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Preface

This document contains worked examples, detailed solutions to selected exercises, and justifications
of omitted claims from Joseph Silverman’s The Arithmetic of Elliptic Curves (2nd ed.). The goal is
both to deepen my own understanding and to provide a useful reference for others studying the text.

Chapter I: Algebraic Varieties

Exercises

Exercise 4

Statement. Let V/Q be the variety

V : 5X2 + 6XY + 2Y 2 = 2Y Z + Z2.

Prove that V (Q) = ∅.

Proof. First, we do a linear change of variables, X 7→ X − 3
5Y , which takes 5X2 + 6XY + 2Y 2 to

5X2 + 1
5Y

2, so in this new coordinate system

V : 5X2 +
1

5
Y 2 − 2Y Z − Z2 = 0.

Now we apply the change of variables Y 7→ 5Y , giving

V : 5X2 + 5Y 2 − 10Y Z − Z2 = 0.

Lastly, we do the change of variables Z 7→ Z − 5Y , which takes 5Y 2 − 10Y Z − Z2 to 30Y 2 − Z2, so
in this coordinate system

V : 5X2 + 30Y 2 = Z2.

LetH : Z = 0 be a hyperplane in P2. Notice thatH∩V (Q) = ∅ because if Z = 0, as 5X2+30Y 2 = Z2,
it would follow that X = Y = 0. Thus it suffices to show that V (Q) ⊆ H. By taking any solution
to have integral coordinates, our claim will follow if we can show that if a, b, c are integers such that
5a2 + 30b2 = c2, then a = b = c = 0. Now suppose we had such a triple (a, b, c), not all zero. We may
assume that gcd(a, b, c) = 1, else we could obtain a contradiction by infinite descent. Considering the
equation modulo 5, we get that 5 | c, so relabeling c→ c

5 and dividing by 5, we have

a2 + 6b2 = 5c2.

Taking this equation modulo 3, we get

a2 ≡ 2c2 mod 3

which implies that a ≡ c ≡ 0 mod 3. With this, we take the equation a2 + 6b2 = 5c2 modulo 9 and
get

6b2 ≡ 0 mod 9

which implies that b ≡ 0 mod 3 as well. This contradicts the assumption that gcd(a, b, c) ̸= 1,
showing V (Q) ⊂ H, hence V (Q) = V (Q) ∩H = ∅. as claimed. ■
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Exercise 10

Statement. For each prime p ⩾ 3, let Vp be the variety given by the equation

Vp : X
2 + Y 2 = pZ2.

(a) Prove that Vp is isomorphic over Q to P1 iff p ≡ 1 mod 4.

(b) Prove that for p ≡ 3 mod 4, no two Vp’s are isomorphic over Q.

First we will prove (a). We will also write t for [t, 1] ∈ P1 and ∞ for [1, 0]. Most of the proof of
(a) is devoted to the derivation of isomorphism and its inverse when p ≡ 1 mod 4. Thus the length
of the proof can be significantly reduced by simply defining two morphisms and verifying that they
are inverses.

Proof. Let A2 : Z = 0. We observe that Vp \ A2 = {[i, 1, 0], [−i, 1, 0]} because Z = 0 implies that
X2 + Y 2 = 0, so X = ±iY . We will call the first point P+ and the second P−, and let P⊥ = [a, b, 1].
Thus we can use affine notation, keeping in mind that we have the two extra points at infinity. We
will also take for granted the classical results in number theory that an odd prime can be written as
the sum of two squares iff it is congruent to 1 mod 4 and also that the Legendre symbol

(−1
p

)
= 1 iff

p ≡ 1 mod 4.
For one direction, suppose p ≡ 1 mod 4 Then we may write p = a2 + b2 for some integers a, b,

where clearly ab ̸= 0. For p ≡ 1 mod 4, we define a map

ψ : Vp → P1, P 7→


[y − b, x− a], if P = [x, y, 1] and P ̸= P⊥

[a,−b], if P = P⊥

[∓i, 1], if P = P±.

.

This map takes a point P and associates it with the slope of the line passing through P⊥ and P , but
where we define the line to be the tangent line if P = P⊥ and make our own definition for the slope of
the line to the points at infinity to make it an inverse to the function ϕ defined later. We let u = x−a
and v = y − b, so under these new coordinates, Vp : u2 + v2 + 2au + 2bv = 0 and P⊥ = (0, 0). We
notice that v(v + 2b) + u(u+ 2a) = 0, and as v + 2b and u+ 2a do not vanish at P⊥ and are regular,
both u and v are uniformizers for MP⊥ (clearly (u, v) =MP⊥). Also, we have

v = −a
b
u− a

2b
(u2 + v2).

In particular, vu (0, 0) = −a
b . Now we consider the points at infinity, so we have uZ = U and vZ = V .

Then our candidate rational function is [V,U ] since this rational function agrees with ψ except possibly
at the points at infinity. However, we also see that since U = X − aZ and Y − bZ, it follows that
[V,U ](P±) = [Y,X](P±) = [1,±i] = [∓i, 1]. Therefore

ψ([X,Y, Z]) = [Y − bZ,X − aZ]

is a morphism.
Next, we need to define a map in the opposite direction. For t = [u, v], we define Lt : v(Y − bZ) =

u(X − aZ). Because Lt and Vp are clearly not contained in one another for any t ∈ P1, Bezout’s
theorem tells us that in P2, Lt ∩ Vp contains two points (possibly non-distinct). We can now define
Pt to be the point other than (a, b) in Lt ∩ Vp. We will now show that Pt = (a, b) iff Lt is tangent to
Vp at (a, b), and Pt = P± iff t = ∓i.

First, let’s show that if Lt is tangent to Vp at (a, b), i.e., Lt : a(x−a)+ b(y− b) = 0 or equivalently
Lt : ax+ by = p, then Lt ∩Vp = {(a, b)}. We check that [±i, 1, 0] is not in the line Lt : aX + bY = pZ,
so we may now take the point of intersection to lie in A2.
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Suppose (x, y) is in the intersection, so ax+ by = p and also x2 + y2 = p. Then y = p−ax
b , so

p = x2 + y2 = x2 +
p2 − 2apx+ a2x2

b2
.

Equivalently,
b2p = (a2 + b2)x2 − 2apx+ p2

and since a2 + b2 = p, we divide through by p and get

x2 − 2ax+ p− b2 = 0.

Since p − b2 = a2, we have (x − a)2 = x2 − 2ax + a2 = 0, giving x = a. Then (a, y) ∈ Lt gives that
y = b as well.

For the reverse direction, suppose Lt ∩ Vp = {(a, b)}. If t = ∞, then Lt : x = a. Notice that
(x, y) ∈ Lt ∩ Vp then iff x = a and y2 = b2, i.e. y = ±b. In particular, (a,−b) ∈ Lt ∩ Vp, so
by assumption b = −b, i.e., b = 0, which is a contradiction. If t = ±i, we easily observe that
P± ∈ Lt ∩ Vp, so Pt = P±. Thus we may take t ̸= ∞± i, so Lt : y − b = t(x− a).

We see that (x, y) ∈ Lt ∩ Vp iff y = t(x − a) + b and x2 + y2 = p. The first equation substituted
into the second gives

a2 + b2 = x2 + t2(x− a)2 + 2bt(x− a) + b2.

Expanding, we have the quadratic equation

(1 + t2)x2 + 2t(b− at)x+ a((t2 − 1)a− 2bt) = 0.

Because (a, b) is the only point of intersection, it follows that a is the only solution in Q̄ to the
above equation, since if a′ were a distinct equation, then we just set b′ = t(a′− a)+ b to get a distinct
point (a′, b′) ∈ Lt ∩ Vp.

Since a is a double root, letting ∆(t) be equal to 1
4 the discriminant of the quadratic in x, it must

be the case that ∆(t) = 0 i.e.

∆(t) = t2(b− at)2 − a(1 + t2)((t2 − 1)a− 2bt) = 0

By expanding ∆(t) as a polynomial in t, we get that

∆(t) = (a+ bt)2 = 0

i.e., t = −a
b . Therefore

y − b− t(x− a) = y − b+
a

b
(x− a),

so indeed Lt : a(x− a) + b(y − b) = 0 as claimed.
Now we will show the second claim. We have already shown in the proof of the first claim that

P±i = P∓. For the reverse direction, we will primarily use results in the proof of the first claim, namely
that if t2 ̸= −1, then there is a quadratic in x whose roots are a and some other number a′. Then
(a′, t(a′ − a) + b) lies in the intersection Lt ∩ Vp ∩A2, so this point is Pt, and is in particular, not P±

Now we define ϕ(t) = Pt. More explicitly, we have from our work before and the quadratic formula

ϕ(t) =


(
a(t2−1)−2bt

1+t2 , b−bt
2−2at

1+t2

)
, if t ̸= ∞,±i

P∓, if t = ±i
(a,−b), if t = ∞

Then we guess that

ϕ([U, V ]) = [a(U2 − V 2)− 2bUV, b(V 2 − U2)− 2aUV,U2 + V 2].
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To verify this, it suffices to check that the two functions agree on [U, V ] = [i, 1], [1, i], [1, 0]. For
[U, V ] = [1, 0], we compute

[a(U2 − V 2)− 2bUV, b(V 2 − U2)− 2aUV,U2 + V 2] = [a,−b, 1] = ϕ([U, V ])

so the morphism agrees with ϕ at ∞. If [U, V ] = [i, 1], then

[a(U2−V 2)−2bUV, b(V 2−U2)−2aUV,U2+V 2] = [−2a−2bi, 2b−2ai, 0] = [a+bi, i(a+bi), 0] = P−.

Finally, we compute that if [U, V ] = [1, i], then

[a(U2−V 2)−2bUV, b(V 2−U2)−2aUV,U2+V 2] = [2a−2bi,−2b−2ai, 0] = [i(−b−ai),−b−ai, 0] = P+

which shows that the morphism agrees with ϕ everywhere, hence our guess is correct. By the original
definition of the maps ψ and ϕ, it is clear the two functions are inverses. To be sure our computations
are correct though, we first compute that if U = Y − bZ and V = X − aZ, then

U2 + V 2 = X2 + Y 2 + (a2 + b2)Z2 − 2Z(aX + bY ) = 2pZ2 − 2Z(aX + bY )

and
U2 − V 2 = Y 2 + b2Z2 − 2bY Z −X2 − a2Z2 + 2aXZ

and
UV = XY + abZ2 − aY Z − bXZ.

Therefore

a(U2 − V 2)− 2bUV

= a(Y 2 + b2Z2 − 2bY Z −X2 − a2Z2 + 2aXZ)− 2b(XY + abZ2 − aY Z − bXZ)

= a(Y 2 −X2)− 2bXY + 2pXZ − apZ2

= (2pZ2 − 2Z(aX + bY ))
X

Z
.

In addition,

b(V 2 − U2)− 2aUV

= b(−Y 2 − b2Z2 + 2bY Z +X2 + a2Z2 − 2aXZ)− 2a(XY + abZ2 − aY Z − bXZ)

= 2pY Z − 2bY 2 − 2aXY

= (2pZ2 − 2Z(aX + bY ))
Y

Z

so we can now compute that

ϕ ◦ ψ([X,Y, Z]) = ϕ([Y − bZ,X − aZ])

= [(2pZ2 − 2Z(aX + bY ))
X

Z
, (2pZ2 − 2Z(aX + bY ))

Y

Z
, (2pZ2 − 2Z(aX + bY ))]

so ϕ ◦ ψ = idP1 .
On the other hand,

ψ ◦ ϕ([U, V ]) = ψ([a(U2 − V 2)− 2bUV, b(V 2 − U2)− 2aUV,U2 + V 2])

= [b(V 2 − U2)− 2aUV − b(U2 + V 2), a(U2 − V 2)− 2bUV − a(U2 + V 2)]

= [−2(bU + aV )U,−2(bU + aV )V ]
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so also ψ ◦ ϕ = idVp
.

For the other direction, suppose p ≡ 3 mod 4. We will first show that Vp(Q) = ∅. For suppose
[x, y, z] ∈ Vp(Q), where we may take x, y, z ∈ Z and gcd(x, y, z) = 1. Since x2 + y2 = pz2, we have

x2 ≡ −y2 mod p.

If p | y, then p | x, but then pz2 ≡ 0 mod p2 which implies p | z as well, contradicting gcd(x, y, z) = 1.
Thus we may assume p ∤ y so in Z/pZ, y is invertible. Then in Z/pZ, we see that

(xy−1)2 = x2y−2 = −y2y−2 = −1

which would then show that
(−1
p

)
= 1, contradicting the assumption that p ≡ 3 mod 4.

Now that Vp(Q) = ∅, we will show that there is no morphism defined over Q from P1 to Vp.
If ϕ = [ϕ0, ϕ1, ϕ2] were such a morphism where we may take each ϕi ∈ Q(P1) by assumption that
ϕ is defined over Q, then ϕ(0) = [ϕ0(0), ϕ1(0), ϕ2(0)] ∈ Vp. But then ϕ(0) ∈ Vp(Q) since each
ϕi ∈ Q(P1) = Q(t) implies ϕi(0) ∈ Q for each i. The result is now immediate. ■

Now we will prove (b), letting p, q be primes congruent to 3 mod 4.

