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Preface

This document contains worked examples, detailed solutions to selected exercises, and justifications
of omitted claims from Joseph Silverman’s The Arithmetic of Elliptic Curves (2nd ed.). The goal is
both to deepen my own understanding and to provide a useful reference for others studying the text.

Chapter I: Algebraic Varieties

Exercises

Exercise 4
Statement. Let V/Q be the variety

Vi5X?+6XY 42V =2YZ + 27,
Prove that V(Q) = @.

Proof. First, we do a linear change of variables, X — X — gY, which takes 5X2 + 6XY + 2Y? to
5X?% 4 Y2, so in this new coordinate system

1
V:5X2+5Y272YZfZ2:0.
Now we apply the change of variables Y +— 5Y, giving
V5X%4+5Y2 - 10YZ - Z? =0.

Lastly, we do the change of variables Z — Z — 5Y, which takes 5Y2 — 10Y Z — Z?2 to 30Y?2 — Z2, so
in this coordinate system
V:5X?%430Y° = Z°.

Let H : Z = 0 be a hyperplane in P2. Notice that HNV (Q) = & because if Z = 0, as 5X?+30Y2 = Z2,
it would follow that X =Y = 0. Thus it suffices to show that V(Q) C H. By taking any solution
to have integral coordinates, our claim will follow if we can show that if a, b, c are integers such that
5a% + 30b% = 2, then a = b = ¢ = 0. Now suppose we had such a triple (a, b, ¢), not all zero. We may
assume that ged(a, b, c) = 1, else we could obtain a contradiction by infinite descent. Considering the
equation modulo 5, we get that 5 | ¢, so relabeling ¢ — £ and dividing by 5, we have

a® + 6b% = 5%
Taking this equation modulo 3, we get
a?=2¢> mod 3

which implies that @ = ¢ = 0 mod 3. With this, we take the equation a? + 6b%> = 5¢2 modulo 9 and
get

6b°=0 mod 9
which implies that b = 0 mod 3 as well. This contradicts the assumption that ged(a,b,¢) # 1,
showing V(Q) C H, hence V(Q) = V(Q) N H = &. as claimed. [ ]



Exercise 10

Statement. For each prime p > 3, let V}, be the variety given by the equation
V,: X?2+Y?=pZ2
(a) Prove that V,, is isomorphic over Q to P! iff p=1 mod 4.

(b) Prove that for p =3 mod 4, no two V,’s are isomorphic over Q.

First we will prove (a). We will also write ¢ for [t,1] € P! and oo for [1,0]. Most of the proof of
(a) is devoted to the derivation of isomorphism and its inverse when p = 1 mod 4. Thus the length
of the proof can be significantly reduced by simply defining two morphisms and verifying that they
are inverses.

Proof. Let A? : Z = 0. We observe that V, \ A% = {[i,1,0],[—i,1,0]} because Z = 0 implies that
X2 +Y%2=0,s0 X = +iY. We will call the first point P, and the second P_, and let P, = [a,b, 1].
Thus we can use affine notation, keeping in mind that we have the two extra points at infinity. We
will also take for granted the classical results in number theory that an odd prime can be written as
the sum of two squares iff it is congruent to 1 mod 4 and also that the Legendre symbol (_Tl) =1iff
p=1 mod 4.

For one direction, suppose p = 1 mod 4 Then we may write p = a? + b for some integers a, b,
where clearly ab # 0. For p =1 mod 4, we define a map

ly—b,x—al, if P=]lx,y,1]and P+# P,
ViV, =P P a,-b], if P=P,
[Fi, 1], if P=Py.

This map takes a point P and associates it with the slope of the line passing through P, and P, but
where we define the line to be the tangent line if P = P, and make our own definition for the slope of
the line to the points at infinity to make it an inverse to the function ¢ defined later. We let u =z —a
and v = y — b, so under these new coordinates, V, : u? + v* + 2au + 2bv = 0 and P, = (0,0). We
notice that v(v + 2b) + u(u + 2a) = 0, and as v + 2b and u + 2a do not vanish at P; and are regular,
both v and v are uniformizers for Mp, (clearly (u,v) = Mp, ). Also, we have

a

__a a5 2 2
v=—pu 2b(u +v7).

_a

In particular, 2(0,0) = —%. Now we consider the points at infinity, so we have uZ = U and vZ = V.
Then our candidate rational function is [V, U] since this rational function agrees with 1 except possibly
at the points at infinity. However, we also see that since U = X — aZ and Y — bZ, it follows that
[V,U](Py) =Y, X]|(Py) = [1, £i] = [F4, 1]. Therefore

Y(X,Y,Z]) =Y —bZ,X — aZ]

is a morphism.

Next, we need to define a map in the opposite direction. For ¢t = [u, v], we define L; : v(Y —bZ) =
w(X — aZ). Because L; and V), are clearly not contained in one another for any ¢ € P!, Bezout’s
theorem tells us that in P?, L; NV, contains two points (possibly non-distinct). We can now define
P, to be the point other than (a,b) in L, N'V,. We will now show that P, = (a,b) iff L, is tangent to
V, at (a,b), and P, = Py iff t = Fi.

First, let’s show that if L, is tangent to V, at (a,b), i.e., Ly : a(z —a) +b(y — b) = 0 or equivalently
L, :ax+by =p, then L;NV, = {(a,b)}. We check that [+, 1,0] is not in the line L; : aX +bY = pZ,
so we may now take the point of intersection to lie in AZ.



—ax

. . . . _ 2 2 _ _
Suppose (z,y) is in the intersection, so ax + by = p and also 2* + y* = p. Then y = 25 so

2 2,.2
p° — 2apx + a“x
p=a’+y’ =2+ -

Equivalently,
b’p = (a® + b*)2? — 2apx + p?

and since a? + b? = p, we divide through by p and get

22 —2ax+p—b>=0.

2 = 2% — 2ax + a® = 0, giving * = a. Then (a,y) € L; gives that

Since p — b? = a?, we have (x — a)
y = b as well.

For the reverse direction, suppose Ly N'V,, = {(a,b)}. If t = oo, then L; : = a. Notice that
(r,y) € Ly NV, then iff z = a and y*> = b2, i.e. y = +b. In particular, (a,—b) € L; NV, so
by assumption b = —b, i.e., b = 0, which is a contradiction. If ¢ = 44, we easily observe that
P, € LyNV,, so P, = Py. Thus we may take t # co £, 50 Ly : y —b=t(x — a).

We see that (z,y) € Ly NV, iff y = t(x — a) + b and 2 + y*> = p. The first equation substituted
into the second gives

a’ + b =2 +t*(x — a)® + 2bt(z — a) + b2

Expanding, we have the quadratic equation
(1 +tH)2? + 2t(b — at)x + a((t* — 1)a — 2bt) = 0.

Because (a,b) is the only point of intersection, it follows that a is the only solution in Q to the
above equation, since if a’ were a distinct equation, then we just set b’ = ¢(a’ —a) + b to get a distinct
point (a’,b") € Ly NV,

Since a is a double root, letting A(t) be equal to i the discriminant of the quadratic in z, it must
be the case that A(t) =0 i.e.

At) =t3(b —at)* — a(1 +£2)((t* — 1)a — 2bt) =0
By expanding A(¢) as a polynomial in ¢, we get that
At) = (a+bt)> =0

i.e., t = —%. Therefore

yfbft(:nfa):yber%(mfa),

so indeed L; : a(z — a) + b(y — b) = 0 as claimed.

Now we will show the second claim. We have already shown in the proof of the first claim that
Py; = P~. For the reverse direction, we will primarily use results in the proof of the first claim, namely
that if ¢ # —1, then there is a quadratic in x whose roots are a and some other number a’. Then
(a/,t(a’ — a) +b) lies in the intersection L; NV, N A% so this point is P;, and is in particular, not Py

Now we define ¢(t) = P;. More explicitly, we have from our work before and the quadratic formula

a 2_ — — bt — a 3 y
((tl_:t)Zth,b b2 t), it £ oo, i
o(t) = P, if t = +i

(a,=D), ift=o00

Then we guess that

O([U,V]) = [a(U? = V?) = 20UV, b(V2 — U?) — 2aUV,U? + V7.



To verify this, it suffices to check that the two functions agree on [U,V] = [i,1],[1,4],[1,0]. For
[U,V] =[1,0], we compute

[a(U? = V?) = 20UV, b(V? — U?) = 2aUV,U? +V?] = [a, —b, 1] = ¢([U, V])
so the morphism agrees with ¢ at co. If [U, V] = [i, 1], then
[a(U? = V?) —2bUV,b(V2 —U?) —2aUV,U? + V?] = [~2a — 2bi, 2b— 2ai,0] = [a+bi,i(a+bi),0] = P_.
Finally, we compute that if [U, V] = [1, ], then
[a(U?=V?)—2bUV,b(VZ-U?)—~2aUV,U?+V?| = [2a—2bi, —2b—2ai, 0] = [i(—b—ai), —b—ai, 0] = P}

which shows that the morphism agrees with ¢ everywhere, hence our guess is correct. By the original
definition of the maps ¢ and ¢, it is clear the two functions are inverses. To be sure our computations
are correct though, we first compute that if U =Y —bZ and V = X — aZ, then

U +V2=X?>4+Y?2+ (a* +0*)Z% — 2Z(aX +bY) = 2pZ°% — 2Z(aX +bY)

and
U2-V2=Y24+0222 -2YZ - X% —a’Z%+ 20X 7
and
UV = XY 4+ abZ? —aYZ —bX Z.
Therefore

a(U? = V?) - 20UV
=a(Y2+ 0222 -20YZ — X? —a®Z% + 20X Z) — 20(XY + abZ? —aY Z — bX Z)
a(Y? — X?) - 2bXY +2pX Z — apZ?

