 4. This implies that y =1 mod 2 as well.
Considering our equation modulo 3, we have

20> =222 +1 mod 3.

Then z = £1 mod 3, implying y = 0 mod 3. Now we consider our equation modulo 5. If z = 0
mod 5, then
20>=1 mod 5

and as 3 = 27! mod 5, we would have 4> = 3 mod 5 is impossible. Thus £ Z 0 mod 5, hence z* =1
mod 5 and then
2y* =32 +3 mod 5.

Multiplying each side by 3, we have y?> = —(2? 4+ 1) mod 5. But as 22> = £1 mod 5, we notice there
is no solution if 2 =1 mod 5, and thus 22 = —1 mod 5. Thus z = £2 mod 5 and y = 0 mod 5.
Thus y = 15 mod 30 and x can only be congruent to one of +7,4+13 mod 30. However, we then
check that 2z* |



Problem 6

Question

Show that there are no integer solutions to the equation y? = 4z* + 922 + 5.

Answer

Proof. We rewrite y? = 42* + 922 + 5 as y2 — 3 = 42* + 922 + 2 = (422 + 1)(2% + 2). Notice that the
quadratic residues in Z/127Z are 0,1,4 and 9. The right hand side of the given equation is 2,5 or 6
mod 12 if 22 # 4 mod 12, which is impossible as neither are quadratic residues. Thus 422 +1 =5
mod 12.

Because every prime greater than 2 is congruent to either £1 or &5 mod 12, we conclude that there
is some prime p = £5 mod 12 dividing 422 + 1 (422 + 1 is odd and thus has prime divisors strictly
greater than 2), hence also y? — 3. We then have

y>—3=0 modp

which is impossible because 3 is a quadratic residue in Z/pZ if and only if p =2, p =3, or p = £1
mod 12. To prove this, we first easily notice that 3 is a quadratic residue modulo 2 and 3. For p > 3,

we compute that by quadratic reciprocity, if p =1 mod 4 we have (%) = (8), and if p =3 mod 4,

3
then (%) = —(£). It’s also easy to see that

(]3)_ 1, ifp=1 mod 3
3 1-1, ifp=2 mod 3.

Now we can easily see that (2) = 1 precisely when p = 1 mod 4 and p = 1 mod 3, or when p = 3
mod 4 and p =2 mod 3, or equivalently when p =1 mod 12 or p =11 mod 12. |

Problem 7

Question

Find the greatest positive integer n such that p is a fourth root of unity in Z/nZ for every prime
p>11.

Answer

Proof. We claim n = 240 is the solution. First, we will show that n = 240 works by proving that
for every p > 11, p* — 1 = 0 mod 240. Notice that p* —1 = (p?> +1)(p — 1)(p + 1), where for each
prime p > 2, each factor is even. If p =1 mod 4 we have p — 1 =0 mod 4 and the other factors are
even implies p* — 1 is equivalent to 0 mod 16, and if p = 3 mod 4 then p+ 1 = 0 mod 4 and the
other factors even imply the result is divisible by 16 as well. Separately, because p > 3 implies p # 0
mod 3, we have p> = 1 mod 3, so indeed 3 | p* — 1. Lastly, since #* = 1 mod 5 for every integer
indivisible by 5, we automatically get p* — 1 = 0 mod 5 since p > 5. Now because 16,3, and 5 are
pairwise coprime and p* — 1 is divisible by each of them, we see p* — 1 =0 mod 240.

For the reverse direction, suppose p* — 1 is divisible by n for every p > 11. Let n = [[p{"* be its
prime factorization. Then p* — 1 is divisible by n if and only if it is divisible by p{'* for each i by the
Chinese remainder theorem. We have then for any p > 11 and any ¢ that

pl=1=0@"+1)(p-Dp+1)

a;
p;



only if p; divides at least one of p> +1,p—1, or p+1 for each 4. If any p; > 11, then we let p = p; and
arrive at a contradiction because p; does not divide p? +1 or p; — 1 or p; + 1. Thus n = 2213%25% 7%,
We have by assumption that 2213%25%7% | (112 4 1)(11 — 1)(114+1) = 122-10-12=2%-3-5-61 so
indeed the maximum values for oy, as and ag are 4, 1 and 1 respectively while ay must be 0. Then
n < 2%.3.5 =240, giving the result. |

Problem 8

Question
Show that the only integral points on the elliptic curve y? = 2% — 11 are (3,£4) and (15, £58).