Proof. For field extension K/Q and a variety V ⊂ Pn defined over Q, write V (K) for the K-points,
i.e. the zero locus of the polynomials defining V , considered as elements of K[X0, . . . , Xn]. For any
variety V/Q, the set

S(V ) := { v place of Q | V (Qv) = ∅ }
is invariant under isomorphisms defined over Q. This is because for any field extension K/Q and any
varieties V, V ′ ⊂ Pn defined over Q, there is a functor taking V to V (K). If ϕ : V → V ′ is a morphism
of varieties, then we get the map ϕK : V (K) → V ′(K) where ϕK = [ϕ0, . . . , ϕn] since Q(V ) ⊂
K(VK) (if f = f1

f2
with each fi ∈ Q[X0, . . . , Xn]/(g1, . . . , gr), for any g ∈ Q[X0, . . . , Xr](g0, . . . , gr),

g ≡ 0 mod K[X0, . . . , Xn](g1, . . . , gr) so fi+g = fi in K[X0, . . . , Xn]/K[X0, . . . , Xn](g1, . . . , gr), and
fi ∈ K[X0, . . . , Xn](g1, . . . , gr) implies fi vanishes on all of V (K), which contains V (Q), implying
fi ∈ (g1, . . . , gr)). Since this base-change construction is functorial, it follows that if Vp ∼=Q Vq, then
over any place v of Q, Vp(Qv) ∼=Qv

Vq(Qv). In particular, Vp(Qv) has a Qv-point iff Vq(Qv) does too.

Lemma. Let ℓ be a prime number congruent to 3 mod 4. Then

S(Vℓ) = {2, ℓ}.

For this proof, we use two results from [2], the first being Theorem 1 in Chapter III, which reads:

Theorem. If k = R, we have (a, b) = 1 if a or b is > 0, and (a, b) = −1 if a and b are < 0.
If k = Qp and if we write a, b in the form pαu, pβv where u and v belong to the group U of p-adic

units, we have

(a, b) = (−1)αβε(p)
(
u

p

)β(
v

p

)α
if p ̸= 2

(a, b) = (−1)ε(u)ε(v)+αω(v)+βω(u) if p = 2.

[Recall that
(
u
p

)
denotes the Legendre symbol

(
ū
p

)
where ū is the image of u by the homomorphism of

reduction modulo p : U → F∗
p. As for ε(u) and ω(u), they denote respectively the class modulo 2 of

u−1
2 and of u

2−1
8 .]

In the above, (a, b) denotes the Hilbert symbol of a and b, which is 1 if z2 = ax2 + by2 has a
nontrivial solution (z, x, y) ∈ k3 and is −1 otherwise.

The second result we use is the corollary to Theorem 6 in Chapter IV of [2], which reads (for p a
prime number and k = Qp, and f a quadratic form of rank n with discriminant d = detM where M
is the matrix representing the form f , and Hasse-invariant ε):
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Corollary. Let a ∈ k∗/k∗2. In order that f represent a, it is necessary and sufficient that

(i) n = 1 and a = d

(ii) n = 2 and (a,−d) = ε

(iii) n = 3 and either a ̸= −d or a = −d and (−1,−d) = ε

(iv) n ⩾ 4

Proof. Fix a place v of Q. If v = ∞, then [
√
ℓ, 0, 1] ∈ Vℓ(Qv), so ∞ /∈ S(Vℓ). Now assume v is

a finite place and let A2 : Z ̸= 0. We will now show that Vℓ(Qv) ⊆ A2 when v ̸≡ 1 mod 4 and
{Vℓ(Qv) \ A2 = [±i : 1 : 0]} if v ≡ 1 mod 4 and where we let i ∈ Qv be such that i2 = −1. If we
had a point [x : y : z] ∈ V (Qv) \ A2, then z = 0, hence x2 + y2 = 0. Without loss of generality we
may assume that y ̸= 0, so then (xy )

2 = −1. Then the form X2 represents −1 over Qv. Although not

necessary, it’s easy to verify that if X2 represents −1 over Qv, then Vℓ(Qv) ̸⊆ A2. Suppose we have
some x ∈ Qv with x2 = −1. Then 2νv(x) = νv(−1) = 0 so νv(x) = 0 implies that x ∈ Zv because Zv
is a DVR. Thus Vℓ(Qv) ̸⊂ A2 iff −1 is a square in Z∗

v.
If v = 2, we apply Theorem 4 of Chapter II of [2] to see that an element 2nu of Q∗

2 is a square iff
n is even and u ≡ 1 mod 8. In particular, −1 is not a square in Q2. Now assume v is a finite place
different from 2. Then Theorem 3 of Chapter II of [2] tells us that for x = vnu in Q∗

v, x is a square iff
n is even and

(
u
v

)
= 1. Thus −1 is a square in Qv iff

(−1
v

)
= 1 iff v ≡ 1 mod 4.

We have now shown that Vℓ(Qv) ⊂ A2 for v ̸≡ 1 mod 4. Now suppose v ≡ 1 mod 4. We know
that there is some integer x0 such that x20 ≡ −1 mod v, and as the derivative of the polynomial
x2 + 1 ∈ Zv[x] has non-vanishing derivative except at 0 ̸= x0, Hensel’s lemma gives a lift to some
i ∈ Zv that’s a root of x2 + 1, i.e., i2 = −1. Then clearly as we have (XY )2 = −1, then X

Y = ±i, hence
the only points outside of the affine patch are [i, 1, 0] and [−i, 1, 0].

This shows every place in S(Vℓ) is a finite prime not congruent to 1 mod 4. Since Vℓ(Qv) ⊂ A2

for every such place, we have that v ∈ S(Vℓ) implies v ̸≡ 1 mod 4 (which implies S(Vℓ) ⊂ A2) and
v ̸= ∞. Thus now we’re interested in whether the quadratic form f = X2 + Y 2 represents ℓ in Qv,
because by our work, this is equivalent to Vℓ(Qv) ̸= ∅ for places not ∞ and ≡ 1 mod 4.

The quadratic form f has discriminant d = 1 and Hasse invariant ε = (1, 1) = 1. By the corollary
then, f represents ℓ iff (ℓ,−1) = 1. Now we appeal to the theorem to compute (ℓ,−1). If v = 2, then
we compute

(ℓ,−1) = (−1)1·1+0·ω(ℓ)+0·1 = −1

which shows that 2 ∈ S(Vℓ). Now assume that v ≡ 3 mod 4. If v ̸= ℓ, we compute that

(ℓ,−1) = (−1)0·0·1
(
ℓ

v

)0(−1

v

)0

= 1.

Thus the only remaining possibility is that ℓ ∈ S(Vℓ). For v = ℓ, we have α = 1 and u = 1, so

(ℓ,−1) = (−1)1·0·1
(
1

ℓ

)0(−1

ℓ

)1

= −1

which also proves that ℓ ∈ S(Vℓ).
■

Now that we have shown S(Vℓ) is invariant under Q-isomorphism and that S(Vℓ) = {2, ℓ} for ℓ ≡ 3
mod 4, it follows that if Vp ∼=Q Vq, then {2, p} = {2, q} so p = q as desired. ■
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Chapter II: Algebraic Curves

Section 1

Proposition 1.4

Statement. Let C/K be a curve, and let t ∈ K(C) be a uniformizer at some nonsingular point
P ∈ C(K). Then K(C) is a finite separable extension of K(t).

Here, I just want to prove that t is transcendental over K, so that the claim in the proof given
in the book that K(C)/K(t) is finite is immediate from the fact that trdegK(K(C)) = 1, t /∈ K, and
K(C) is finitely generated over K.

Proof. If instead t ∈ K̄, then dimK̄MP /M
2
P = dimK̄ tK̄[C]P /t

2K̄[C]P = dimK̄ K̄[C]P /K̄[C]P = 0,
which contradicts that C is smooth at P. because MP /M

2
P should be dimension 1. ■

Section 2

Example 2.9

Statement. Consider the map ϕ : P1 → P1, [X,Y ] 7→ [X3(X − Y )2, Y 5]. We will verify all of the
claims made in the example, filling in proofs of claims.

Proof. First, let’s show that ϕ is a morphism. We see immediately that, letting f0 = X3(X−Y )2 and
f1 = Y 5, f0/f1 ∈ K̄(P1) = K̄(X,Y )0 (the subscript refers to the degree 0 part of K(X,Y )), so the
the rational map from P1 → P1 is actually [X,Y ] 7→ [f0/f1, 1]. But as f1 ∈ K̄(P1) and multiplying
each coordinate function through by f1 makes the rational map defined at every point since f0 and
f1 are polynomials in the coordinate functions, the rational map is actually just identically ϕ.

First, we will compute eϕ(P ) = ordP (ϕ
∗tϕP ) where P = [0, 1]. Letting ∞ = [1, 0] be the point

at infinity, we will translate to A1 with coordinate ring K̄[x] where here x = X and Y = 1. This
is allowed because ramification index is a local property, which is seen because the quantity only
depends on the uniformizer at the point P , which is a local definition. In this coordinate system, we
have ϕ(x) = x3(x − 1)2. Now ϕP = [0, 1] = 0, so we have tϕP = x. Then ϕ∗tϕP = x3(x − 1)2. As
(x− 1) /∈M0 and is regular at 0,

eϕ(P ) = ordP (ϕ
∗tϕP ) = ord0(x

3(x− 1)2) = 3 ord0(x) + 2 ord0(x− 1) = 3.

Next we let P = [1, 1]. We use the same affine coordinates, so P = 1 here, and tϕP = x again.
Then

eϕ(P ) = ordP (ϕ
∗tϕP ) = ord1(x

3(x− 1)2) = 3 ord1(x) + 2 ord1(x− 1) = 2

because x /∈M1 and is regular at 1. Now, all that remains to show∑
P∈ϕ−1([0,1])

eϕ(P ) = deg ϕ

is to show ϕ−1([0, 1]) = {[0, 1], [1, 1]} and that deg ϕ = 5. We have already seen that ⊃ holds, so
now suppose ϕ([X,Y ]) = [0, 1]. Then X3(X − Y )2 = 0, so either X = 0 or X = Y. X = 0 yields
[0, 1] and X = Y yields [1, 1]. Lastly, we must show deg ϕ := [K(P1) : ϕ∗K(P1)] = 5. Let’s explicitly
prove that K(X,Y )0 = K(t) without using the fact that K(t) = K(A1) = K(A1 ∩ P1) = K(X,Y )0
as stated in I.2.9. It’s easy to see that for any n ∈ Z, λtn ∈ K(X,Y )0. By linearity, we can see
that deg(

∑
αit

i) = 0, so clearly quotients of polynomials of that form also have degree 0. Thus
K(t) ⊂ K(X,Y )0. For the reverse inclusion, fix polynomials F (X,Y ), G(X,Y ), both of degree d.

Notice that X = tY , so F (X,Y )
G(X,Y ) = F (tY,Y )

G(tY,Y ) = Y dF (t,1)
Y dG(t,1)

= F (t,1)
G(t,1) ∈ K(t) where we can see that
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F (tY, Y ) = Y dF (t, 1) because each term of F (tY, Y ) is of the form λ(tY )aY b = λtaY aY b = λY dta

with 0 ⩽ a, b and a+ b = d.
Since K(P1) = K(X,Y )0 = K(t), ϕ∗K(P1) = K(ϕ∗t) = K(t3(t − 1)2). Notice that t is a root of

the degree five polynomial T 3(T − 1)2 − t3(t− 1)2 ∈ ϕ∗K(P1)[T ].
Let’s show this polynomial is irreducible (hence the minimal polynomial of t over ϕ∗(K(P1)). Let

s = t3(t− 1)2, so s is transcendental over K, and let k = ϕ∗K(P1) = K(s). Our goal is to show that
the polynomial f(T ) = T 3(T − 1)2 − s = T 5 − 2T 4 + T 3 − s ∈ k[T ] is irreducible. Because deg f = 5,
if f has a nontrivial factorization over k, then either f has a linear factor or f = gh where deg g = 3
and deg h = 2 for g, h ∈ k[T ]. First let’s show that f has no linear factor, i.e. f has no roots in k.

Suppose p(s)
q(s) was such a root with gcd(p, q) = 1. Then s = p3(p−q)2

q5 . However, (p− q)2 ≡ p2 mod q,

and as p is invertible modulo q, the same is true for (p− q)2 modulo q, so gcd((p− q)2, q) = 1 as well.
Then s cannot divide q, because if s | q, we would get that s ∤ p3(p− q)2 because s is irreducible and
p3(p − q)2 shares no common factors with q. But then sq5 = p3(p − q)2 is clearly impossible, since
the right hand side has no factors of s. From sq5 = p3(p − q)2, we then see that the right hand side
contains exactly one factor of s. This is impossible though, as each irreducible factor of the right hand
side appears with multiplicity at least 2.