X
= (2pZ?% - 2Z(aX + bY))j
In addition,

b(V? - U?) —2aUV
=b(-Y? 0?22+ 20Y Z + X* + a*Z* — 2aX Z) — 2a(XY + abZ* —aY Z — bX 7Z)
=2pYZ — 2bY? — 2aXY

Y
= (2pZ?% - 2Z(aX + bY))E

S0 we can now compute that

¢oU([X,Y, Z]) = o([Y —bZ, X — aZ])

N =

=[(2pZ? — 2Z(aX + bY))%, (2pZ? — 2Z(aX +bY)) =, (2pZ* — 2Z(aX + bY))]

S0 ¢ o 1) = idp:.
On the other hand,
Yo d([UV]) = ¢([a(U” = V?) = 20UV, b(V? = U?) = 2aUV,U* + V?))
= [p(V? = U?) = 2aUV = b(U* + V?),a(U? = V?) = 26UV — a(U? + V?)]
= [-2(bU + aV)U, —2(bU + aV)V]



so also ¥ o ¢ = idy,.
For the other direction, suppose p = 3 mod 4. We will first show that V,,(Q) = @. For suppose
[z,y, 2] € V,(Q), where we may take z,vy,z € Z and ged(z,y,2) = 1. Since 22 + y? = pz2, we have

z? = —y? mod p.
If p | y, then p | z, but then pz? = 0 mod p? which implies p | z as well, contradicting ged(z,y, z) = 1.
Thus we may assume pty so in Z/pZ, y is invertible. Then in Z/pZ, we see that

(xy71)2 _ z2y72 _ 7y2y72 —

which would then show that (*71) = 1, contradicting the assumption that p =3 mod 4.

Now that V,(Q) = @, we will show that there is no morphism defined over Q from P! to V.
If ¢ = [¢o, ¢1, P2] were such a morphism where we may take each ¢; € Q(P!) by assumption that
¢ is defined over Q, then ¢(0) = [¢0(0),$1(0),¢2(0)] € V,. But then ¢(0) € V,(Q) since each

¢ € Q(PY) = Q(t) implies ¢;(0) € Q for each i. The result is now immediate. |
Now we will prove (b), letting p, ¢ be primes congruent to 3 mod 4.

Proof. For field extension K/Q and a variety V C P™ defined over Q, write V(K) for the K-points,
i.e. the zero locus of the polynomials defining V, considered as elements of K[Xj,...,X,]. For any
variety V/Q, the set
S(V) := {vplace of Q | V(Q,) =2}

is invariant under isomorphisms defined over Q. This is because for any field extension K/Q and any
varieties V, V' C P" defined over Q, there is a functor taking V to V(K). If ¢ : V. — V' is a morphism
of varieties, then we get the map ¢ : V(K) — V/(K) where ¢ = [dog,...,Pn] since Q(V) C
K(Vic) (it f = 4 with each f; € Q[Xo,..., Xu]/(g1,--,9,), for any g € Q[Xo, ..., X,](g0; -9,
g = 0 mod K[Xo,...,Xn](gl,...7gr) SO fz+g = fz in I([)((),...,AX}L]/I(LXPO,...,)(TJ(‘g]l,...,_gr)7 and
fi € K[Xo,...,Xn](q1,-..,9-) implies f; vanishes on all of V(K), which contains V(Q), implying
fi € (915---,9r)). Since this base-change construction is functorial, it follows that if V,, =g V, then
over any place v of Q, V,(Q,) =g, V4(Q,). In particular, V,,(Q,) has a Q,-point iff V,(Q,) does too.

Lemma. Let ¢ be a prime number congruent to 3 mod 4. Then
S(Ve) = {2, 4}.
For this proof, we use two results from [2], the first being Theorem 1 in Chapter ITI, which reads:

Theorem. If k = R, we have (a,b) =1ifa or bis > 0, and (a,b) = —1 if ¢ and b are < 0.
If k = Q, and if we write a,b in the form p®u, p”v where u and v belong to the group U of p-adic

units, we have
(a,b) = ( 1)a55<p><“>ﬁ<”)a if p # 2
a,b) = (— — - if p
p b

(a7 b) _ (71)6(u)5(v)+aw(v)+ﬁw(u) ifp —9.

[Recall that (%) denotes the Legendre symbol (%) where @ is the image of u by the homomorphism of
reduction modulo p : U — Fy. As for e(u) and w(u), they denote respectively the class modulo 2 of

u—1 u?-1
“5= and of ]

In the above, (a,b) denotes the Hilbert symbol of a and b, which is 1 if 22 = az? + by? has a
nontrivial solution (z,z,y) € k* and is —1 otherwise.

The second result we use is the corollary to Theorem 6 in Chapter IV of [2], which reads (for p a
prime number and k = Q,,, and f a quadratic form of rank n with discriminant d = det M where M
is the matrix representing the form f, and Hasse-invariant ¢):



Corollary. Let a € k*/k*?. In order that f represent a, it is necessary and sufficient that

(i)
(i)
)
v) n

n=1anda=d
n=2and (a,—d) =¢
(ili) n = 3 and either a # —d or a = —d and (—1,—d) =¢

(i

Proof. Fix a place v of Q. If v = oo, then [V/,0,1] € Vi(Q,), so co ¢ S(V;). Now assume v is
a finite place and let A? : Z # 0. We will now show that V;(Q,) € A% when v £ 1 mod 4 and
{Ve(Q,) \ A% = [£i : 1 : 0]} if v =1 mod 4 and where we let i € Q, be such that i? = —1. If we
had a point [z : y : 2] € V(Q,) \ A2, then z = 0, hence 22 + y? = 0. Without loss of generality we
may assume that y # 0, so then (%)2 = —1. Then the form X? represents —1 over Q,. Although not
necessary, it’s easy to verify that if X2 represents —1 over Q,, then V;(Q,) Z A2. Suppose we have
some x € Q, with 22 = —1. Then 2v,(z) = v,(—1) = 0 so v, (z) = 0 implies that = € Z, because Z,
is a DVR. Thus V,(Q,) ¢ A? iff —1 is a square in Z?.

If v = 2, we apply Theorem 4 of Chapter II of [2] to see that an element 2"u of Q} is a square iff
n is even and © = 1 mod 8. In particular, —1 is not a square in Q2. Now assume v is a finite place
different from 2. Then Theorem 3 of Chapter II of [2] tells us that for z = v™u in QF, = is a square iff
n is even and (%) = 1. Thus —1 is a square in Q, iff (_71) =1iff v =1 mod 4.

We have now shown that V,(Q,) C A% for v # 1 mod 4. Now suppose v = 1 mod 4. We know
that there is some integer z¢ such that 22 = —1 mod v, and as the derivative of the polynomial
2? + 1 € Z,[r] has non-vanishing derivative except at 0 # zo, Hensel’s lemma gives a lift to some
i € Z, that’s a root of 22 + 1, i.e., i? = —1. Then clearly as we have (5)? = —1, then 3~ = &4, hence
the only points outside of the affine patch are [¢, 1,0] and [—i, 1, 0].

This shows every place in S(V;) is a finite prime not congruent to 1 mod 4. Since V;(Q,) C A?
for every such place, we have that v € S(V;) implies v 1 mod 4 (which implies S(V;) C A?%) and
v # o0o. Thus now we're interested in whether the quadratic form f = X2 + Y2 represents ¢ in Q,,
because by our work, this is equivalent to V;(Q,) # & for places not co and =1 mod 4.

The quadratic form f has discriminant d = 1 and Hasse invariant ¢ = (1,1) = 1. By the corollary
then, f represents /¢ iff (¢,—1) = 1. Now we appeal to the theorem to compute (¢, —1). If v = 2, then

we compute
(6, _1) _ (_1)1'1+0-w(£)+0'1 T

which shows that 2 € S(V;). Now assume that v =3 mod 4. If v # ¢, we compute that

(¢, —1) = (—1)001 (i)o (j)o =1.

Thus the only remaining possibility is that £ € S(V}). For v = ¢, we have a = 1 and u = 1, so

- ()

which also proves that £ € S(V}).
]

Now that we have shown S(V;) is invariant under Q-isomorphism and that S(V;) = {2,¢} for £ = 3
mod 4, it follows that if V,, =g V, then {2,p} = {2, ¢} so p = g as desired. |



Chapter II: Algebraic Curves

Section 1

Proposition 1.4

Statement. Let C/K be a curve, and let t € K(C) be a uniformizer at some nonsingular point
P e C(K). Then K(C) is a finite separable extension of K(t).