Proof. Suppose z,y € Z are such that y? = 2® — 11. First, we recall that Zw] = Og(y=11) has class

number 1 where w = =1 i e is a PID. Then in Z[w], we have

(y+ V-11)(y — vV-11) = 2°.

For ease of notation, we let z = y + v/—11, d = ged(z,2), and a = z/d € Z]w]. We observe that
d|z—z=2y-11, and that
N(2) =4

and
N(v-11) =11
So N(y/—11) prime implies /—11 is irreducible. To show 2 is irreducible, it suffices to show there is
no element in Zlw] with norm 2. Indeed, for ¢ = a + bw, we compute
N(¢) =¢C = (a+bw)(a+bo) = a® + ab+ 3b*
which cannot equal 2, because a solution would enforce

a’?+ab+> =0 mod 2

which implies that a = b =0 mod 2. But then 4 divides the left hand side, while 4 does not divide 2
obviously.

Therefore d = 1 or 2 or /=11 or 2y/—11. This shows d = +d. Therefore ged(a,a) = 1 since
a=z/d=4z/d. Since

2% =2z = d’aa

it follows that for any irreducible 7 € Zw],
20 (d) + vr(@) + vz (&) =0 mod 3

and also that at most one of v, («), v, (@) is nonzero.
If d =1, then v, (d) = 0 for all 7 implies v,(a) =0 mod 3 for all 7, hence

z=da=a=_
for some ¢ € Z[w].
It d — 2, then

0, otherwise

Vﬁ(d){l, if m =2

SO
1, ifr=2

0, otherwise

mod 3.



However, 2 | « iff 2 | &, which forces vo(a) = vo(@) = 0. This contradicts the above equation for
m=280d#2.
If d =+/—11 or d = 24/—11, a very similar proof yields a contradiction, so we conclude d = 1 and
z = (3 for some (¢ € Z|w]. We have
2V-1l=2-2=C == (- O+ ¢+

Letting ¢ = a + bw with a,b € Z, we compute

¢(—C=b/-11

¢? =a® - 3b* + (b* + 2ab)w

¢ =a®+3b*+ab

¢ =a® - 3b% + (b + 2ab)w

4+ ¢C+C% =3a%—2b* + 3ab

2v/—11 = by/—11(3a* + 3ab — 2b°)

which by the unique factorization gives the integral equation
2 = b(3a® + 3ab — 2b?)
which leaves four possibilities for b: +1 or £2. If b = 2, then

1=3e>+6a—8=0a’4+2a—-3=0=a=—-3or 1.

If b= —2, then
—1=3a*>—-6a—8=3a>—6a—T7=0
has no integer solutions because we would get 0 = 3a? — 6a — 7 = —7 mod 3 is impossible.
If b= 1, then

2=3d’>+3a-2=3a>+3a—-4=0

also has no integer solutions since we would get —4 =0 mod 3.
Lastly, if b = —1, then

—2=3d>-3a-2=ala—1)=0=a=0or 1.
Thus the only possible values of ¢ are

(=142wor —3+2wor —worl—w.

Then
y+vV—11=2=¢"=-58++v—11 or 58 + vV/—11 or 4+ v/—11 or — 4+ /—11.
Thus y = +4, 158 are the only possible values, and correspondingly we get x = 3, 15. |
Problem 9
Question

Show that f(X) = X® — 108 € Q[X] is irreducible.



Proof. By Gauss’ Lemma, this polynomial is irreducible over Q iff it’s irreducible over Z, since it’s
primitive. Thus it suffices to show its irreducible over IF), for some prime p, since factorization over Z
gives factorization in F,. For p = 7, we get f(X) = X°® — 3 € F;[X]. We recall that F is cyclic for
every prime power ¢. Thus f has no roots in Fy since 2% = 1 for all 2 € F;*. If f had a quadratic
factor in F7, then by modding out this quadratic factor from F;[X], we would get a root of f in Fr..
Thus let z € F;z be such that z% = 3. But since F?Q is cyclic of order 48, it follows that the sixth
powers form a subgroup of order 8, so then 1 = 3% = 32 = 2, a contradiction.

Then the only remaining possibility is that f has a cubic factor. As before, this implies that f
has a root in F7;. Since F7; is cyclic of order 342, the sixth powers form a subgroup of order 57. But
357 = (3%9)9 .33 = 19 . 27 = 3 which again is a contradiction. |