Now we will show that we cannot write f = gh where deg g = 3 and deg h = 2, which will prove
that f is irreducible over k. Suppose we can write

T 5 − 2T 4 + T 3 − s = f =
(
T 3 + aT 2 + bT + c

) (
T 2 + αT + β

)
for some a, b, c, α, β ∈ k. Then, expanding the RHS and equating the coefficients of the powers of T ,
we get the following system of equations in k:

−2− α = a (1)

b = 1− aα− β (2)

c = −(aβ + bα) (3)

cα+ bβ = 0 (4)

cβ = −s. (5)

We will eliminate the variables a, b, c with this system of equations. By plugging (1) into (2), we
obtain the following:

b = 1 + 2α+ α2 − β. (2’)

Plugging (1) and (2’) into (3), we get

c = 2β + 2αβ − α− 2α2 − α3. (3’)

Plugging (1), (2’), and (3’) into (4), we get

0 = −α4 − 2α3 − α2 + 3α2β + 4αβ + β − β2. (4’)

Plugging (3’) into (5) we get

2β2 + 2αβ2 − αβ − 2α2β − α3 = −s. (5’)

Now we will do case division on charK. First, we will assume that charK = 2. If α = 0, then
a = 0 from (1), b = 1 + β from (2), c = 0 from (3), but then −s = cβ = 0, a contradiction. Now we
assume α ̸= 0. We have that a = α from (1), b = 1 + α2 + β from (2’), and c = α(1 + α2) from (3’),
and αβ + α3 + s = 0 from (5’). Then β = α2 + s

α . In addition,

β2 + (α2 + 1)β + α4 + α2 = 0

9



from (4’). Plugging β = α2 + s
α in, we get

α4+sα+
s

α
+
s2

α2
= α4+

s2

α2
+α4+sα+α2+

s

α
+α4+α2 = (α2+

s

α
)2+(α2+1)(α2+

s

α
)+α4+α2 = 0.

Multiplying through by α2, we have

α6 + sα3 + sα+ s2 = 0

Write α = x(s)
y(s) with x, y ∈ K[s] and gcd(x, y) = 1. Substituting and multiplying through by y6, we

get the equation
x6 + sx3y3 + sxy5 + s2y6 = 0.

Then s | x6 implies that s | x, so write x = sz for some z ∈ K[s]. Substituting in again, we get

s6z6 + s4z3y3 + s2zy5 + s2y6 = 0.

Dividing by s2, we get
s4z6 + s2z3y3 + zy5 + y6 = 0.

Thus z | y6, but as x and y are coprime, it follows that z and y are also coprime, hence z and y6 are
coprime, but we just contradicted this statement. This shows that f(T ) is irreducible if charK = 2.

Now suppose charK ̸= 2. Notice that (4’) and (5’) are quadratic in β, the first saying that β is a
root of

f1(T ) = T 2 − (1 + 4α+ 3α2)T + (α2 + 2α3 + α4)

and (5’) saying β is a root of

f2(T ) = 2(1 + α)T 2 − α(1 + 2α)T + (s− α3).

Then we see that, letting D1 = (1 + 4α+ 3α2)2 − 4α2(1 + 2α+ α2) = (α+ 1)2
(
5α2 + 6α+ 1

)
be

the discriminant of f1 and D2 = α2(1 + 2α)2 − 8(1 + α)(s− α3).

1 + 4a+ 3α2 +
√
D1

2
= β =

α(1 + 2α) +
√
D2

4(1 + α)

assuming that α ̸= −1, and for some choices of square roots of D1 and D2. If α = −1, then a = −1
from (1) as well, so b = −β from (2), and then c = β+ b = 0 from (3), but then bβ = 0 from (4) which
means that b = 0 since β ̸= 0. But then by b = −β we get β = 0 anyway, which is impossible. Thus
we may proceed.

Note that
√
D1,

√
D2 are both in k since α and β are. Now because D2 = Q(α)− 8(1+α)s where

Q(α) = α2(1 + 2α)2 + 8α3(1 + α), we get

s =
Q(α)−D2

8(1 + α)
.

ThereforeK(α) = k = K(s), so D1 is a square inK(α). However, because D1 = (α+1)2(5α2+6α+1),
to arrive at a contradiction it suffices to show that 5α2 + 6α+ 1 is not a square in K(α). Suppose it

were, and write 5α2 + 6α+ 1 = (p(α)q(α) )
2 with gcd(p, q) = 1. Notice that (α+ 1) divides 5α2 + 6α+ 1,

and let l be the extra factor (l = 1 if charK = 5, l = α + 1
5 otherwise), and notice l ̸= α + 1 thanks

to our assumption that charK ̸= 2. Then (α + 1)q2l = p2, so α + 1 | p2 implies α + 1 | p. But then
(α+ 1)2 | (α+ 1)q2l implies that α+ 1 | q2 because α+ 1 ∤ l, which implies that α+ 1 | q. But then
α+ 1 | gcd(p, q), contrary to assumption that these two have no common factor in K[α].

Now we have showed that f(T ) is irreducible over k = K(P1), so so indeed deg ϕ = [K(t) : k] =
deg f = 5 as claimed.

■
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Section 3

Example 3.3

Statement. Assume that charK ̸= 2. Let e1, e2, e3 ∈ K̄ be distinct, and consider the curve

C : y2 = (x− e1)(x− e2)(x− e3).

Then C is smooth and has a single point at infinity, which we denote by P∞. For i = 1, 2, 3, let
Pi = (ei, 0) ∈ C. Then

div(x− ei) = 2(Pi)− 2(P∞),

div(y) = (P1) + (P2) + (P3)− 3(P∞).

Proof. First let’s show that C has a single point at infinity. The projective closure of the given affine
curve is given by the equation Y 2Z = (X − e1Z)(X − e2Z)(X − e3Z). If P = [X,Y, Z] is a point at
infinity, i.e. Z = 0, then the coordinates satisfy the equation X3 = 0 so X = 0 as well. Thus the only
point at infinity is [0, 1, 0]. Now let’s check that C is smooth. Since smoothness is local, we will first
show that C ∩ A2 is smooth. Recall that P ∈ C is singular iff each partial derivative of the defining
equation of C vanishes at P. Assume we have a point P = (p1, p2) ∈ C where

2y(P ) =
∂(y2 −

∏3
i=1(x− ei))

∂y
(P ) = 0 =

∂(y2 −
∏3
i=1(x− ei))

∂x
(P ) =

3∑
i=1

∏
j ̸=i

(x− ej)(P ).

We see 0 = 2y(P ) = 2p2 implies p2 = 0 since char K̄ ̸= 2. Since P ∈ C, we get that

0 = p22 = (p1 − e1)(p1 − e2)(p1 − e3)

so p1 = el for some l = 1, 2, 3. But then

0 =

3∑
i=1

∏
j ̸=i

(x− ej)(P ) = (x− ej)(x− ek)(P ) = (p1 − ej)(p1 − ek)

where the rightmost two expressions, the j, k are the other values in 1, 2, 3 not equal to l. But this
implies that p1 is either equal to ej or ek, which is impossible since these values are distinct from el.
Now we just need to show C is smooth at P∞. We will check this in another affine chart U : Y ̸= 0.
Here we use the coordinates x′ = X

Y and z = Z
Y , so

C ∩ U : z = (x′ − e1z)(x
′ − e2z)(x

′ − e3z)

and under these coordinates, P∞ = (0, 0) = O. Thus we just need to show that the partial derivatives
do not both vanish at the origin. We compute that

1 = 1 + (

3∑
i=1

ei
∏
j ̸=i

(x′ − ejz)(O) =
∂(z − (x′ − e1z)(x

′ − e2z)(x
′ − e3z)

∂z
(O)

so indeed it’s not the case that the partial derivatives vanish at O.
Now let’s compute div(x− ei). Notice for any P ∈ A2 ∩C, ordP (x− ei) ⩾ 0 since x− ei is regular

on A2. If ordP (x−ei) > 0, i.e. x(P ) = ei, then P = (ei, p2). But P ∈ C means p22 =
∏
j(ei−ej) = 0 so

p2 = 0, and thus P = Pi. Thus div(x−ei) = n(Pi)−n(P∞) for some n ∈ N, because deg div(x−ei) = 0
by Proposition 3.1. Now let’s compute n = ordPi

(x − ei). First, we claim that MPi
= (x − ei, y).

We observe x − ei, y ∈ MPi
, so it suffices to show (x − ei, y) is maximal in K̄[C]. But we see that

K̄[C]/(x − ei, y) = K̄[x, y]/(y2 −
∏
j(x − ej), x − ei, y) = K[x, y]/(x − ei, y) ∼= K̄ so the claim holds.
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Now we will work in K̄[C]Pi
, where we invert all functions not in MPi

= (x − ei, y). In this ring, we

have y2∏
j ̸=i(x−ej)

= x− ei. Thus ordPi
(x− ei) = 2 ordPi

(y) ⩾ 2 so x− ei ∈M2
Pi
. Therefore

MPi
/M2

Pi
= (x− ei, y)/(x− ei) = (y)/(x− ei).

Then MPi
/M2

Pi
is spanned by y as a K̄ vector space, so by Exercise 2.1, we get that MPi

= (y), i.e. y
is a uniformizer at Pi, as long as y /∈M2

Pi
. If this were false, then MPi/M

2
Pi

= 0, contradicting that it
has dimension 1 by our proof that C is smooth at Pi, so y /∈M2

Pi
. Note that K[C] is not a field since

y /∈ (y2−
∏
j(x−ej)), so (y2−

∏
j(x−ej)) ⊊ (y, y2−

∏
j(x−ej)) demonstrates that (y2−

∏
j(x−ej))

is not maximal. Since we have already shown that ordPi
(x − ei) = 2 ordPi

(y) = 2. The last thing
to verify is that K̄[C] is indeed a domain, i.e. f(x, y) = y2 −

∏
j(x − ej) is irreducible. If we could

write f = gh where g, h are not units, then necessarily each must have y-degree 1, i.e. we may write
g = y + p(x) and h = y + q(x) where p, q ∈ K̄[x]. Then y2 −

∏
j(x − ej) = gh = y2 + (p + q)y + pq,

which implies that
p+ q = 0

and
pq = −

∏
j

(x− ej).

The first condition says p = −q, so plugging into the second equation, we get

p2 =
∏
j

(x− ej).

But x− e1 is an irreducible factor of p2 means it’s a factor of p, but then (x− e1)2 |
∏
j(x− ej), which

is false as the ej are distinct.
Now of course we know from the proposition that div(x− ei) = 2(Pi)− 2(P∞), but let’s explicitly

compute ordP∞(x − ei). Using the coordinates x′, z for U : Y ̸= 0, the coordinate ring K̄[C] =
K̄[x′, z]/(z −

∏
j(x

′ − ejz). Since x = X
Z , y = Y

Z , x
′ = X

Y and z = Z
Y , we have x − ei =

X−eiZ
Z =

X/Y−eiZ/Y
Z/Y = x′−eiz

z . In this chart, P∞ = (0, 0) = O. First, notice that (x′, z) ⊂ MO because each

function is regular and vanishes at O. Also, we have K̄[C]/(x′, z) = K̄[x′, z]/(z−
∏
j(x

′−ejz), x′, z) ∼=
K̄ means (x′, z) is maximal, and thus MO = (x′, z). Therefore x′ − ejz ∈ MO for every j = 1, 2, 3.
But in K[C], we have z =

∏
j(x

′ − ejz), so z ∈M3
O. Therefore

MO/M
2
O = (x′, z)/M2

O = (x′)/M2
O

so by the same Exercise 2.1 we get that x′ is a uniformizer at P∞ if we can show that x′ /∈ M2
O. If

this were false, then dimK̄MO/M
2
O = 0, contradicting that C is smooth at P∞, so indeed x′ /∈ M2

O.
Then z ∈M3

O = ((x′)3) means there exists some q ∈ K̄[C] such that z = (x′)3q. This means that

x′ − eiz = x′ − ei(x
′)3q = x′(1− ei(x

′)2q).

We compute that 1− ei(x
′)2q ≡ 1 mod x′, so 1− ei(x

′)2q /∈MO, hence ordO(1− ei(x
′)2q) = 0. This

implies that
ordO(x

′ − eiz) = ordO(x
′) + ordO(1− ei(x

′)2q) = 1.

By the exact same proof, we obtain that ordO(x
′ − ejz) = 1 for any j. Then

ordO(z) = ordO(
∏
j

(x′ − ejz)) =
∑
j

ordO(x
′ − ejz) = 3.

Now we have

ordP∞(x− ei) = ordO(
x′ − eiz

z
) = ordO(x

′ − eiz)− ordO(z) = 1− 3 = −2.
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Also, we remark that we did not have to prove that this K̄[C] is a domain because it is isomorphic to
the other K̄[C] used for the other affine chart, which we did prove is a domain.