Here, I just want to prove that t is transcendental over K, so that the claim in the proof given
in the book that K(C)/K(t) is finite is immediate from the fact that trdeg, (K(C)) = 1,t ¢ K, and
K(C) is finitely generated over K.

Proof. If instead ¢t € K, then dimg Mp/M2% = dimy tK[C]p/t*K[C]p = dimgz K[C]p/K[C]p = 0,
which contradicts that C' is smooth at P. because Mp /MI% should be dimension 1. [ |
Section 2

Example 2.9

Statement. Consider the map ¢ : P* — P!, [X,Y] — [X3(X — Y)?,Y®]. We will verify all of the
claims made in the example, filling in proofs of claims.

Proof. First, let’s show that ¢ is a morphism. We see immediately that, letting fo = X3(X —Y)? and
fi =Y fo/fi € K(P') = K(X,Y)o (the subscript refers to the degree 0 part of K(X,Y)), so the
the rational map from P' — P! is actually [X,Y] — [fo/f1,1]. But as f; € K(P!) and multiplying
each coordinate function through by f; makes the rational map defined at every point since f; and
f1 are polynomials in the coordinate functions, the rational map is actually just identically ¢.

First, we will compute ey(P) = ordp(¢*tsp) where P = [0,1]. Letting co = [1,0] be the point
at infinity, we will translate to A' with coordinate ring K[z] where here # = X and Y = 1. This
is allowed because ramification index is a local property, which is seen because the quantity only
depends on the uniformizer at the point P, which is a local definition. In this coordinate system, we
have ¢(x) = 2%(x — 1)2. Now ¢P = [0,1] = 0, so we have typ = z. Then ¢*typ = 23(x — 1)%. As
(x — 1) ¢ My and is regular at 0,

es(P) = ordp(¢*typ) = ordo(z®(x — 1)?) = 3ordy(z) + 2ordg(z — 1) = 3.

Next we let P = [1,1]. We use the same affine coordinates, so P = 1 here, and t,p = x again.
Then
es(P) = ordp(¢*typ) = ord; (23 (z — 1)?) = 3ordy (z) + 20rdy (z — 1) = 2

because x ¢ M; and is regular at 1. Now, all that remains to show

S ep(P) =dego

Pegp—1([0,1])

is to show ¢~1([0,1]) = {[0,1],[1,1]} and that deg¢ = 5. We have already seen that D holds, so
now suppose ¢([X,Y]) = [0,1]. Then X3(X —Y)? = 0, so either X = 0or X =Y. X = 0 yields
[0,1] and X =Y yields [1,1]. Lastly, we must show deg ¢ := [K(P') : ¢* K(P')] = 5. Let’s explicitly
prove that K(X,Y)q = K(t) without using the fact that K(t) = K(A!) = K(AlNPY) = K(X,Y)o
as stated in 1.2.9. It’s easy to see that for any n € Z, \t" € K(X,Y)o. By linearity, we can see
that deg(>_ a;t') = 0, so clearly quotients of polynomials of that form also have degree 0. Thus

K(t) ¢ K(X,Y)q. For the reverse inclusion, fix polynomials F(X,Y),G(X,Y), both of degree d.

d
Notice that X = tY, so ggg = gggg; = ;ggg = ggg € K(t) where we can see that




F(tY,Y) = Y9F(t,1) because each term of F(tY,Y) is of the form A(tY)*Y? = A\?Y?Y? = Y42
with 0 < a,b and a + b =d.

Since K(P!) = K(X,Y)o = K(t), ¢*K(P') = K(¢*t) = K(t3(t — 1)?). Notice that ¢ is a root of
the degree five polynomial T3(T — 1) — t3(t — 1)% € ¢* K (PY)[T).

Let’s show this polynomial is irreducible (hence the minimal polynomial of ¢ over ¢*(K (P')). Let
s=13(t — 1), so s is transcendental over K, and let k = ¢*K(P!) = K(s). Our goal is to show that
the polynomial f(T) = T3(T — 1)? — s = T® — 2T* + T3 — s € k[T is irreducible. Because deg f = 5,
if f has a nontrivial factorization over k, then either f has a linear factor or f = gh where degg = 3
and degh = 2 for g,h € k[T]. First let’s show that f has no linear factor, i.e. f has no roots in k.
Suppose 58 was such a root with ged(p,q) = 1. Then s = pS(’;i;Q)Z. However, (p — ¢)? = p?> mod q,
and as p is invertible modulo ¢, the same is true for (p — q)? modulo ¢, so ged((p — q)?,q) = 1 as well.
Then s cannot divide ¢, because if s | g, we would get that s p?(p — q)? because s is irreducible and
p3(p — q)? shares no common factors with ¢. But then s¢® = p?(p — ¢)? is clearly impossible, since
the right hand side has no factors of s. From sq® = p*(p — ¢)?, we then see that the right hand side
contains exactly one factor of s. This is impossible though, as each irreducible factor of the right hand
side appears with multiplicity at least 2.

Now we will show that we cannot write f = gh where degg = 3 and degh = 2, which will prove
that f is irreducible over k. Suppose we can write

TP —2T*+T% —s=f = (T° +aT? + bT + ¢) (T* + oT + )

for some a, b, ¢, a, B € k. Then, expanding the RHS and equating the coefficients of the powers of T,
we get the following system of equations in k:

—2-—a=aqa (1)
b=1—aa—-p (2)
c=—(af + ba) (3)

ca+b8=0 (4)

cfB = —s. (5)

We will eliminate the variables a, b, ¢ with this system of equations. By plugging (1) into (2), we
obtain the following;:
b=1+2a+a* 3. (27)

Plugging (1) and (2’) into (3), we get
c=2B+2aB—a—2a%—a (3)
Plugging (1), (2°), and (3’) into (4), we get
0=—a*—2a%—a?+3a?8+ 408+ 8 — 5% (4
Plugging (3’) into (5) we get
282 4+ 2a6% — aff — 20%6 — a® = —s. (5”)

Now we will do case division on char K. First, we will assume that char K = 2. If a = 0, then
a =0 from (1), b =1+ g from (2), ¢ = 0 from (3), but then —s = ¢f = 0, a contradiction. Now we
assume a # 0. We have that a = « from (1), b= 1+ a? + § from (27), and ¢ = a(1 + o?) from (3’),
and o8 + a® + s = 0 from (5°). Then = o® + £. In addition,

B+ (@ +1)+at+a?=0



from (47). Plugging 8 = o + £ in, we get
4 s s g, 5 4 2, 8 4, 2 2, 52 2 2 S 4, 2
attsat—+— =o'+ 5 +ta tsata’+—+a +a = (@ + =)+ (o +1)(a"+ =) +a’ +a” = 0.
a Q@ @ @ Q@
Multiplying through by o?, we have
ab+sa®+sa+s2=0

Write o = zgzg with z,y € K[s] and ged(z,y) = 1. Substituting and multiplying through by 35, we

get the equation

20 + szdy® + say® + s%y° = 0.
Then s | 25 implies that s | x, so write # = sz for some z € K[s]. Substituting in again, we get

SGZG + 5423y3 + 52,zy5 + 82y6 =0.

Dividing by s2, we get
2

st20 4+ 223 + 2 + 90 = 0.

Thus z | ¥°, but as x and y are coprime, it follows that z and y are also coprime, hence z and y% are
coprime, but we just contradicted this statement. This shows that f(T) is irreducible if char K = 2.
Now suppose char K # 2. Notice that (4’) and (5’) are quadratic in 3, the first saying that 5 is a
root of
f(T) =T? — (14 4a + 30*)T + (a® + 222 + a?)

and (5’) saying 8 is a root of
f2(T) =21+ a)T? — a1 + 2a)T + (s — o).

Then we see that, letting Dy = (1 + 4a + 302)? — 40?(1 4+ 2o+ o) = (a + 1) (5a? + 6a + 1) be
the discriminant of f; and Dy = o?(1 + 2a)? — 8(1 + a)(s — a?).