Now, let’s compute div(y). On A2, y is regular so for every P ∈ A2, ordP (y) ⩾ 0. If ordP (y) > 0,
i.e. y(P ) = 0, then P = (p1, 0). But since P ∈ C, we have 0 =

∏
j(p1 − ej) so p1 = ei for some

i, and thus P = Pi. Let’s now compute ordPi
(y). From the computation for div(x − ei), we know

that y is a uniformizer at each Pi. Thus ordPi
(y) = 1, so again using the fact that deg div(y) = 0,

div(y) = (P1) + (P2) + (P3) − 3(P∞). But this is no fun, so we’re going to explicitly verify that
ordP∞(y) = −3. We observe

ordP∞(y) = ordP∞(
Y

Z
) = ordO(

1

z
) = − ordO(z) = −3

by our previous computations.
Since we’re already going above and beyond and since the computation for div(y) was so short,

we will compute div(x) for fun. Let λ ∈ K̄ be such that λ2 = −
∏
j ej . Since x is regular on

A2, for any P = (p1, p2) ∈ C, ordP (x) ⩾ 0. Moreover, if ordP (x) > 0, then p1 = 0, and from
p22 =

∏
j(p1 − ej) = −

∏
j ej , it follows that either P = P+ := (0, λ) or P = P− := (0,−λ). Then

div(x) = c+(P+) + c−(P−) + n(P∞). Let P = P+. Then MP = (x, y − λ) because indeed these two
generators are inMP , and K̄[C]/(x, y−λ) = K̄[x, y]/(y2−

∏
j(x−ej), x, y−λ) ∼= K̄. First, let’s consider

the case where ei = 0 for some i, or equivalently λ = 0. Then div(x) = div(x − ei) = 2(Pi) − 2(P∞)
as was already proven. Now we assume λ ̸= 0. First, we compute

(y − λ)2 = y2 − 2yλ+ λ2 =
∏
j

(x− ej)− 2yλ+ λ2 = x3 − (
∑
j

ej)x
2 + (

∑
j

∏
i ̸=j

ei)x− 2λ(y − λ).

As an immediate application,

(y − λ)2 ≡ (
∑
j

∏
i ̸=j

ei)x− 2λ(y − λ) mod x2

Letting α =
∑
j

∏
i̸=j ei,

MP /M
2
P = (x, y − λ)/(x2, x(y − λ), αx− 2λ(y − λ)).

If α = 0 then we obtain that y − λ = 0 in MP /M
2
P , and if α ̸= 0, we have y − λ = α

2λx in MP /M
2
P ,

so regardless MP /M
2
P is spanned by x as a K̄ vector space. Thus x is a uniformizer at P. As an

alternative proof, we compute that

K̄[x, y]/(y2 −
∏

(x− ej), x) ∼= K̄[y]/(y2 − λ2) ∼= K̄

implies (x) is maximal in K[C]. Thus MP+
= (x) =MP− because x ∈MP+

∩MP− . Thus ordP+
(x) =

1 = ordP−(x), so we could deduce that div(x) = (P+) + (P−) − 2(P∞). However, let’s compute
ordP∞(x) explicitly. We have

ordP∞(x) = ordP∞(
X

Z
) = ordO(

x′

z
) = ordO(x

′)− ordO(z) = −2.

■

Example 3.5

Statement. Let C be a smooth curve, let f ∈ K̄(C) be a nonconstant function, and let f : C → P1

be the corresponding map (II.2.2). Then

div(f) = f∗((0)− (∞))
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Proof. By definition, we have

f∗((0)− (∞)) =
∑

P∈f−1(0)

ef (P )(P )−
∑

Q∈f−1(∞)

ef (Q)(Q)

=
∑

P∈f−1(0)

ordP (t0 ◦ f)(P )−
∑

Q∈f−1(∞)

ordQ(t∞ ◦ f)(Q)

=
∑

P∈f−1(0)

ordP (f)(P )−
∑

Q∈f−1(∞)

ordQ(
1

f
)(Q)

where

t0 ◦ f = x ◦ f =

{
f(P ), if ordP (f) ⩾ 0

∞, if ordP (f) < 0

corresponds to f , and where

t∞ ◦ f =
1

x
◦ f =


1

f(P ) , if ordP (f) = 0

∞, if ordP (f) > 0

0, if ordP (f) < 0

which corresponds to 1
f . But as ordQ(

1
f = − ordQ(f), we get∑

P∈f−1(0)

ordP (f)(P )−
∑

Q∈f−1(∞)

ordQ(
1

f
)(Q)

=
∑

P∈f−1(0)

ordP (f)(P ) +
∑

Q∈f−1(∞)

ordQ(f)(Q) = div(f)

where the last equality is because if P /∈ f−1(0) ∪ f−1(∞), then ordP (f) = 0. ■

Proposition 3.6

Statement. Let ϕ : C1 → C2 be a nonconstant map of smooth curves. Then

(a) deg(ϕ∗D) = (deg ϕ)(degD) for all D ∈ Div(C2).

(b) ϕ∗(div f) = div(ϕ∗f) for all f ∈ K̄(C2)
∗.

(c) deg(ϕ∗D) = degD for all D ∈ Div(C1).

(d) ϕ∗(div f) = div(ϕ∗f) for all f ∈ K̄(C1)
∗.

(e) ϕ∗ ◦ ϕ∗ acts as multiplication by deg ϕ on Div(C2).

(f) If ψ : C2 → C3 is another such map, then

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗ and (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

We will prove all of the above except (d), which was proven in another textbook. We’ll start with
(a).

Proof. We know that for any Q ∈ C2,
∑
P∈ϕ−1(Q) eϕ(P ) = deg ϕ by Proposition 2.6a. Let D =∑

Q∈C2
nQ(Q). We compute that

deg(ϕ∗D) = deg(
∑
Q∈C2

nQ
∑

P∈ϕ−1(Q)

eϕ(P )(P )) =
∑
Q∈C2

nQ
∑

P∈ϕ−1(Q)

eϕ(P )

=
∑
Q∈C2

nQ deg ϕ = deg ϕ degD.

■
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For (b), we will use Exercise 2.2.

Proof. We compute that

ϕ∗(div f) =
∑
Q∈C2

ordQ(f)
∑

P∈ϕ−1(Q)

eϕ(P )(P )

On the other hand, we have

div(ϕ∗f) =
∑
P∈C1

ordP (ϕ
∗f)(P ) =

∑
P∈C1

eϕ(P ) ordϕP (f)(P ) =
∑
Q∈C2

∑
P∈ϕ−1(Q)

ordQ(f)eϕ(P )(P )

where the second equality comes from Exercise 2.2, and clearly the two expressions are equal. ■

Now we move on to prove (c).

Proof. Let D =
∑
P∈C1

nP (P ). Then

deg(ϕ∗D) = deg(
∑
P∈C1

nP (ϕP )) = deg(
∑
Q∈C2

(
∑

P∈ϕ−1(Q)

nP )(Q)) =
∑
Q∈C2

(
∑

P∈ϕ−1(Q)

nP ) =
∑
P∈C1

nP

as claimed. ■

We do not prove (d), because the textbook references another textbook for the proof. Now for (e),

Proof. Let D =
∑
Q∈C2

nQ(Q). We compute that

ϕ∗ ◦ ϕ∗(
∑
Q∈C2

nQ(Q)) = ϕ∗(
∑
Q∈C2

nQ
∑

P∈ϕ−1(Q)

eϕ(P )(P )) =
∑
Q∈C2

nQ
∑

P∈ϕ−1(Q)

eϕ(P )(Q)

=
∑
Q∈C2

nQ deg ϕ(Q) = (deg ϕ)D,

again using the fact that
∑
P∈ϕ−1(Q) eϕ(P ) = deg ϕ. ■

Lastly, we prove (f):

Proof. We compute that

(ψ ◦ ϕ)∗(
∑
Q∈C3

nQ(Q)) =
∑
Q∈C3

nQ
∑

P∈(ψ◦ϕ)−1(Q)

eψ◦ϕ(P )(P ) =
∑
Q∈C3

nQ
∑

P∈ϕ−1(ψ−1(Q))

eϕ(P )eψ(ϕP )

with the last equality by Proposition 2.6c. On the other hand,

ϕ∗ ◦ ψ∗(
∑
Q∈C3

nQ(Q)) = ϕ∗(
∑
Q∈C3

nQ
∑

R∈ψ−1(Q)

eψ(R)(R)) =
∑
Q∈C3

nQ
∑

R∈ψ−1(Q)

∑
P∈ϕ−1(R)

eψ(R)eϕ(P )(P )

=
∑
Q∈C3

nQ
∑

P∈ϕ−1(ψ−1(Q))

eψ(ϕP )eϕ(P )(P )

and the two expressions are indeed equal. Now let’s show that the pushforwards distribute over
composition as well. This is pretty direct, as

(ψ ◦ ϕ)∗(
∑
P∈C1

nP (P )) =
∑
P∈C1

nP (ψ ◦ ϕ(P )) = ψ∗(
∑
P∈C1

nP (ϕP )) = ψ∗ ◦ ϕ∗(
∑
P∈C1

nP (P )).

■
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Section 4

Example 4.5

Statement. There are no holomorphic differentials on P1.

Since the full proof is given in the book, we will just expand a couple of claims made in the proof.
First, we will show that dt = −t2d( 1t ).

Proof.

0 = d1 = d(t · 1
t
) =

1

t
dt+ td(

1

t
)

so by simple algebra we get the claim. ■

Lastly, we will prove the claim that deg div(ω) = deg div(dt).

Proof. By Proposition 4.3a, write ω = fdt. Then

deg div(ω) = deg div(fdt) = deg(div(f) + div(dt)) = deg div(f) + deg div(dt)) = deg div(dt)

because deg div(f) = 0 by Proposition 3.1b. ■

Exercises

Exercise 1

Statement. Let (R,m, k) be a Noetherian local domain that is not a field. Then the following are
equivalent:

(i) R is a discrete valuation ring (DVR)

(ii) m is principal

(iii) dimk m/m
2 = 1

I take the definition of R being a DVR to mean that there exists a function ν : K ↠ Z ∪ {∞}
where K is the quotient field of R such that R = OK := {x ∈ K | ν(x) ⩾ 0}, and for all x, y ∈ K,
ν(xy) = ν(x) + ν(y), ν(x+ y) ⩾ min{ν(x), ν(y)}, and ν(x) = ∞ ⇐⇒ x = 0 where the ordering and
operations and addition with the symbol ∞ are as expected.

Proof. (i) ⇒ (ii): Let t ∈ R be such that ν(t) = 1. We claim that m = (t). To prove this, we will first
show that for x ∈ K, ν(x) = 0 ⇐⇒ x ∈ R∗. For one direction, suppose x ∈ R∗. First, we compute
that

1 = ν(t) = ν(t · 1) = ν(t) + ν(1) = 1 + ν(1)

so ν(1) = 0. Now we will quickly show that for any nonzero y ∈ K, ν(y−1) = −ν(y). To see this,

0 = ν(1) = ν(yy−1) = ν(y) + ν(y−1)

Then as ν(x), ν(x−1) ⩾ 0 and R = OK , it follows that ν(x) = 0. For the converse, suppose ν(x) = 0
(which implies x ∈ R \ 0 by OK = R and ν(0) = ∞). Then ν( 1x ) = −ν(x) = 0, and as R = OK , we
get that 1

x ∈ R, i.e. x ∈ R∗.
To show (t) ⊂ m, if this were false then necessarily t ∈ R∗ because R is local. But by our result

above, we would then get that ν(t) = 0, contradicting our assumptions on t. For the reverse inclusion,
fix x ∈ m. Then ν(x) ⩾ 1 otherwise x would be a unit again by our result. Then

ν(
x

t
) = ν(x) + ν(

1

t
) = ν(x)− ν(t) = ν(x)− 1 ⩾ 0.
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Then x
t ∈ OK = R, so x ∈ (t). This shows m = (t) as desired.

(ii) ⇒ (i): Let m = (t). Define for x ∈ R ν(x) = sup{n ∈ N | x ∈ mn}. First of all, notice
that if ν(x) = ∞ for some x ∈ R, then x ∈

⋂
n∈N mn = 0 by Krull’s intersection theorem. Thus

ν(x) = ∞ ⇐⇒ x = 0.
We verify that for any nonzero x, y ∈ R where ν(x) = a and ν(y) = b, clearly xy ∈ ma+b so

ν(xy) ⩾ a+ b. If xy ∈ mm for any m ⩾ a+ b+ 1, then also xy ∈ ma+b+1, so it suffices to show that
xy /∈ ma+b+1. We know that x = taα and y = tbβ for α, β /∈ m, i.e. α, β ∈ R∗ because R is local.
Combining, we get ta+bαβ = xy, hence ta+b+1 ∤ xy, otherwise we would get an inverse for t in R,
contradicting that t generates the maximal ideal m. This shows ν(xy) = ν(x) + ν(y). If either x or y
were 0, the result is immediate. We will now show ν(x+y) ⩾ min{ν(x), ν(y)}. The result is obvious if
x = 0 = y, so we may assume without loss of generality that x ̸= 0 and ν(x) ⩽ ν(y). Then x ≡ y ≡ 0
mod mn where n := ν(x), so x+ y ≡ 0 mod mn, showing x+ y ∈ mn as well, implying ν(x+ y) ⩾ n
as desired.