_ a(l+2a)++/D;
N 4(1+ )

1+4a+3a*+ /Dy

5 B

assuming that e # —1, and for some choices of square roots of D and Ds. If @« = —1, then a = —1
from (1) as well, so b = —f3 from (2), and then ¢ = f+b = 0 from (3), but then b8 = 0 from (4) which
means that b = 0 since 5 # 0. But then by b = —f we get 8 = 0 anyway, which is impossible. Thus
we may proceed.
Note that v/Dj,+/Ds are both in k since a and 3 are. Now because Dy = Q(a) — 8(1 + «)s where
Qa) = a?(1+ 2a)? +8a3(1 + ), we get
Qa) — D,

- 8(1+a)

Therefore K (o) = k = K(s), so Dy is a square in K («). However, because D; = (a+1)2(5a%+6a+1),
to arrive at a contradiction it suffices to show that 5a2 + 6a + 1 is not a square in K (). Suppose it

were, and write 5a? + 6a + 1 = (%)2 with ged(p, q) = 1. Notice that (« + 1) divides 5a2 + 6 + 1,
and let [ be the extra factor (I = 1 if char K = 5, | = v+ £ otherwise), and notice [ # o + 1 thanks
to our assumption that char K # 2. Then (a + 1)¢?l = p?, so a + 1 | p? implies o + 1 | p. But then
(a+1)? | (a + 1)g?l implies that o+ 1 | ¢* because o + 1 1 [, which implies that o + 1 | ¢. But then
a+ 1| ged(p, q), contrary to assumption that these two have no common factor in Kla].
Now we have showed that f(T) is irreducible over k = K(P!), so so indeed deg ¢ = [K(t) : k] =
deg f =5 as claimed.
|

10



Section 3

Example 3.3

Statement. Assume that char K # 2. Let ey, eq,e3 € K be distinct, and consider the curve
C:y?=(z—e)(r—e)(z —e3).

Then C is smooth and has a single point at infinity, which we denote by P,,. For ¢ = 1,2,3, let
P; = (e;,0) € C. Then

le(.’IJ — 67;) = 2(.P7,) - 2(Poo)7
div(y) = (P1) + (P5) + (P3) — 3(Pac).

Proof. First let’s show that C has a single point at infinity. The projective closure of the given affine
curve is given by the equation Y27 = (X —e;Z2)(X — e22)(X —e32). If P = [X,Y, Z] is a point at
infinity, i.e. Z = 0, then the coordinates satisfy the equation X3 = 0 so X = 0 as well. Thus the only
point at infinity is [0, 1,0]. Now let’s check that C' is smooth. Since smoothness is local, we will first
show that C'N A? is smooth. Recall that P € C is singular iff each partial derivative of the defining
equation of C vanishes at P. Assume we have a point P = (p1,p2) € C where

W I, (e —e)
dy

2 _ 3 Tr — € 3
(py=0= 2l 2 ) () ST — ey,

Oz i=1 ji
We see 0 = 2y(P) = 2p, implies p, = 0 since char K # 2. Since P € C, we get that

0=p3=(p1—e1)(p1 — e2)(p1 — e3)

so p1 = ¢; for some [ = 1,2, 3. But then

3
0=> T —e)(P) = (x e —ex)(P) = (pr — ;) (p1 — ex)

i=1 j#i

where the rightmost two expressions, the j, k are the other values in 1,2,3 not equal to [. But this
implies that p; is either equal to e; or ey, which is impossible since these values are distinct from e;.
Now we just need to show C is smooth at P.. We will check this in another affine chart U : Y # 0.
Here we use the coordinates ' = % and z = %, SO

CNU:z= (2 —ez)(a’ —e2)(2’ — e32)

and under these coordinates, Ps, = (0,0) = O. Thus we just need to show that the partial derivatives
do not both vanish at the origin. We compute that

1=1+ (Z € H(m’ —¢;2)(0) = 9(z - (2’ — 612)(5;_ e22)(z' — e3z) 0)

i=1 i

so indeed it’s not the case that the partial derivatives vanish at O.

Now let’s compute div(x — e;). Notice for any P € A2NC, ordp(x —e;) > 0 since x — e; is regular
on A% If ordp(z—e;) > 0, i.e. (P) = e;, then P = (e;,p2). But P € C means p3 = [I;(e;—e;) =0s0
pe = 0, and thus P = P;. Thus div(z—e;) = n(P;) —n(Px) for some n € N, because deg div(z—e;) =0
by Proposition 3.1. Now let’s compute n = ordp, (x — e;). First, we claim that Mp, = (x — e;,y).
We observe = — e;,y € Mp,, so it suffices to show (x — e;,y) is maximal in K[C]. But we see that
K[O)/(z — es,y) = Klz,y]/(y* — [Li(z—ej), 2 —ey) = K[z, y]/(z —e;,y) = K so the claim holds.
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Now we will work in K[C]p,, where we invert all functions not in Mp, = (x — e;, y). In this ring, we
2

have 17 =z —e;. Thus ordp, (z — e;) = 2ordp, (y) > 2 so x — e; € M3, . Therefore

Mp, /M, = (z — ei,9)/(x — &) = (y)/(z — €.

Then Mp, /Mp, is spanned by y as a K vector space, so by Exercise 2.1, we get that Mp, = (y), i.e. y
is a uniformizer at P;, as long as y ¢ M2 If this were false, then Mp, /MIZD = 0, contradicting that it
has dimension 1 by our proof that C' is smooth at R, S0 y §§ MP Note that K[C] is not a field since
y ¢ (2 —T,(@—e;)). s0 (5 — [, (w—e;)) C (44> ~T1,(z—€;)) demonstrates that (3> — [,z —c,))
is not max1mal Since we have already shown that ord p,(x —e;) = 2ordp,(y) = 2. The last thing
to verify is that K[C] is indeed a domain, i.e. f(x,y) = y? — [1;(z —¢;) is irreducible. If we could
write f = gh where g, h are not units, then necessarily each must have y-degree 1, i.e. we may write
g =y+p(x) and h =y + g(x) where p,q € K[z]. Then y* — ], (z — eﬂ—gh—y+%p+®y+m7
which implies that

p+q=0
and
pg=—[](z—e).
J
The first condition says p = —q, so plugging into the second equation, we get

p? = H(z —ej).
J
But x — ey is an irreducible factor of p? means it’s a factor of p, but then (z —e1)? | [I;(z —e;), which
is false as the e; are distinct.
Now of course we know from the proposition that div(z — e;) = 2(P;) — 2(Px), but let’s explicitly
compute ordp_(z — e;). Using the coordinates z’,z for U : Y # 0, the coordinate ring K[C] =

K2, 2]/(z — [I;(a" — e;2). Since z = Ly=2a2 =% and z = £, we have z — ¢; = 242 =
X/YZT{,Z/Y = m,_zeiz. In this chart, P», = (0,0) = O. First, notice that (2, 2) C Mo because each

function is regular and vanishes at O. Also, we have K[C]/(2’,2) = K[z, 2|/ (z =11 (2" —ej2),2', 2) =
K means (7’,2) is maximal, and thus Mo = (2/,2). Therefore 2’ — e,z € Mo for every j = 1,2, 3.
But in K[C], we have 2 = [[ (2’ — ¢;2), so z € M. Therefore

Mo /Mp = (2, 2)/M§ = («') /M

so by the same Exercise 2.1 we get that 2’ is a uniformizer at Py, if we can show that z/ ¢ M3. If
this were false, then dimgz Mo /Mg = 0, contradicting that C' is smooth at P, so indeed 2 ¢ M3,
Then z € M3 = ((2’)®) means there exists some ¢ € K[C] such that z = (2’)3¢. This means that

v —eiz =1 —ei(a))2q=a'(1—e;(2')%q).

We compute that 1 —e;(z')?¢ =1 mod 2/, so 1 — e;(2")%q ¢ Mo, hence ordp(1 — e;(2")%q) = 0. This
implies that
ordp(z' — e;2) = ordp(z') + ordp (1 — e;(2')?q) = 1.

By the exact same proof, we obtain that ordp(2’ — e;2z) =1 for any j. Then
ordp(z) = Ordo(H ' —ej;z) Zordo ' —ejz) =3.
J
Now we have

' — ez

ordp_(x —e;) = ordp( ) =ordo(z' —e;z) —ordp(z) =1—-3=-2.
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Also, we remark that we did not have to prove that this K[C] is a domain because it is isomorphic to
the other K[C] used for the other affine chart, which we did prove is a domain.

Now, let’s compute div(y). On A2, y is regular so for every P € A2, ordp(y) > 0. If ordp(y) > 0,
ie. y(P) = 0, then P = (p1,0). But since P € C, we have 0 = [[;(p1 — ¢;) so p1 = e; for some
i, and thus P = P,. Let’s now compute ordp, (y). From the computation for div(z — e;), we know
that y is a uniformizer at each P;. Thus ordp,(y) = 1, so again using the fact that degdiv(y) = 0,
div(y) = (P1) + (P2) + (P5) — 3(Px). But this is no fun, so we’re going to explicitly verify that
ordp_(y) = —3. We observe

Y 1
ordp_(y) = ordpm(E) = ordo(;) = —ordp(z) = -3

by our previous computations.

Since we're already going above and beyond and since the computation for div(y) was so short,
we will compute div(x) for fun. Let A € K be such that \? = — ]I, ¢;- Since z is regular on
A% for any P = (p1,p2) € C, ordp(z) > 0. Moreover, if ordp(z) > 0, then p; = 0, and from
p3 = [1;(p1 —e;) = —11; €;, it follows that either P = Py := (0,A) or P = P_ : (0, —\). Then
div(z) = ¢+ (Py) + c—(P- ) + n(Px). Let P = Py. Then Mp = (z,y — A\) because indeed these two
generators are in Mp, and K[C]/(z,y—\) = K[z, y]/(y* —II;(z—ej), 2, y—A =~ K. First, let’s consider
the case where e; = 0 for some 4, or equivalently A = 0. Then div(z) = div(z — ;) = 2(F;) — 2(Px)
as was already proven. Now we assume A # 0. First, we compute

(y—N? =92 -2\ + A2 = H(x —ej) = 2yA+ A2 =2® — (Zej):v2 + (ZHei)x— 2A(y — A).

J Joi#d

As an immediate application,

2= ZHer—Q)\y A)  mod z2

Jj i#j
Letting a = Zj Hi;éj €is
MP/MI% = (x,y — )\)/(LUQ,.’L'(y —A),ax —2X(y — A)).

If @ = 0 then we obtain that y — A = 0 in Mp/MI%7 and if a # 0, we have y — A = gy in Mp /M3,
so regardless Mp/M% is spanned by z as a K vector space. Thus z is a umformlzer at P. As an
alternative proof, we compute that

Kla,y)/(* = [z = es)2) 2 Kly)/ (s - ¥) = K

implies (z) is maximal in K[C]. Thus Mp, = (x) = Mp_ because x € Mp, N Mp_. Thus ordp, () =
1 = ordp_(x), so we could deduce that div(z) = (P;) + (P-) — 2(Ps). However, let’s compute
ordp_ (x) explicitly. We have

/

X
ordp,_(z) = ordpm(?) = ordo(x—) = ordp(2') — ordp(z) = —2.
z

Example 3.5

Statement. Let C be a smooth curve, let f € K(C) be a nonconstant function, and let f : C — P!
be the corresponding map (I11.2.2). Then

div(f) = f7((0) = (o2))
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Proof. By definition, we have

U0y = (o)) = Y ePUP) = Y e(Q)Q)

Pef= 0 Qef1(c0)
= Z ordp(tgo f)(P) — Z ordg (tes © £)(Q)
PefH o) Qef—1(c0)
1
= > odp(NHP) - Y ordQ(?)(Q)
Pef= o) QEf~1(o0)
where
toof=xz0f= F(P), %fordP(f)>0
0, if ordp(f) <0
corresponds to f, and where
1 ﬁ, if ordp(f) =0
tooOf:;Of: OO, 1f0rdp(f)>0
0, if ordp(f) <0

which corresponds to % But as ordQ(% = —ordg(f), we get

S ade(P) - Y ordo(2)(Q)

Pef=1(0) QEf~1(00) /
= D ode(NP)+ D orde(f)(Q) =div(f)
Pef=1(0) QEf~1(00)
where the last equality is because if P ¢ f~1(0) U f~1(c0), then ordp(f) = 0. ]

Proposition 3.6
Statement. Let ¢ : C1 — Cs be a nonconstant map of smooth curves. Then
(a) deg(¢*D) = (deg ¢)(deg D) for all D € Div(Cs).
(b) ¢*(div f) = div(¢*f) for all f € K(Cy)*.
(c) deg(¢.D) = deg D for all D € Div(Ch).
(d) 6u(div ) = div(¢.f) for all f € K(C1)".
(e) .0 d* acts as multiplication by deg ¢ on Div(Cs).
(f) If ¥ : Cy — Cj5 is another such map, then
(Yo @) =¢"o9™ and (¢ 0 @) = thy © ¢y

We will prove all of the above except (d), which was proven in another textbook. We’ll start with

().

Proof. We know that for any Q € Cbs, ZP€¢_1(Q) es(P) = deg¢ by Proposition 2.6a. Let D =
>-0ec, "Q(Q). We compute that

deg(¢*D) =deg( > ng >, es(P)P)= > ng > es(P)

QREC: Pep~1(Q) QEC Pep~1(Q)

= Z ngdeg ¢ = degpdeg D.
QeC:

14



For (b), we will use Exercise 2.2.

Proof. We compute that

or(divf)= ) ordg(f) Y es(P)(P)

QEeC; Pedp=1(Q)
On the other hand, we have
div(¢"f) = > ordp(¢"f)(P) = D es(P)ordgp(£)(P)= > Z ordQ<f>e¢<P><P>
PeC, PeC, QeCsy Peop—
where the second equality comes from Exercise 2.2, and clearly the two expressions are equal. ]

Now we move on to prove (c).

Proof. Let D =} pce, np(P). Then

deg(¢.D) =deg( Y np(@P) =deg( S-S np)@)= S 3 np)= 3 np

PeCy QeCy Peop—1(Q) QeC2 Pep—1(Q) PeCy
as claimed. |
We do not prove (d), because the textbook references another textbook for the proof. Now for (e),

Proof. Let D =35, nq(Q). We compute that

G0 0" (Y ng(Q) = ¢u( Y ng Z €¢(P)(P)): Yoo Y, es(P)Q)

QeC> QeCs Pegp—1 QEeC> Pe¢p— l(Q
= ) ngdegd(Q) = (deg$)D
QeC,
again using the fact that ZPedrl(Q) ey(P) = deg ¢. [ ]

Lastly, we prove (f):
Proof. We compute that
Wod) (D ne@)= D ng Y, ewsPUP)=D ng D, es(Ples(oP)
QReCs QECs  Pe(Yog)~1(Q) QeCs  Pegp~'(v=1(Q))
with the last equality by Proposition 2.6c. On the other hand,

¢ o (Y ne@)=9¢"(D ng Y, e®R)=Y ng Y, Z ew(R)eas(P)(P)

QEeCs QEeCs Rey—1(Q) QeCs Reyp—1(Q) Pegp—1

=Y ng Y,  ew(dP)es(P)(P)

Q€eCs Pep=t(p~1(Q))

and the two expressions are indeed equal. Now let’s show that the pushforwards distribute over
composition as well. This is pretty direct, as

Wod)u( Y. np(P)= > nphod(P)) =Y  np(¢P)) =1h0¢.( > np(P)).

PeCy PeCq PeCy PeC,
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Section 4

Example 4.5

Statement. There are no holomorphic differentials on P*.

Since the full proof is given in the book, we will just expand a couple of claims made in the proof.
First, we will show that dt = —t%d(1).

Proof.
1 1 1
0=dl=d(t--)=—-dt +td(-
(1 3) = v+ td()
so by simple algebra we get the claim. [ ]
Lastly, we will prove the claim that degdiv(w) = degdiv(dt).

Proof. By Proposition 4.3a, write w = fdt. Then
deg div(w) = deg div(fdt) = deg(div(f) + div(dt)) = degdiv(f) + degdiv(dt)) = degdiv(dt)

because degdiv(f) = 0 by Proposition 3.1b. [ |

Exercises
Exercise 1

Statement. Let (R, m, k) be a Noetherian local domain that is not a field. Then the following are
equivalent:

(i) R is a discrete valuation ring (DVR)
ii) m is principal

(i) princip

(iii) dimgm/m2 =1

I take the definition of R being a DVR to mean that there exists a function v : K — Z U {c0}
where K is the quotient field of R such that R = Ok = {z € K | v(z) > 0}, and for all z,y € K,
v(zy) = v(z) +v(y), v(z +y) = min{v(z),v(y)}, and v(z) = co <= x = 0 where the ordering and
operations and addition with the symbol co are as expected.

Proof. (i) = (ii): Let t € R be such that v(t) = 1. We claim that m = (¢). To prove this, we will first
show that for z € K, v(z) =0 <= z € R*. For one direction, suppose x € R*. First, we compute
that

l=v(@t)=v(t-1)=v(t)+v(l)=1+v(1)

so v(1) = 0. Now we will quickly show that for any nonzero y € K, v(y~!) = —v(y). To see this,
0=v(1)=viyy™") =v(y) +v(y™")

Then as v(z),v(z71) > 0 and R = O, it follows that v(z) = 0. For the converse, suppose v(z) = 0
(which implies z € R\ 0 by O = R and v(0) = 00). Then v(1) = —v(z) =0, and as R = Ok, we
get that % € R,ie z € R".

To show (t) C m, if this were false then necessarily t € R* because R is local. But by our result
above, we would then get that v(¢) = 0, contradicting our assumptions on ¢. For the reverse inclusion,

fix x € m. Then v(z) > 1 otherwise = would be a unit again by our result. Then

V(%)= v(z) + u(%) — (@) = v(t) = v(&) — 1> 0.
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Then ¥ € Ox = R, so x € (t). This shows m = (t) as desired.

(ii) = (i): Let m = (¢). Define for x € R v(z) = sup{n € N | x € m"}. First of all, notice
that if v(z) = oo for some x € R, then z € [,cym" = 0 by Krull’s intersection theorem. Thus
v(r) =00 < z=0.