Now extend ν to K by setting ν(xy ) = ν(x) − ν(y). This is well defined because for any nonzero

z ∈ R, ν(xzyz ) = ν(xz)− ν(yz) = (ν(x) + ν(z))− (ν(y) + ν(z)) = ν(x)− ν(y) = ν(xy ). One also verifies

ν(
x1
x2

· y1
y2

) = ν(
x1y1
x2y2

) = ν(x1y1)− ν(x2y2) = (ν(x1) + ν(y1))− (ν(x2) + ν(y2))

= (ν(x1)− ν(x2)) + (ν(y1)− ν(y2)) = ν(
x1
x2

) + ν(
y1
y2

).

In addition, for any n ∈ Z, we have ν(tn) = n from the fact that ν(1) = 0 (t ̸= 0 because R is not a
field, so tn is well defined in K), so ν is surjective.

Now fix any nonzero x = x1

x2
, y = y1

y2
∈ K, where we may assume by possibly relabeling that

ν(x) ⩽ ν(y). Then

ν(x+ y) = ν(
x1y2 + y1x2

x2y2
) = ν(x1y2 + y1x2)− ν(x2y2) ⩾ min{ν(x1y2), ν(y1x2)} − ν(x2y2).

Since ν(x1y2) ⩽ ν(y1x2) is equivalent to ν(x) ⩽ ν(y) by additivity of ν,

ν(x+ y) ⩾ ν(x1y2)− ν(x2y2) = ν(
x1y2
x2y2

) = ν(x)

as desired. All that remains is to show that R = OK . For one inclusion, it’s clear that for any x ∈ R,
ν(x) ⩾ 0, so R ⊂ OK . For the reverse inclusion, fix x

y ∈ OK . Then ν(x) ⩾ ν(y). Letting n = ν(y), we

have y = tnu where u ∈ R∗, and write x = tnz for some z ∈ R. Now we see x
y = tnz

tnu = z
u ∈ R because

1
u ∈ R.

(ii) ⇒ (iii): Let m = (t). We claim that t̄ is a basis for m/m2 as a k-vector space. We may take an
arbitrary element of m to be of the form tx for some x ∈ R. Then by definition, x̄ · t̄ = x̄t in m/m2,
showing t̄ spans. All that remains is to show that t̄ ̸= 0. Suppose for a contradiction that t̄ = 0, i.e.
t ∈ m2 = (t2). Then there exists some x ∈ R such that t = xt2. Since R is a domain and t ̸= 0
(otherwise m = 0 implies R is a field), it follows that 1 = xt, so t ∈ R∗, contradicting that m is a
maximal ideal.

(iii) ⇒ (ii): Let m/m2 = kt̄. Since R is a local ring, J(R) = m. By assumption, for any x ∈ m,
there exists some y ∈ R such that x ≡ yt mod m2, i.e. m ⊂ tR+m2. As t ∈ m and m2 ⊂ m, it follows
that m = tR+m2 = tR+ J(R)m. Applying Nakayama’s Lemma, it follows that tR = m. ■

Exercise 2

Statement. Let ϕ : C1 → C2 be a nonconstant map of smooth curves, let f ∈ K̄(C2)
∗, and let

P ∈ C1. Then
ordP (ϕ

∗f) = eϕ(P ) ordϕP (f).
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This result was used in the proof of Proposition 3.6b.

Proof. Let tP be a uniformizer for K̄[C1]P , and define tϕP similarly. Let n = ordP (ϕ
∗f), so αtnP = f ◦ϕ

for some α ∈ K̄[C1]
∗
P . Also let m = ordϕP (f) and k = eϕ(P ) = ordP (ϕ

∗tϕP ). Then βt
k
P = tϕP ◦ϕ and

γtmϕP = f , with β, γ units in their respective local rings. Then we observe

αtnP = f ◦ ϕ = (γtmϕP ) ◦ ϕ = (ϕ∗γ) (tϕP ◦ ϕ)m = (ϕ∗γ)(βtkP )
m = (ϕ∗γ)βmtkmP .

This implies that n = km (the desired result) because ϕ∗γ must be a unit in K[C1]P as ϕ∗ is a
ring homomorphism and γ is a unit in the source of ϕ∗. ■

Exercise 4

Statement. Let C be a smooth curve and let D ∈ Div(C). Independent of the Riemann-Roch theo-
rem, the below results hold:

(a) L(D) is a K̄ vector space.

(b) If degD ⩾ 0, then
ℓ(D) ⩽ degD + 1.

This result is used as the proof of Proposition 5.2b. First we will prove (a), and we will write
D =

∑
P∈C nP (P ).

Proof. Fix f, g ∈ L(D) and λK̄. If we can show that λf ∈ L(D) and f + g ∈ L(D) we are done.
If any of f, g, λ are 0, the claims are obvious, so we may suppose they are all nonzero. We see
λf ∈ L(D) ⇐⇒ div(λf) ⩾ −D, which is true because div(λf) = div(f). To see, f + g ∈ L(D), we
observe

f + g ∈ L(D) ⇐⇒ div(f + g) ⩾ −D ⇐⇒
∑
P∈C

ordP (f + g)(P ) ⩾ −D ⇐⇒ ∀P, ordP (f + g) ⩾ −nP .

But we know that, for any P ∈ C, ordP (f + g) ⩾ min{ordP (f), ordP (g)} ⩾ −nP . ■

Now for the more difficult proof, that of (b). First, I will give the easy proof which has exactly the
same idea as the second, it’s just that the second proves many more facts about the rings we associate
to C, but is also significantly longer because it essentially proves a special case of the Cohen structure
theorem.

Proof. We prove the result by induction on degD, with the base case degD = 0 proven in the second
proof of the result.

Now for the inductive step, let Q ∈ C be such that nQ ⩾ 1.We define a map Φ : L(D) → K̄[C]/MQ

given by Φ(f) = tnQf mod t, where t is a uniformizer at Q. Again by the proof below, we have that
K̄[C]/MQ

∼= K̄. Also, since f ∈ L(D), we have ordQ(f) ⩾ −nQ, hence ordQ(t
nQf) ⩾ 0, so we can

evaluate tnQf mod t. We can easily observe that Φ(f) = 0 iff t | tnQf iff ordQ(f) ⩾ 1 − nQ. In
addition, for any f ∈ L(D), we have ordQ(f) ⩾ 1 − nQ iff f ∈ L(D − (Q)), thus proving kerΦ =
L(D − (Q)). Thus by the rank-nullity theorem,

ℓ(D) = ℓ(D − (Q)) + rankΦ ⩽ degD + 1

by the inductive hypothesis. ■
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Proof. We will prove the result by induction on degD with the base case being degD = 0. For the
base case, first suppose D = 0. In this case, for nonzero f ∈ K̄(C)∗,

f ∈ L(D) ⇐⇒ div(f) ⩾ 0 ⇐⇒ ∀P ∈ C, ordP (f) ⩾ 0.

But since deg div(f) = 0, if div(f) ̸= 0 then there exists some pole of f , implying that f /∈ L(D).
Thus ordP (f) ⩾ 0 for all P iff div f = 0, which is true iff f ∈ K̄∗ by Proposition 3.1a. Thus
L(0) = K̄, which has dimension 1 = degD + 1. Now assume that D ̸= 0, and let Q ∈ C be such that
nQ ⩾ 1. Also let div f =

∑
P mP (P ). Then f ∈ L(D)∗ means that for every P , mP ⩾ −nP . Therefore∑

P mP ⩾
∑
P −nP , with equality iff mP = −nP for every P. But we see that

0 =
∑
P

mP ⩾
∑
P

−nP = −
∑
P

nP = 0

which implies that equality holds throughout, hence mP = −nP for every P . Then for any g ∈ L(D)∗,
we observe that since div(f) = div(g),

0 = div(f)− div(g) = div(
f

g
)

so f
g ∈ K̄∗. This proves that ℓ(D) = dimL(D) ⩽ 1 = deg(D) + 1 as claimed.
Now for the inductive step, let Q ∈ C be such that nQ ⩾ 1. The inductive hypothesis tells us that

L(D− (Q)) is dimension at most degD. Thus it suffices to show that dimL(D)/L(D− (Q)) ⩽ 1. Let
t be a uniformizer for C at Q, which is transcendental over K̄ by the expanded proof of Proposition
I.1.4. First we claim that K̄[C]/(t) is isomorphic to K̄. For this claim, we will prove that if R is a
ring containing a subfield k, and where t ∈ R is transcendental over k and R is integral over k[t], then

(i) k is a subring of R/t.

(ii) R/t is integral over k.

We have a natural ring homomorphism K ↪→ R ↠ R/tR, so we will claim this map is injective, i.e.
k ∩ tR = 0. If this intersection were nonzero, t is a unit in R. Therefore k(t) ⊂ R, and as R is integral
over k[t], it follows that k(t) is integral over k[t]. Let

∑n
i=0 Pi(t)X

i be the minimal polynomial of 1
t

over k[t], so Pn(t) = 1. Then

0 =

n∑
i=0

Pi(t)t
n−i ≡ Pn(0) mod tk[t].

However, since Pn(0) = 1, we get that tk[t] = k[t] which is obviously false. This shows that k∩tR = 0,
so indeed k is a subfield of R/t. For the second claim, fix r̄ ∈ R/t, and let

∑n
i=0 Pi(t)X

i be the minimal
polynomial of r over k[t]. Then

0 =

n∑
i=0

Pi(t)r
i ≡

n∑
i=0

Pi(0)r̄
i mod t,

and Pn(0) = 1 since Pn = 1 means that we have found a monic polynomial over k that r̄ satisfies,
hence the result.

We apply this to our situation, with R = K̄[C] and k = K̄. Then K̄[C]/(t) is algebraic over K̄,
and since K̄ is algebraically closed, indeed K̄[C]/(t) ∼= K̄. Now we claim that the natural inclusion
K̄[t]/(tn) ↪→ R/(tn) is an isomorphism of K̄ vector spaces for every n ⩾ 1, where R satisfies the same
conditions as it did before, except that now we assume R/(t) = K̄ and R is a domain. We will prove
this by induction on n, with the base case n = 1 already proven above.

Now suppose n holds, and we aim to show that the same is true for n+1. By hypothesis then, the
below diagram commutes in the category of K̄ vector spaces:
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0 K̄ K̄[t]/(tn+1) K̄[t]/(tn) 0

0 (tn)/(tn+1) R/(tn+1) R/(tn) 0.

·t̄n

·t̄n ∼

Our goal will be to use the five lemma to conclude that the middle arrow is an isomorphism. Thus,
we claim that the rows are exact and that the first vertical arrow is an isomorphism. Exactness of
the top row is easy using the third isomorphism theorem, since t is transcendental over K̄, so we can
check

K̄[t]/(tn) ∼=
K̄[t]/(tn+1)

(tn)/(tn+1)
=
K̄[t]/(tn+1)

K̄tn
.

Exactness of the bottom row is exactly the third isomorphism theorem, so it remains to show that
K̄tn = (tn)/(tn+1). Define π : R ↠ K̄ as the composition R ↠ R/(t) → K̄ where R/(t) → K̄ is an
isomorphism of rings fixing K̄, given to us by our hypotheses on R. Notice now that π is K̄-linear
since both maps that make up π are K̄-linear. Now we define a map

ϕ : tnR→ K̄, x 7→ π(
x

tn
).

We notice that for x = tn+1r ∈ tn+1R,

ϕ(x) = π(
tn+1r

tn
) = π(tr) = 0.

Thus we get a map ϕ̄ : (tn)/(tn+1) → K̄. Now we will show ϕ̄ is an isomorphism. First suppose that
tnr ∈ ker ϕ̄. Then

0 = ϕ̄(tnr) = ϕ(tnr) = π(r).

Because kerπ = (t), it follows that r ∈ (t), so tnr = 0. Now let’s show that ϕ is surjective by fixing
λ ∈ K̄. Then

ϕ̄(tnλ) = ϕ(tnλ) = π(λ) = λ.

Moreover,
ϕ̄−1(λ) = tnλ = λt̄n

so ϕ̄−1 is first vertical map.
Now we can apply the five lemma to obtain that the middle map is an isomorphism as well, which

completes the proof of the inductive step.
Now that K̄[t]/(tn) ↪→ R/(tn) is an isomorphism of K̄ vector spaces and is a ring homomorphism,

it follows that this map is an isomorphism of rings.
Because t is transcendental over K̄, we have that the t-adic completion of K̄[t] is just K̄JtK, but

by our proof and the universal property of completions, we get that the t-adic completion of R is
canonically isomorphic to K̄JtK as well.

Thus by letting R = K̄[C], we get that ̂̄K[C] ∼= K̄JtK where the completion is the t-adic completion.

We now see that since K̄[C] ⊂ ̂̄K[C],

K̄(C) = Frac K̄[C] ⊂ Frac ̂̄K[C] ∼= Frac K̄JtK = K̄((t))

Moreover, for f ∈ K̄(C), if we write f =
∑
n∈Z ait

i, we define ordt(f) = min{n ∈ Z | an ̸= 0}, which is
guaranteed to exist since all but finitely many of the an for negative n are zero, and we set ord(0) = ∞.
One easily verifies that this is a valuation on K̄((t)), and makes K̄JtK a DVR. Now we claim that ordt
extends ordQ on K̄(C). Suppose f =

∑∞
i=n ait

i is in K̄(C), where ai ̸= 0, or equivalently ordt(f) = n.
Suppose that n = 0, which implies f ∈ K̄JtK and t ∤ f. Now we claim that K̄(C)∩ K̄JtK = K̄[C]Q. We

will show that for a Noetherian local domain R with field of fractions K, K ∩ R̂ = R. Suppose f = a
b

20



with a, b ∈ R, b ̸= 0, and f ∈ R̂. Then fb = a in R̂, so a ∈ bR̂∩R = bR, with the last equality holding
because we can show that for any local Noetherian ring R and any ideal I of R, IR̂ ∩R = I. Lemma
7.15 of [1] tells us that the completion functor is exact on finitely generated modules. We have the
exact sequence

0 → I → R→ R/I → 0

of finitely generated R-modules, hence the below sequence is also exact:

0 → Î → R̂→ R̂/I → 0.

Then
R ∩ Î = ker(R→ R̂→ R̂/I) = ker(R→ R̂/I) = ker(R→ R/I → R̂/I) = I

which follows from the fact we will prove below, that all of the completion maps above are injective.
To see this, let M be a finitely generated R-module. For any m ∈ M , the image of m under the
completion map were trivial iff m ∈

⋂
n⩾1 m

nM = 0 by Krull’s intersection theorem. where m is the
maximal ideal of R.

Continuing, we have a ∈ bR, so b | a in R, and thus a
b ∈ R as well. This shows that K ∩ R̂ ⊂ R,

and the reverse inclusion is obvious. This result gives that indeed K̄(C) ∩ K̄JtK = K̄[C]Q. By our
result, we have f ∈ K̄(C) ∩ K̄JtK = K̄[C]Q, so ordQ(f) ⩾ 0.

Since t ∤ f in K̄JtK, then t ∤ f in K[C]Q either, hence ordQ(f) = 0. Now we proceed to the general
case.

Notice that ordt(t
−nf) = ordt(

∑∞
i=0 ai+nt

i) = 0. By our previous work, we get ordQ(t
−nf) = 0

as well. However,
ordQ(t

−nf) = ordQ(f)− n ordQ(t) = ordQ(f)− n.

These two facts show that ordQ(f) = n = ordt(f) as desired.
Now we know that ordt extends ordQ to K̄((t)). With this, we define a map Φ : L(D) → K̄, given

by

Φ(
∑
n∈Z

ant
n) = a−nQ

.

One easily verifies that Φ is K̄-linear. We also observe that if f ∈ L(D− (Q)), then ordQ(f) > −nQ,
hence a−nQ

= 0, and thus Φ(f) = 0. This shows L(D − (Q)) ⊂ kerΦ. For the reverse inclusion,
suppose f =

∑
n∈Z ant

n and f ∈ kerΦ. We know for that all P ∈ C, ordP (f) ⩾ −nP by definition of
f ∈ L(D). By hypothesis that 0 = Φ(f) = a−nQ

and ordQ(f) ⩾ −nQ, it follows that ordQ(f) ⩾ 1−nQ.
Therefore f ∈ L(D − (Q)), completing the proof that kerΦ = L(D − (Q)). Therefore

dimL(D) = nullity Φ + rankΦ = ℓ(D − (Q)) + rankΦ ⩽ degD + 1.

■

Chapter III: The Geometry of Elliptic Curves

Section 1: Weierstrass Equations

Proposition 1.5

Statement. Let E be an elliptic curve. Then the invariant differential ω associated to a Weierstrass
equation for E is holomorphic and nonvanishing, i.e., divω = 0.

We use all of the same notation as in the book for the proof.

21



Proof. First, we will verify that d(x−x0)
Fy(x,y)

= −d(y−y0)
Fx(x,y)

. Notice that the equality holds iff

Fx(x, y)dx+ Fy(x, y)dy = Fx(x, y)d(x− x0) + Fy(x, y)d(y − y0) = 0.

We will now show that for any polynomial G(x, y), it’s true that Gx(x, y)dx+Gy(x, y)dy = d(G(x, y)).
We will prove this by induction on the number of terms in G, with the base case being 1, i.e., G is a
monomial. For this case, write G = cxiyj for i, j ⩾ 0 and c ∈ K̄. Then

dG = d(cxiyj) = cd(xiyj) = c
[
yjd(xi) + xid(yj)

]
= c

[
iyjxi−1dx+ jxiyj−1dy

]
= Gxdx+Gydy.

For the inductive step, write G(x, y) = H(x, y) +M(x, y) where M is a monomial in x, y. Then both
H,M satisfy the inductive hypothesis, so we see that

dG = d(H+M) = dH+dM = (Hxdx+Hydy)+(Mxdx+Mydy) = (Hx+Mx)dx+(Hy+My)dy = Gxdx+Gydy

as claimed. Now applying this result to F , we get that

0 = d(0) = d(F ) = Fx(x, y)dx+ Fy(x, y)dy.

Next, we will verify that the map

ϕ : E → P1, (x, y) 7→ x

is of degree 2. We must compute deg ϕ = [K̄(E) : ϕ∗K̄(P1)] = [K̄(E) : ϕ∗K̄(x)] = [K̄(E) : K̄(x)]
where x in the last expression is the x ∈ K̄(E) and the x in the expression before is the coordinate
function on P1. We see that y ∈ K̄(E) is a root of the quadratic polynomial F (x, T ) ∈ K̄(x)[T ]. We
must now show f(x, T ) is irreducible over K̄(x). Suppose not, so F (x, T ) splits into linear factors over

K̄(x), and let p(x)
q(x) ∈ K̄(x) be a root of F (x, T ) with gcd(p, q) = 1. Then

0 = F (x,
p

q
) =

p2

q2
+ (a1x+ a3)

p

q
− x3 − a2x

2 − a4x− a6.

Multiplying through by q2, we get the equation in K̄[x]:

0 = p2 + (a1x+ a3)pq − (x3 + a2x
2 + a4x+ a6)q

2.

Then
0 = p2 + (a1x+ a3)pq − (x3 + a2x

2 + a4x+ a6)q
2 ≡ p2 mod q

implies that q | p, contrary to assumption p and q share no common factors. Now that x, y generate
K̄(E) and y has degree 2 over ϕ∗K̄(P1), it follows that deg ϕ = 2.

From II.2.6a, we know that for any Q ∈ P1,∑
R∈ϕ−1(Q)

eϕ(R) = deg ϕ = 2.

In addition, ϕ−1(x0) is the zero set of the quadratic F (x0, y), hence has cardinality 1 or 2, and
cardinality 2 iff F (x0, y) has a double root at y0 (because F (x0, y0) = 0 by hypothesis) iff Fy(x0, y0) =
0. We also see that

ϕ∗tϕP = ϕ∗tx0
= ϕ∗(x− x0) = x− x0

so it follows that ordP (x− x0) = eϕ(P ) is at most 2, with equality iff Fy(x0, y0) = 0.
Next, we will show that ordP (ω) = 0. We can apply II.4.3d to get

ordP (
d(x− x0)

Fy(x, y)
) = ordP (

1

Fy(x, y)
) + ordP (x− x0)− 1 = ordP (x− x0)− ordP (Fy(x, y))− 1.
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if p = 0 or p ∤ ordP (x−x0), where p = charK here. Supposing this condition is met, if ordP (x−x0) = 1,
then Fy(x0, y0) ̸= 0 and is regular, hence ordP (Fy(x0, y0) = 0 and the result is 0. If instead ordP (x−
x0) = 2, then Fy(x0, y0) = 0, and as Fy(x, y) = 2y+a1x+a3 is linear, it cannot vanish at P with order
more than 1 (MP = (x − x0, y − y0) so M

2
P = ((x − x0)

2, (x − x0)(y − y0), (y − y0)
2) and we cannot

write a nonzero linear form in x and y as an element of this ideal). Therefore ordP (Fy(x, y)) = 1, so
again ordP (ω) = 0.

The last case to consider is ordP (x − x0) = 2 = charK. We also have Fy(x0, y0) = 0. As E is
smooth, it follows that Fx(x0, y0) ̸= 0. Therefore ordP (Fx(x, y)) = 0, so we just need to compute
ordP (y − y0) now. We have a map ψ : E → P1 (x, y) 7→ y where ψ∗tψ(P ) = y − y0. Now we will
compute

degψ = [K̄(E) : K̄(y)].

We see that x ∈ K̄(E) satisfies the cubic F (T, y) over K̄(y). We will now show F (T, y) is irreducible
over K̄(y). If it were reducible, then it would have a root in K̄(y) because degF (T, y) = 3, so let
a(y)
b(y) ∈ K̄(y) be a root with gcd(a, b) = 1. Then we have

0 = F (
a

b
, y) = −a

3

b3
− a2

a2

b2
+ (a1y − a4)

a

b
+ y2 + a3y − a6

so multiplying through by b3 gives

−a3 − a2a
2b+ (a1y − a4)ab

2 + (y2 + a3y − a6)b
3 = 0.

Therefore
0 = −a3 − a2a

2b+ (a1y − a4)ab
2 + (y2 + a3y − a6)b

3 ≡ −a3 mod b

so b | a, contrary to assumption. Therefore x has degree 3 over K̄(y) = ψ∗K̄(P1), and as x, y generate
K̄(E), it follows that degψ = [deg K̄(E) : ψ∗K̄(P1)] = 3. Now we have∑

R∈ψ−1(y0)

eψ(R) = degψ = 3.

This shows that ordP (y − y0) = ordP (ψ
∗tψP ) = eψ(P ) ⩾ 2 iff F (x, y0) has a multiple root at x0 iff

Fx(x0, y0) = 0. This is false by hypothesis, so we conclude that ordP (y − y0) = 1. Now that y − y0 is
a uniformizer at P ,

ordP (ω) = ordP (−
d(y − y0)

Fx(x, y)
) = ordP (

1

Fx(x, y)
) = 0.

Finally, we will show that ordO(ω) = 0 in characteristic 2, where the other characteristics are
taken care of in the book. Let t be a uniformizer at O, and continuing the notation, write x = t−2f
and y = t−3g where f(O), g(O) ̸= 0,∞. We compute

ω =
dy

Fx(x, y)
=

t−4g + t−3g′

t−4f2 + a4 + a1t−3g
dt =

g + tg′

f2 + a4t4 + a1tg
dt.

We see that g + tg′(O) ̸= 0,∞ since g′(O) ̸= 0,∞ by II.4.3b. Similarly, f2 + a4t
4 + a1tg ̸= 0,∞.

Therefore

ordO(ω) = ordO(
g + tg′

f2 + a4t4 + a1tg
) = 0

completing the case charK = 2. ■
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Proposition 1.6

Statement. If a curve E given by a Weierstrass equation is singular, then there exists a rational map
ϕ : E → P1 of degree one, i.e., the curve E is birational to to P1.

We will just justify that we can always make a linear change of variables to assume that the
singular point is (0, 0), because the rest of the proof in the book is straightforward.

Proof. If the singular point is (x0, y0), then we can apply the linear change of coordinates (x, y) 7→
(x− x0, y − y0) to get that the singular point is (0, 0). Now we claim that, letting O be the point at
infinity, E is never singular at P∞. In projective coordinates, E : Y 2Z + a1XY Z + a3Y Z

2 − X3 −
a2X

2Z − a4XZ
2 − a6Z

3. Then using the affine chart Y ̸= 1, our curve is

E : z + a1xz + a3z
2 − x3 − a2x

2z − a4xz
2 − a6z

3

and O = (0, 0). This is singular at O only if

0 = Fx(0, 0) = [1 + a1x+ 2a3z − a2x
2 − 2a4xz − 3a6z

2](0, 0) = 1

so indeed O is nonsingular. ■

Exercise 17

Statement. Let K be a definite quaternion algebra. Prove that K is ramified at ∞.

We let K = Q+Qα+Qβ +Qαβ where α2, β2 are negative rational numbers and αβ = −βα.

Proof. Clearly M2(R) has 0-divisors, so it suffices to show that R⊗K is a division algebra.

Lemma. Suppose L/K is a field extension, and V is a finite-dimensional K-vector space with basis
v1, . . . , vn. Then 1⊗ v1, . . . , 1⊗ vn is a basis for the L-vector space L⊗K V.

Proof. Suppose
∑n
i=1 ℓi ⊗ vi = 0 for some ℓ1, . . . , ℓn ∈ L. Let L∨ = HomK(L,K) be the dual of L as

a K-vector space. There is an injective map

L⊗ V ↪→ HomK(L∨, V ), ℓ⊗ v 7→ (f 7→ f(ℓ)v).