We verify that for any nonzero x,y € R where v(z) = a and v(y) = b, clearly ry € m®*® so
v(zy) = a+b. If zy € m™ for any m > a + b+ 1, then also 2y € m?+**1 5o it suffices to show that
ry ¢ mot*tl We know that » = t%a and y = t’8 for a, 8 ¢ m, i.e. a,8 € R* because R is local.
Combining, we get t***af8 = xy, hence t*TP*! § 29, otherwise we would get an inverse for ¢ in R,
contradicting that ¢ generates the maximal ideal m. This shows v(zy) = v(z) + v(y). If either = or y
were 0, the result is immediate. We will now show v(z+y) > min{v(z), v(y)}. The result is obvious if
x =0 =y, so we may assume without loss of generality that = # 0 and v(z) < v(y). Then z =y =0
mod m™ where n == v(z), so z + y =0 mod m", showing z + y € m” as well, implying v(z +y) > n
as desired.

Now extend v to K by setting v(}) = v(x) — v(y). This is well defined because for any nonzero
z € R, v(3Z) =v(zz) —v(yz) = (v(z) + v(2) — (v(y) + v(2)) = v(z) —v(y) = v(3). One also verifies

v % . % =v %z;) =v(r1y1) — v(zaye) = (v(x) +v(y)) — (v(z2) + v(y2))
= (v(z1) —v(x2)) + (v(y1) — v(y2)) = y(%) + y(%)

In addition, for any n € Z, we have v(t") = n from the fact that v(1) = 0 (¢ # 0 because R is not a
field, so t™ is well defined in K), so v is surjective.

Now fix any nonzero x = %,y = Z—; € K, where we may assume by possibly relabeling that
v(z) < v(y). Then

T1Y2 + 211582)

Vo +y) = (T2

= v(r1y2 + y122) — v(22y2) = min{v(z1y2), v(y172)} — v(22ye).

Since v(z1y2) < v(y1x2) is equivalent to v(x) < v(y) by additivity of v,

v(z+y) 2 v(ziye) — v(zaye) = 1/(252) =v(x)

as desired. All that remains is to show that R = Og. For one inclusion, it’s clear that for any x € R,
v(z) 2 0, so R C Ok. For the reverse inclusion, fix ¥ € O. Then v(z) = v(y). Letting n = v(y), we

. "
have y = t"u where u € R*, and write x = t"z for some z € R. Now we see % =Lz = £ € R because

t"u
1
ler

(ii) = (iii): Let m = (). We claim that f is a basis for m/m? as a k-vector space. We may take an
arbitrary element of m to be of the form tz for some # € R. Then by definition, Z - £ = #t in m/m?,
showing ¢ spans. All that remains is to show that ¢ # 0. Suppose for a contradiction that £ = 0, i.e.
t € m? = (t?). Then there exists some z € R such that t = xt?>. Since R is a domain and t # 0
(otherwise m = 0 implies R is a field), it follows that 1 = xt, so t € R*, contradicting that m is a
maximal ideal.

(iii) = (ii): Let m/m? = kf. Since R is a local ring, J(R) = m. By assumption, for any = € m,
there exists some y € R such that + = yt mod m?,i.e. m C tR+m?. Ast € m and m? C m, it follows
that m = tR + m? = tR + J(R)m. Applying Nakayama’s Lemma, it follows that tR = m. |

Exercise 2

Statement. Let ¢ : C; — Co be a nonconstant map of smooth curves, let f € K(C3)*, and let
P € C;. Then

ordp (6" f) = eg(P) ordyp (f).
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This result was used in the proof of Proposition 3.6b.

Proof. Let tp be a uniformizer for K[C1]p, and define t,p similarly. Let n = ordp(¢* f), so at’h = fo¢
for some a € K[C1]%5. Also let m = ordgp(f) and k = e4(P) = ordp(¢*tsp). Then Stk = typ o ¢ and
Ytgp = [, with 3,7 units in their respective local rings. Then we observe

ath = fo b= (VEIp) 0.6 = (67) (tsr 0 O)™ = (6"7) (Bth)™ = (") B™th™.

This implies that n = km (the desired result) because ¢*v must be a unit in K[C4]p as ¢* is a
ring homomorphism and ~ is a unit in the source of ¢*. |

Exercise 4

Statement. Let C be a smooth curve and let D € Div(C). Independent of the Riemann-Roch theo-
rem, the below results hold:

(a) L£(D) is a K vector space.

(b) If deg D > 0, then
(D) < deg D + 1.

This result is used as the proof of Proposition 5.2b. First we will prove (a), and we will write
D=3 pccnp(P).

Proof. Fix f,g € £(D) and AK. If we can show that A\f € £(D) and f 4+ g € £(D) we are done.
If any of f,g,\ are 0, the claims are obvious, so we may suppose they are all nonzero. We see
Af € L(D) < div(Af) > —D, which is true because div(Af) = div(f). To see, f + g € L(D), we
observe

f+ge (D) < div(f+g9) > —D — Z ordp(f+¢)(P) > —D <= VP, ordp(f+g) > —np.
PeC

But we know that, for any P € C, ordp(f + g) = min{ordp(f),ordp(g)} > —np. [ |

Now for the more difficult proof, that of (b). First, I will give the easy proof which has exactly the
same idea as the second, it’s just that the second proves many more facts about the rings we associate
to C, but is also significantly longer because it essentially proves a special case of the Cohen structure
theorem.

Proof. We prove the result by induction on deg D, with the base case deg D = 0 proven in the second
proof of the result.

Now for the inductive step, let @ € C be such that ng > 1. We define a map ® : L(D) — K[C]/Mq
given by ®(f) =t"2f mod ¢, where t is a uniformizer at Q. Again by the proof below, we have that
K[C]/Mg = K. Also, since f € L(D), we have ordg(f) > —ng, hence ordg(t"? f) > 0, so we can
evaluate t"? f mod t. We can easily observe that ®(f) = 0 iff ¢t | t"ef iff ordg(f) > 1 —ng. In
addition, for any f € L£(D), we have ordg(f) > 1 —ng iff f € L(D — (Q)), thus proving ker & =
L(D —(Q)). Thus by the rank-nullity theorem,

LD) =D —(Q)) +rank® < degD +1

by the inductive hypothesis. |
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Proof. We will prove the result by induction on deg D with the base case being deg D = 0. For the
base case, first suppose D = 0. In this case, for nonzero f € K(C)*,

fe€L(D) < div(f) 20 <= VP e C,ordp(f) > 0.

But since degdiv(f) = 0, if div(f) # 0 then there exists some pole of f, implying that f ¢ L(D).
Thus ordp(f) = 0 for all P iff divf = 0, which is true iff f € K* by Proposition 3.1a. Thus
L(0) = K, which has dimension 1 = deg D + 1. Now assume that D # 0, and let Q € C be such that
ng > 1. Alsolet div f =) pmp(P). Then f € L(D)* means that for every P, mp > —np. Therefore
Y pmp =Y p—np, with equality iff mp = —np for every P. But we see that

O:ZmPEZ*nP:*ZnPZO
P P P

which implies that equality holds throughout, hence mp = —np for every P. Then for any g € L(D)*,
we observe that since div(f) = div(g),

0 =div(f) —div(g) = div(g)
SO 5 € K*. This proves that ¢(D) = dim £(D) < 1 = deg(D) + 1 as claimed.

Now for the inductive step, let @ € C be such that ng > 1. The inductive hypothesis tells us that
L(D —(Q)) is dimension at most deg D. Thus it suffices to show that dim £(D)/ L(D —(Q)) < 1. Let
t be a uniformizer for C at @, which is transcendental over K by the expanded proof of Proposition
I.1.4. First we claim that K[C]/(t) is isomorphic to K. For this claim, we will prove that if R is a
ring containing a subfield k, and where t € R is transcendental over k and R is integral over k[t], then

(i) k is a subring of R/t.
(ii) R/t is integral over k.

We have a natural ring homomorphism K < R — R/tR, so we will claim this map is injective, i.e.
kENtR = 0. If this intersection were nonzero, ¢ is a unit in R. Therefore k(¢) C R, and as R is integral
over k[t], it follows that k() is integral over k[t]. Let >_"" ; P;(t)X" be the minimal polynomial of 1
over k[t], so P,(t) = 1. Then

0= zn: P(t)t""" = P,(0) mod tk[t].

However, since P, (0) = 1, we get that tk[t] = k[t] which is obviously false. This shows that kNtR = 0,
so indeed k is a subfield of R/t. For the second claim, fix ¥ € R/t, and let Y-, P;(t)X" be the minimal
polynomial of r over k[t]. Then

0= iPi(t)ri = ipi(O)Fi mod ¢,
i=0

=0

and P,(0) = 1 since P,, = 1 means that we have found a monic polynomial over k that 7 satisfies,
hence the result.

We apply this to our situation, with R = K|[C] and k = K. Then K[C]/(t) is algebraic over K,
and since K is algebraically closed, indeed K[C]/(t) = K. Now we claim that the natural inclusion
K[t]/(t") — R/(t") is an isomorphism of K vector spaces for every n > 1, where R satisfies the same
conditions as it did before, except that now we assume R/(t) = K and R is a domain. We will prove
this by induction on n, with the base case n = 1 already proven above.