Using this injection, we get a K-linear map T : L∨ → V corresponding to
∑
i ℓi ⊗ vi. Because we

assume that this tensor is trivial, so too is T. Let 1 ⩽ j ⩽ n be arbitrary. Letting ℓ∨j ∈ L∨ be the dual
of ℓj (explicitly, if ℓj = 0 then ℓ∨j = 0, and otherwise we let B be a K-basis for L including ℓj , and let
ℓ∨j (
∑
ℓ∈B λlℓ) = λℓj ), we get that

0 = Tℓ∨j =
∑
i

ℓ∨j (ℓi)vi = ℓ∨j (ℓj)vj

so ℓ∨j (ℓj) = 0. This is only possible if ℓj = 0. Now because j was arbitrary, we conclude that each ℓj
is trivial, hence the 1⊗ vi are linearly independent. Every pure tensor ℓ⊗ v can be written as

ℓ⊗ v = ℓ⊗
∑
i

λivi =
∑
i

λiℓ(1⊗ vi)

for some λi ∈ K, so every pure tensor is a finite L-linear combination of the 1 ⊗ vi. Because every
tensor is a finite K-linear combination of pure tensors, it follows that the 1 ⊗ vi span L ⊗ V as a
L-vector space, giving the result. ■
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By the lemma, {1 ⊗ 1, 1 ⊗ α, 1 ⊗ β, 1 ⊗ αβ} is an R-basis for R ⊗ K . Thus we take an arbitrary
element of R⊗K to be

q = a⊗ 1 + b⊗ α+ c⊗ β + d⊗ αβ

for a, b, c, d ∈ R. Letting q̄ = a⊗ 1− b⊗ α− c⊗ β − d⊗ αβ, we compute

qq̄ = a2 − b2α2 − c2β2 + d2α2β2 ⊗ 1 = q̄q

using the relation (αβ)2 = −α2β2. We let |q| = qq̄ ∈ R. Since α2, β2 < 0, |q| = 0 iff a = b = c = d = 0
iff q = 0. Thus if q ̸= 0, we have q̄

|q|q = 1 = q q̄
|q| , so q is invertible. ■

Exercises

Exercise 19

Statement. Let K be a quaternion algebra.

(a) Prove that K⊗Q ∼=M2(Q).

(b) Prove that K⊗K ∼= M4(Q). This shows that K corresponds to an element of order 2 in the
Brauer group Br(Q).

We K = Q+Qα+Qβ +Qαβ subject to the usual relations. First we prove (a):

Proof. Let s, t ∈ Q̄ be such that s2 = α2 and t2 = β2. By the lemma in the proof of Exercise 17, we
have that {1 ⊗ 1, α ⊗ 1, β ⊗ 1, αβ ⊗ 1} is a Q̄-basis for K⊗ Q̄. We let Φ : K⊗ Q̄ → M2(Q̄) be a map
of Q̄ vector spaces defined by 1⊗ b 7→Mb for any element b of the above basis for K⊗ Q̄, where

Mb =



id, if b = 1

s

(
1 −2

0 −1

)
, if b = α

t

(
1 0

1 −1

)
, if b = β

st

(
−1 2

−1 1

)
, if b = αβ

.

We compute that

MαMβ = st

(
1 −2
0 −1

)(
1 0
1 −1

)
= st

(
−1 2
−1 1

)
=Mαβ .

In addition,

−MβMα = −st
(
1 0
1 −1

)(
1 −2
0 −1

)
= −st

(
1 −2
1 −1

)
=Mαβ .

We easily observe that M2
α = s2id = α2id and M2

β = t2id = β2id. Because these are the only

relations imposed on α and β, it follows that Φ is actually a homomorphism of Q̄-algebras. Because
dimQ̄M2(Q̄) = 4 = dimQ̄ K⊗ Q̄, to show Φ is an isomorphism of Q̄-algebras, it suffices to show the
Mb are Q̄-linearly independent. Suppose that

0 = aid + bMα + cMβ + dMαβ =

(
a+ bs+ ct− dst −2bs+ 2dst

ct− dst a− bs− ct+ dst

)
.

The entries not along the diagonal give that c = ds and b = dt. The first entry on the diagonal gives

0 = a+ bs+ ct− dst = a+ dst+ dst− dst = a+ dst
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so a = −dst. Thus the second entry on the diagonal gives

0 = a− bs− ct+ dst = −dst− dst− dst+ dst = −2dst

which implies that d = 0. This gives that a = b = c = 0 as well then, so the matrices are linearly
independent. ■

For (b), we will follow the hint given in the book:

Proof. First we notice that K is obviously simple because it’s a division algebra (if q = a+bα+cβ+dαβ,
letting q̄ = a− bα− cβ − dαβ and |q| = a2 − b2α2 − c2β2 + d2α2β2 one verifies q̄

|q| = q−1). Next, we

will show that K is central, i.e., its center Z(K) is just Q. Suppose q = a + bα + cβ + dαβ ∈ Z(K).
Then

(bα2) + (a)α+ (dα2)β + (c)αβ = αq = qα = (bα2) + (a)α+ (−dα2)β + (−c)αβ
so c = d = 0. Therefore

aβ + (−b)αβ = βq = qβ = aβ + bαβ

so b = 0 as well, showing q ∈ Q as desired.

Lemma. Suppose A is a simple central K-algebra and B is a simple K-algebra. Then A ⊗K B is
simple.

Proof. Suppose I is a nonzero ideal (in this proof, ideal means two-sided) of A ⊗ B. Let S be the
set of all nonzero elements in I of the form

∑n
i=1 ai ⊗ bi such that the set {b1, . . . , bn} is K-linearly

independent. Then S is the set of all nonzero elements of I, since if bj =
∑
i ̸=j λibi,∑

i

ai ⊗ bi = (aj ⊗ bj) +
∑
i ̸=j

ai ⊗ bi = (aj ⊗
∑
i ̸=j

λibi) +
∑
i̸=j

ai ⊗ bi =
∑
i ̸=j

(λiaj + ai)⊗ bi

Let u =
∑n
i=1 ai ⊗ bi ∈ S be an element minimal in n. There must exist some 1 ⩽ j ⩽ n where

aj ̸= 0. Since ai ̸= 0 and A is simple, we have AajA = A, so there exist some a, a′ ∈ A with aaja
′ = 1.

Thus we may replace u by (a ⊗ 1)u(a′ ⊗ 1) to assume that aj = 1. Now let a ∈ A be arbitrary. We
compute

(a⊗ 1)u− u(a⊗ 1) =
∑
i̸=j

[a, ai]⊗ bi

where [a, ai] = aai − aia is the commutator. Because n was minimal, it must be the case that∑
i̸=j

[a, ai]⊗ bi = 0.

Lemma. Suppose V,W are K-vector spaces where {w1, . . . , wn} ⊂W \{0} and {v1, . . . , vn} ⊂ V are
linearly independent. Then {v1 ⊗ w1, . . . , vn ⊗ wn} ⊂ V ⊗K W is linearly independent.

Proof. Suppose that ∑
i

λi(vi ⊗ wi) = 0.

Letting V ∨ be the dual vector space of V , there exists a K-linear map

V ⊗W → HomK(V ∨,W ), v ⊗ w 7→ (f 7→ f(v)w).

Let T : V ∨ → W be the map corresponding to
∑
i λi(ai ⊗ bi). Since we assume this sum is trivial,

so too is T. For v ∈ V , let v∨ ∈ V ∨ be defined as in the lemma in the proof of Exercise 17. For any
1 ⩽ j ⩽ n, we then have

0 = T (v∨j ) =
∑
i

λiv
∨
j (vi)wi = λjwj

because v∨j (vi) = δij by definition of v∨j and that the vi are linearly independent. But because wj ̸= 0,
it follows that λj = 0, and since j was arbitrary, the claim follows. ■
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Because the bi are linearly independent, we can apply to the lemma to see that [a, ai] = 0 for each
i. Since a was arbitrary, it follows that each ai ∈ Z(A) = K. Thus∑

i

ai ⊗ bi =
∑
i

1⊗ aibi = 1⊗
∑
i

aibi.

Letting b =
∑
i aibi ∈ B, we see b ̸= 0 and 1⊗ b ∈ I. By simplicity of B, we have BbB = B, so there

exist some a, c ∈ B where abc = 1. Since 1⊗ b ∈ I, we have

I ∋ (1⊗ a)(1⊗ b)(1⊗ c) = 1⊗ abc = 1

so indeed I = A⊗B. ■

We apply the above lemma to see that K⊗Kop is simple (since K is central simple clearly implies
Kop is too). Now we define the map

Φ : K⊗Kop → End(K), a⊗ bop 7→ (x 7→ axb).

One verifies that this is a homomorphism of Q-algebras, hence its kernel is an ideal of K⊗Kop .
Since kerΦ is an ideal of K⊗Kop, either kerΦ = 0 or kerΦ = K⊗Kop . However, we see that

Φ(1⊗ 1) = idK

so kerΦ is a proper ideal, hence trivial by simplicity. Thus Φ is injective. Because dimQ K⊗Kop =
16 = dimQ End(K), it follows that Φ is surjective as well, hence an isomorphism of Q-algebras, so.

K⊗Kop ∼= End(K).

Because K is a 4-dimensional Q-vector space, we get

End(K) ∼=M4(Q)

as well. Thus all that remains is to show that Kop ∼= K as Q-algebras, i.e., there exists an anti-
automorphism of K. Let ψ(a+ bα+ cβ + dαβ) = a− bα− cβ − dαβ. We know that

ψ(q)q ∈ Q

and ψ(q)q = 0 iff q = 0. One also verifies that

ψ(q1q2) = ψ(q2)ψ(q1)

and ψ2 = id. Thus ψ is an anti-automorphism, so finally

K⊗K ∼= K⊗Kop ∼= End(K) ∼=M4(Q).

■

Exercise 20

Statement. Let K be an imaginary quadratic field with ring of integers O. Prove that the orders of
K are precisely the rings Z+fO for integers f > 0. The integer f is called the conductor of the order.

We let K = Q(
√
D) where D is a squarefree negative integer. We recall that O is the maximal

finitely generated Z-submodule of K, so any order of K is automatically a subring of O. It’s also a
general fact from algebraic number theory that O = Z[ω] where

ω =

{
1+

√
D

2 , if D ≡ 1 mod 4√
D, otherwise

but we only need that O = Z+ Zω and {1, ω} is Z-linearly independent.

27



Proof. Let R be an order of K . We know that 1 ∈ R, so Z ⊂ R. Also, Z ̸= R otherwise K = Q⊗R =
Q⊗ Z = Q which is absurd. Thus rankR ⩾ 2. Also, rankO = 2 and R ⊂ O implies that rankR ⩽ 2,
so rankR = 2. Now let {1, x} be a Z-basis for R. Because rankO = rankR, e := [O : R] <∞. Then

ex = a+ fω

for some a, f ∈ Z. Therefore fω ∈ R, so

Z+ fO = Z+ Zfω ⊂ R.

Since f = [O : Z+ fO], if we define d = [R : Z+ fO], we have

e = fd.

Note: we know d < ∞ because Z + fO is a submodule of the free module O (and Z is a PID), or
alternatively

rankZ+ fO = dimQ Q⊗ (Z+ fO) = dimQ K = 2 = rankR.

Thus
fdx = a+ fω ⇒ f(dx− ω) = a

so dx− ω ∈ Z and α := a
f ∈ Z. Therefore

dx = α+ ω

which shows
O ⊃ R = Z+ Zx ⊃ Z+ Zdx = Z+ Zω = O

so equality holds throughout. Therefore x = b + cdx for some b, c ∈ Z. But this implies that b = 0
and cd = 1, hence d = 1, i.e., R = Z+ fO as desired. ■

Exercise 30

Statement. Let A be a finite abelian group of order Nr. Suppose that for every D | N we have
#A[D] = Dr, where A[D] denotes the subgroup consisting of all elements annihilated by D. Prove
that

A ∼= (Z/NZ)r.

Proof. By the structure theorem for finitely generated abelian groups,

A ∼=
n⊕
i=1

Z/peii Z

with each pi a rational prime. We also let N =
∏
j q

fj
j with each qj distinct rational primes. Because∏

i

peii = #A = Nr =
∏
qj

q
rfj
j

it follows that each pi is some qj , and for each j,∑
pi=qj

ei = rfj .