Now suppose n holds, and we aim to show that the same is true for n+ 1. By hypothesis then, the
below diagram commutes in the category of K vector spaces:
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K[t]/@"+) — K[t]/(t") —— 0

R

0 —— (/") —— R/(t"") ——— R/(t") —— 0.

Our goal will be to use the five lemma to conclude that the middle arrow is an isomorphism. Thus,
we claim that the rows are exact and that the first vertical arrow is an isomorphism. Exactness of
the top row is easy using the third isomorphism theorem, since ¢ is transcendental over K, so we can
check

o = KO/ K@)
[ ]/( ) - (tn)/(tn—l-l) - Kitn :

Exactness of the bottom row is exactly the third isomorphism theorem, so it remains to show that

Kt" = (t")/(t"*1). Define 7 : R — K as the composition R — R/(t) — K where R/(t) — K is an

isomorphism of rings fixing K, given to us by our hypotheses on R. Notice now that 7 is K-linear

since both maps that make up 7 are K-linear. Now we define a map

_ x
p:t"R— K, Q:Hw(t—n)
We notice that for x = t"T1r € t" TR,
iy

b(w) = ("

) =n(tr) =0.

Thus we get a map é: (t")/(t"*t!) — K. Now we will show ¢ is an isomorphism. First suppose that
t"r € ker ¢. Then

0 = G(FT) = 6(t"r) = m(r).
Because ker m = (t), it follows that r € (¢), so t"r = 0. Now let’s show that ¢ is surjective by fixing
A € K. Then

G(t"X) = P(t"A) = w(A) = .

Moreover, L
_1(/\) =t A= \"

-

so ¢! is first vertical map.

Now we can apply the five lemma to obtain that the middle map is an isomorphism as well, which
completes the proof of the inductive step.

Now that K[t]/(t") < R/(t") is an isomorphism of K vector spaces and is a ring homomorphism,
it follows that this map is an isomorphism of rings.

Because t is transcendental over K, we have that the t-adic completion of K[t] is just K[t], but
by our proof and the universal property of completions, we get that the t-adic completion of R is
canonically isomorphic to K[t] as well.

—

Thus by letting R = K[C], we get that K[C] = K [t] where the completion is the t-adic completion.
We now see that since K[C] C K[C],

—

K(C) = Frac K[O] C Frac K[C] = Frac K[t] = K((t))

Moreover, for f € K(C), if we write f = Y onez a;t', we define ord;(f) = min{n € Z | a,, # 0}, which is
guaranteed to exist since all but finitely many of the a,, for negative n are zero, and we set ord(0) = co.
One easily verifies that this is a valuation on K ((t)), and makes K[t] a DVR. Now we claim that ord,
extends ordg on K (C). Suppose f = > ;2 a;t'is in K(C), where a; # 0, or equivalently ord;(f) = n.
Suppose that n = 0, which implies f € K[t] and ¢ { f. Now we claim that K(C)N K[t] = K[C]g. We

~

will show that for a Noetherian local domain R with field of fractions K, KN R = R. Suppose f = §
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with a,b € R, b# 0, and f € R. Then fb=ain ]?3, soa €bRNR = bR, with the last equality holding
because we can show that for any local Noetherian ring R and any ideal I of R, IRN R = I. Lemma
7.15 of [1] tells us that the completion functor is exact on finitely generated modules. We have the
exact sequence

0—-I—-R—R/I—0

of finitely generated R-modules, hence the below sequence is also exact:
01— R— ﬁ/\l — 0.

Then
RNT = ker(R — R— R/I) =%ker(R — R/I) =ker(R— R/I — R/I)=1

which follows from the fact we will prove below, that all of the completion maps above are injective.
To see this, let M be a finitely generated R-module. For any m € M, the image of m under the
completion map were trivial iff m € ﬂn>1 m”M = 0 by Krull’s intersection theorem. where m is the
maximal ideal of R. R
Continuing, we have a € bR, so b | a in R, and thus ¢ € R as well. This shows that K N R C R,

b 2 - 2
and the reverse inclusion is obvious. This result gives that indeed K(C) N K[t] = K[C]g. By our

result, we have f € K(C) N K[t] = K[Clq, so ordg(f) = 0.

Since t 1 f in Kt], then ¢t { f in K[C]q either, hence ordg(f) = 0. Now we proceed to the general
case.

Notice that ord,(t"f) = ord;(>_;= ai+nt’) = 0. By our previous work, we get ordg(t™"f) = 0
as well. However,

ordg(t™"f) = ordg(f) —nordg(t) = ordg(f) — n.
These two facts show that ordg(f) = n = ord,(f) as desired.

Now we know that ord; extends ordg to K((t)). With this, we define a map ® : £(D) — K, given

by
@(Z ant™) = a_p,.

nez

One easily verifies that ® is K-linear. We also observe that if f € £(D — (Q)), then ordg(f) > —ng,
hence a_,, = 0, and thus ®(f) = 0. This shows £(D — (Q)) C ker ®. For the reverse inclusion,
suppose f =), a,t" and f € ker ®. We know for that all P € C, ordp(f) = —np by definition of
[ € L(D). By hypothesis that 0 = ®(f) = a_n, and ordq(f) = —nq, it follows that ordg(f) > 1—nq.
Therefore f € L(D — (Q)), completing the proof that ker & = L(D — (Q)). Therefore

dim £(D) = nullity ® + rank ® = ¢(D — (Q)) + rank ® < deg D + 1.

Chapter III: The Geometry of Elliptic Curves

Section 1: Weierstrass Equations

Proposition 1.5

Statement. Let E be an elliptic curve. Then the invariant differential w associated to a Weierstrass
equation for E is holomorphic and nonvanishing, i.e., divw = 0.

We use all of the same notation as in the book for the proof.
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iﬂj(; ‘Z;’)) = fiﬁj/(;y;)) . Notice that the equality holds iff

Fx(ZE,y)dZIJ + Fy(x,y)dy = Fx(x,y)d(sc - mO) =+ Fy(.’l?,y)d(y - yO) =0.

Proof. First, we will verify that

We will now show that for any polynomial G(x,y), it’s true that G, (z, y)dz+ Gy (z,y)dy = d(G(z, y)).
We will prove this by induction on the number of terms in G, with the base case being 1, i.e., G is a
monomial. For this case, write G = cx'y’ for 4,7 > 0 and ¢ € K. Then

dG = d(cz'y’) = cd(z'y’) = ¢ [yjd(xi) + :cid(yj)] =c [iijifldx + jxiyjfldy] = Gydr + Gydy.

For the inductive step, write G(x,y) = H(z,y) + M (z,y) where M is a monomial in z,y. Then both
H, M satisfy the inductive hypothesis, so we see that

dG = d(H+M) = dH+dM = (Hydz+H,dy)+(Mydz+M,dy) = (Hy+M,)dz+(Hy+M,)dy = Godz+G,dy
as claimed. Now applying this result to F', we get that
0=d(0) =d(F) = Fy(z,y)dzx + Fy(x,y)dy.
Next, we will verify that the map
¢:E—=P, (2,9)—x

is of degree 2. We must compute deg¢ = [K(E) : ¢*K(PY)] = [K(E) : ¢*K ()] = [K(E) : K()]
where z in the last expression is the z € K(F) and the z in the expression before is the coordinate
function on P'. We see that y € K(E) is a root of the quadratic polynomial F(z,T) € K (z)[T]. We
must now show f(z,T) is irreducible over K (z). Suppose not, so F(z,T) splits into linear factors over
K(z), and let % € K(x) be a root of F(z,T) with ged(p, ¢) = 1. Then

P’ P
==t (mz+a3)= - 23 — apx? — agx — ag.
q q

Multiplying through by ¢2, we get the equation in K|[z]:
0 =p*+ (@12 + a3)pq — (23 + aga® + agx + a6)q>.

Then

2

0=p? + (a1 + az)pg — (2° + a2z + asz + ag)¢* = p* mod ¢

implies that ¢ | p, contrary to assumption p and ¢ share no common factors. Now that z,y generate
K(E) and y has degree 2 over ¢* K (P!), it follows that deg ¢ = 2.
From I1.2.6a, we know that for any Q € P!,

Z es(R) = degp = 2.
Re¢~1(Q)

In addition, ¢~1(wg) is the zero set of the quadratic F(xg,y), hence has cardinality 1 or 2, and
cardinality 2 iff F'(x¢,y) has a double root at yo (because F(zo,y0) = 0 by hypothesis) iff F,(zo,yo) =
0. We also see that

P top = Ptay = ¢"(x —m0) = — 2o

so it follows that ordp(z — zo) = eg(P) is at most 2, with equality iff Fy(xo,yo) = 0.
Next, we will show that ordp(w) = 0. We can apply 11.4.3d to get

d(x — x9)

oy ) 0P

ordp( )+ordp(x —x0) — 1 =ordp(x — x¢) — ordp(Fy(z,y)) — 1.