We rewrite
A ∼=

⊕
qj

⊕
pi=qj

Z/qeij Z
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Now we will show that for any prime q and positive integers e, f , Z/qeZ[qf ] = qmin{e,f}. Indeed, if
f ⩾ e, then every element of Z/qeZ is annihilated by qf , so Z/qeZ[qf ] = #Z/qeZ = qe. Now suppose
f < e and we consider the multiplication by qf map on Z/qeZ. Its kernel is qe−fZ/qeZ, which is
isomorphic to Z/qfZ, hence has qf elements. For each qj , we let Aj =

⊕
pi=qj

Z/qejj Z. We notice

that for any m ⩾ 1 and any abelian groups B,C, we have (B ⊕ C)[m] = B[m]⊕ C[m] because b⊕ c
is annihilated by m iff b and c both are. In addition, if q is a prime prime not dividing a m ⩾ 1 and
e ⩾ 1, we have

Z/qeZ[m] = 0

since every element of Z/qeZ has order dividing qe, hence cannot also divide m unless it’s trivial since
gcd(m, qe) = 1. Thus for any e, j,

A[qej ]
∼= (
⊕
j

Aj)[q
e
j ]

∼= Aj [q
e
j ] =

⊕
pi=qj

(Z/qeij Z[qej ])

hence
#A[qej ] =

∏
pi=qj

q
min{e,ei}
j = q

∑
min{e,ei}

j .

On the other hand, for e ⩽ fj , we have by hypothesis

#A[qej ] = qerj

Putting these two together, we get that for any e ⩽ fj ,∑
pi=qj

min{e, ei} = er.

Letting e = 1, we see that
#{pi = qj} = r.

Now let e(j) = minpi=qj{ei} and suppose for a contradiction that e(j) + 1 ⩽ fj . Then

re(j) +#{ei > e(j)} = #{pi = qj}e(j) +#{ei > e(j)} =
∑

ei=e(j)

e(j) +
∑

ei>e(j)

(e(j) + 1) = (e(j) + 1)r.

This shows
r = #{ei > e(j)} < #{pi = qj} = r

which is clearly impossible, so we get that e(j) ⩾ fj . On the other hand, e(j) ⩽ fj since

rfj = νqj (#A) =
∑
pi=qj

ei ⩾
∑
pi=qj

e(j) = re(j)

with equality iff each ei = e(j). This shows e(j) = fj , and moreover that each ei = e(j) = fj . Therefore

Aj =
⊕
pi=qj

Z/qeij Z =
(
Z/qfjj Z

)r
.

Now

A ∼=
⊕
j

Aj ∼=
⊕
j

(
Z/qfjj Z

)r ∼=
⊕

j

Z/qfjj Z

r

∼= (Z/NZ)r

■
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Chapter IV: The Formal Group of an Elliptic Curve

Exercises

Exercise 1

Statement. Let F (X,Y ) ∈ RJX,Y K be a power series satisfying

F (X,Y ) = X + Y + . . . and F (X,F (Y, Z)) = F (F (X,Y ), Z).

(a) Show that there is a unique power series i(T ) ∈ RJT K satisfying F (T, i(T )) = 0. Prove that i(T )
also satisfies F (i(T ), T ) = 0.

(b) Prove that F (X, 0) = X and F (0, Y ) = Y.

Our approach will be to reduce the proof of (a) to that of (b), and then independently prove (b).

Proof. (a) We will assume (b) holds, so we let

F (X,Y ) = X + Y +
∑
m,n⩾1

amnX
mY n.

We then compute

F (T, i(T )) = T + i(T ) +
∑
m,n⩾1

amnT
mi(T )n.

Therefore, if we want 0 = F (T, i(T )), we get

i(T ) ≡ 0 mod T

so we may write

i(T ) =
∑
k⩾1

bkT
k.

Continuing the assertion F (T, i(T )) = 0, we have

0 ≡ T + i(T ) ≡ T + b1T mod T 2

since for any m,n ⩾ 1, since i(T ) ≡ 0 mod T , it follows that Tmi(T ) ≡ 0 mod T 2. Therefore
b1 = −1 is uniquely determined. Now assume for induction that each of b1, . . . , bℓ−1 are all uniquely
determined. We have

0 ≡
ℓ∑

k=2

bkT
k +

∑
m,n⩾1
m+n⩽ℓ

amnT
m

⌊(ℓ−m)/n⌋∑
k=1

bkT
k

n

mod T ℓ+1.

We notice that the only possible term of the polynomial

∑
m,n⩾1
m+n⩽ℓ

amnT
m

⌊(ℓ−m)/n⌋∑
k=1

bkT
k

n

involving bℓ is when k = ℓ, but this is never achieved since m ⩾ 1. Therefore

0 ≡
ℓ∑

k=2

bkT
k +

∑
m,n⩾1
m+n⩽ℓ

amnT
m

⌊(ℓ−m)/n⌋∑
k=1

bkT
k

n

≡ bℓT
ℓ + P (b1, . . . , bℓ−1)T

ℓ mod T ℓ+1
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for some polynomial P (b1, . . . , bℓ−1) because by induction we may assume that F (T, i(T )) ≡ 0
mod T ℓ. More explicitly,

P (b1, . . . , bℓ−1) =
∑
m,n⩾1
m+n⩽ℓ

amn
∑

k1+···+kn=ℓ−m
1⩽ki⩽⌊(ℓ−m)/n⌋

n∏
i=1

bki .

Therefore bℓ = −P (b1, . . . , bℓ−1), so bℓ is uniquely determined as well. This proves uniqueness of i(T ),
and also shows that we may select the bi (and must by uniqueness) to be such that for each n ⩾ 1,

F (T, i(T )) ≡ 0 mod Tn.

Therefore, it must be that actually F (T, i(T )) ∈ RJT K must actually equal 0 (for any f, g ∈ RJT K, if
for all n ⩾ 1, f ≡ g mod Tn, then f = g).

Now we must show that F (i(T ), T ) = 0 as well. We have

T = F (0, T ) = F (F (T, i(T )), T ) = F (T, F (i(T ), T )).

For ease of notation, we let g(T ) = F (i(T ), T ), so we must show g(T ) = 0. We know that

T = T + g(T ) +
∑
m,n⩾1

amnT
mg(T )n

so
0 = g(T ) +

∑
m,n⩾1

amnT
mg(T )n.

Because for any f, g ∈ RJT K, if f ≡ g mod T ℓ for every ℓ ⩾ 1, then f = g, it suffices for our claim to
show that for each ℓ ⩾ 1, g(T ) ≡ 0 mod T ℓ. Since each term in the sum is divisible by T , it follows
immediately that g(T ) ≡ 0 mod T. Now by induction, we assume g(T ) ≡ 0 mod T ℓ−1. Thus for any
m,n ⩾ 1, we get that Tmg(T )n ≡ 0 mod T ℓ, hence

0 ≡ g(T ) mod T ℓ

as claimed.
For (b), we write F (X,Y ) =

∑
m,n⩾0 amnX

mY n where a00 = 0 and a10 = a01 = 1. We have

F (X, 0) = F (X,F (0, 0)) = F (F (X, 0), 0).

Let G(X) = F (X, 0) =
∑
n⩾1 αnX

n where αn = an0, so

G(X) = G(G(X)) =
∑
m⩾1

αm

∑
n⩾1

αnX
n

m

.

This implies

0 =
∑
m⩾2

am0G(X)m.

We will show by induction that αn = 0 for n ⩾ 2. To show α2 = 0, we have

X + α2X
2 ≡ G(X) ≡ X + α2X

2 + α2X
2 mod X3

which shows that
α2 = 0.
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Now suppose that α2 = · · · = αℓ−1 = 0, i.e., G(X) = X +
∑
n⩾ℓ αnX

n. Then

G(X) = G(X) +
∑
m⩾ℓ

αm

X +
∑
n⩾ℓ

αnX
n

m

hence

0 =
∑
m⩾ℓ

αm

X +
∑
n⩾ℓ

αnX
n

m

.

Considering the equation modulo Xℓ+1, we get

0 ≡ αℓX
ℓ mod Xℓ+1

since X
∑
n⩾ℓ αnX

n ≡ 0 mod Xℓ+1 and for any m ⩾ ℓ,∑
n⩾ℓ

αnX
n

m

≡ 0 mod Xℓ2

which implies that this same expression is congruent to 0 modulo Xℓ+1 since ℓ2 ⩾ ℓ+1 because ℓ ⩾ 2.
This shows every term in the binomial expansion ofX +

∑
n⩾ℓ

αnX
n

m

is congruent to 0 modulo Xℓ+1, except for the term Xℓ if m = ℓ. This shows αℓ = 0 as well as claimed.
An identical proof, replacing G(X) by F (0, Y ) = F (F (0, 0), Y ) = F (0, F (0, Y )) and αn by a0n,

shows also that F (0, Y ) = Y . ■

Chapter V: Elliptic Curves over Finite Fields

Exercises

Exercise 1

Statement. Verify the Weil conjectures for V = PN .

Proof. Rationality: we must compute #PN (Fqn) for each n ⩾ 1. First of all, there are qn − 1 distinct
N + 1-tuples of elements in Fqn that all represent the same point in Pn(Fqn), one for each nonzero
element of Fqn . Thus

#Pn(Fqn) =
#(FN+1

qn \ 0)
qn − 1

=
qn(N+1) − 1

qn − 1
=

N∑
i=0

qni.

Thus

Z(V/Fq;T ) = exp(
∑
n⩾1

(

N∑
i=0

qni)
Tn

n
).

Therefore

logZ(V/Fq;T ) =
∑
n⩾1

(

N∑
i=0

qni)
Tn

n
=

N∑
i=0

∑
n⩾1

(qiT )n

n
=

N∑
i=0

− log(1− qiT ) = log(

N∏
i=0

1

1− qiT
)

32



which gives

Z(V/Fq;T ) =
N∏
i=0

1

1− qiT
∈ Q(T ).

Functional Equation: We compute

Z(V/Fq;
1

qNT
) =

N∏
i=0

1

1− qi−NT−1
=

N∏
i=0

qNT

qNT − qi
=

N∏
i=0

qNT

−qi
1

1− qN−iT

= (−1)N+1qN(N+1)/2TN+1Z(V/Fq;T ).

Thus the Euler characteristic ε is N + 1.
Riemann Hypothesis: We have that for each i, P2i = 1 − qiT ∈ Z[T ] and P2i+1 = 1 ∈ Z[T ].

Then for the odd indices, the polynomial has degree 0, hence the claim about the αij is vacuous. For
P2i = 1− qiT , we see it has degree 1 and the only αij is q

i, so clearly |αij | = qi/2.
■

Exercise 12

Statement. Prove that for every prime p ⩾ 3, the elliptic curve

E : y2 = x3 + x

satisfies
#E(Fp) ≡ 0 mod 4.

Proof. First we consider the case where p ≡ 3 mod 4. By Example 4.5, we know the primes congruent
to 3 modulo 4 are exactly the primes where E(Fp) is supersingular. We know from Theorem 4.1 (a) that
E(Fp) is supersingular iff Ap = 0, where Ap is the coefficient of xp−1 in the expansion of (x3+x)(p−1)/2

in Fp. For p ⩾ 5, we have by Hasse’s inequality that

|a| ⩽ 2
√
p < p.

Since a ≡ Ap = 0 mod p by the proof of Theorem 4.1 (a) and |a| < p, it follows that a = 0 so
#E(Fp) = p+ 1− a = p+ 1 ≡ 0 mod 4.

We explicitly verify that for p = 3, E(Fp) = {O, (0, 0), (2, 0), (−2, 0)} so also #E(Fp) = p+ 1.
Now we may assume that p ≡ 1 mod 4. Clearly it suffices to show #E(Fp)[2] = 4 since the order

of a subgroup divides the order of the group containing it. Let i ∈ Fp be such that i2 = −1. We
claim E(Fp)[2] = {O, (0, 0), (±i, 0)}. For this claim, it suffices to show that if P = (x, y) is such that
2P = O, then y = 0 since x3 + x = x(x+ i)(x− i). We explicitly compute the duplication formula for
E as follows using the formulas from Chapter III:

2(x, y) =

(
(x2 − 1)2

4x(x2 + 1)
,
(x2 − 1)x4 + 6x2 + 1)

9xy(x2 + 1)

)
.

Thus 2(x, y) = O iff x = 0, x = ±i, or y = 0. But notice that y = 0 iff x ∈ {±i, 0} since y2 = x3 + x =
x(x+ i)(x− i). Then indeed the only 2-torsion points are {O, (±i, 0), (0, 0)}.

We write p = m2 + n2 where we take m to be odd and n even, and let ϕ ∈ End(E) be the
Frobenius morphism,. By Theorem 2.3.1, we know that ϕ satisfies ϕ2 − aϕ+ p = 0 in End(E). Since
E(Fp) is ordinary, i.e., End(E(Fp)) is an order in a quadratic imaginary field, and End(E) ⊃ Z[i]
where [i] = (x, y) 7→ (−x, iy) where here i2 = −1 in Fp, it follows that actually End(E) = Z[i]. Now
ϕϕ̄ = p = m2 + n2 gives that ϕ = a + bi up to associates, since Z[i] is a UFD. This shows that
a ∈ {±2m,±2n}. But if a = ±2n, then a ≡ 0 mod 4, which yields

#E(Fp) = p+ 1− a ≡ p+ 1 ≡ 2 mod 4

which contradicts our previous assertion, so a = ±2m and #E(Fp) = p+ 1± 2m. ■
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