1
Fy($,y)
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ifp=0orp¢tordp(x—xg), where p = char K here. Supposing this condition is met, if ordp(z—2¢) = 1,
then Fy(xo,y0) # 0 and is regular, hence ordp(F(zo,y0) = 0 and the result is 0. If instead ordp(z —
xo) = 2, then F,(zo,y0) =0, and as F,(z,y) = 2y+aix+as is linear, it cannot vanish at P with order
more than 1 (Mp = (z — z0,y — yo) so M2 = ((z — z0)?, (x — x0)(y — yo), (y — yo)?) and we cannot
write a nonzero linear form in = and y as an element of this ideal). Therefore ordp(Fy(x,y)) =1, so
again ordp(w) = 0.

The last case to consider is ordp(z — z9) = 2 = char K. We also have Fy(zo,y0) = 0. As E is
smooth, it follows that F,(x,y0) # 0. Therefore ordp(F,(z,y)) = 0, so we just need to compute
ordp(y — yo) now. We have a map ¢ : E — P! (x,y) — y where ¢*t,p) = y — yo. Now we will
compute

deg ) = [K(E) : K(y)].

We see that 2 € K (E) satisfies the cubic F(T,y) over K (y). We will now show F(T,y) is irreducible
over K(y). If it were reducible, then it would have a root in K(y) because deg F(T,y) = 3, so let

% € K(y) be a root with ged(a,b) = 1. Then we have

a CL3 a2

a
O:F(g,y):—b—g—azb—2+(a1y—a4)g+y2+agy—a6

so multiplying through by b* gives

—a® — asa’b + (a1y — a4)a62 + (y2 +aszy — aﬁ)b3 = 0.
Therefore
0= —a® — axa®b + (a1y — as)ab® + (y* + azy — ag)b® = —a® mod b

so b | a, contrary to assumption. Therefore x has degree 3 over K(y) = ¢*K(P'), and as z,y generate
K(E), it follows that deg® = [deg K (E) : ¢¥* K (P)] = 3. Now we have

Z ey(R) = degyp = 3.

Rey=1(yo)

This shows that ordp(y — yo) = ordp(¥*typ) = ey (P) > 2 iff F(x,yo) has a multiple root at zg iff
F.(x0,y0) = 0. This is false by hypothesis, so we conclude that ordp(y — yo) = 1. Now that y — yq is
a uniformizer at P,

d(y — yo) 1
——2) =ordp(———
Eay) " By
Finally, we will show that ordp(w) = 0 in characteristic 2, where the other characteristics are

taken care of in the book. Let ¢ be a uniformizer at O, and continuing the notation, write z = ¢t 2f
and y = t~3g where f(0), g(O) # 0,00. We compute

ordp(w) = ordp(— )=0.

dy _ tT'g+t7 @t = g+tg
Fa:(muy) t_4f2 + a4 +a1t_3g f2 +a4t4 +a1tg

w =

We see that g + tg’(O) # 0,00 since ¢’'(O) # 0,00 by 11.4.3b. Similarly, f2 + ast* + a1tg # 0, c0.
Therefore
g+tg

f2+ aqt* + aqtg -
completing the case char K = 2. [ |

ordp(w) = ordo(
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Proposition 1.6

Statement. If a curve E given by a Weierstrass equation is singular, then there exists a rational map
¢ : E — P! of degree one, i.e., the curve E is birational to to P'.

We will just justify that we can always make a linear change of variables to assume that the
singular point is (0,0), because the rest of the proof in the book is straightforward.

Proof. If the singular point is (xg,yo), then we can apply the linear change of coordinates (z,y)
(x — xo,y — yo) to get that the singular point is (0,0). Now we claim that, letting O be the point at
infinity, E is never singular at P... In projective coordinates, F : Y2Z + a1 XY Z + a3Y 2% — X3 —
a9 X?Z — a4, XZ? — agZ3. Then using the affine chart Y # 1, our curve is

F:z+a1xz+ a322 — 23— agzzz — a4x22 — a623

and O = (0,0). This is singular at O only if
0= F,(0,0) = [l + a1z + 2a3z — azx® — 2a422 — 3a62°](0,0) = 1

so indeed O is nonsingular. |

Exercise 17
Statement. Let K be a definite quaternion algebra. Prove that KC is ramified at oc.
We let K = Q + Qa + QB + Qa8 where o?, 32 are negative rational numbers and o3 = —fa.

Proof. Clearly M»(R) has 0-divisors, so it suffices to show that R ® K is a division algebra.

Lemma. Suppose L/K is a field extension, and V is a finite-dimensional K-vector space with basis
V1,00, Up. Then 1®vy,...,1 ® v, is a basis for the L-vector space L Qg V.

Proof. Suppose Y i, ¢; ® v; = 0 for some (1,...,¢, € L. Let LY = Homg (L, K) be the dual of L as
a K-vector space. There is an injective map

L®V < Homg (LY,V), (v (f— f(l)v).

Using this injection, we get a K-linear map 7' : LY — V corresponding to Y, ¢; ® v;. Because we
assume that this tensor is trivial, so toois T Let 1 < 5 < n be arbitrary. Letting K}/ € LY be the dual
of ¢; (explicitly, if £; = 0 then Z}/ = 0, and otherwise we let B be a K-basis for L including ¢;, and let
(D e Mib) = A, ), we get that

0="T0 = 0/ (Li)vi = £} (¢;)v;

SO E;’ (¢;) = 0. This is only possible if £; = 0. Now because j was arbitrary, we conclude that each ¢;
is trivial, hence the 1 ® v; are linearly independent. Every pure tensor £ ® v can be written as

(@v=0®Y Nvi=>» Nl(1®v)

for some \; € K, so every pure tensor is a finite L-linear combination of the 1 ® v;. Because every
tensor is a finite K-linear combination of pure tensors, it follows that the 1 ® v; span L ® V as a
L-vector space, giving the result. [ |
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By the lemma, {1® 1,1 ® a,1® 3,1 ® af} is an R-basis for R ® K. Thus we take an arbitrary
element of R ® K to be
=a®®1+bQa+cRpL+d®ap

for a,b,c,d € R. Letting = a®1 —-bQ@a—c® f —d® af, we compute
q7 = a* —b*a® — *B* + d*a?B* @ 1 = qq

using the relation (a3)? = —04252.7\7\76 let |¢| = qq € R. Since a2, 32 <0, |q=0ifa=b=c=d=0
iff ¢ = 0. Thus if ¢ # 0, we have %q =1= q&, so q is invertible. |
Exercises
Exercise 19
Statement. Let K be a quaternion algebra.

(a) Prove that K ® Q = M, (Q).

(b) Prove that K@K = M4(Q). This shows that I corresponds to an element of order 2 in the
Brauer group Br(Q).

We K =Q+ Qa + Q8 + Qafs subject to the usual relations. First we prove (a):

Proof. Let s,t € Q be such that s = o and t2 = 2. By the lemma in the proof of Exercise 17, we
have that {I1® 1,a® 1,8 ®1,a8 ® 1} is a Q-basis for L@ Q. We let ¢ : L& Q — M2(Q) be a map
of Q vector spaces defined by 1 ® b — M, for any element b of the above basis for £ ® Q, where

id, ifh=1

1 -2
s( ), ifb=a«
0 -1

M, = 1 0
t if b=
(b %) e

-1 2
st (_1 1), if b=apf
1 -2 1 0 -1 2
MaMg—St <0 _1> (1 _1> = st (_1 1> —Ma[g.
1 0 1 -2 1 -2
ittt ) ()=t )

We easily observe that M7 = s%id = o®id and M3 = t%id = (%d. Because these are the only
relations imposed on « and f3, it follows that ¢ is actually a homomorphism of Q-algebras. Because
dimg M2(Q) = 4 = dimg L® Q, to show @ is an isomorphism of Q-algebras, it suffices to show the
My, are Q-linearly independent. Suppose that

We compute that

In addition,

O:aid—l—bMa—l—cMﬁ—i—dMaB:(aerSJrCtdSt —2bs + 2dst )

ct —dst a—bs—ct+dst
The entries not along the diagonal give that ¢ = ds and b = dt. The first entry on the diagonal gives

0=a+bs+ ct—dst =a—+dst + dst — dst = a + dst

25



so a = —dst. Thus the second entry on the diagonal gives
0=a—bs—ct+dst = —dst — dst — dst + dst = —2dst

which implies that d = 0. This gives that a = b = ¢ = 0 as well then, so the matrices are linearly
independent. |

For (b), we will follow the hint given in the book:

Proof. First we notice that K is obviously simple because it’s a division algebra (if ¢ = a+ba+cS+dap,

letting § = a — ba — ¢ — daf and |q| = a® — b*a? — ¢*B? + d?a?3? one verifies % =q1). Next, we

will show that K is central, i.e., its center Z(K) is just Q. Suppose ¢ = a + ba + ¢ + daf € Z(K).
Then
(ba®) + (a)a + (da®)B + (c)af = ag = ga = (ba?) + (a)a + (=da®)B + (—c)af
so ¢ = d = 0. Therefore
aB + (=b)aB = Bg=qB = aP + bap
so b =0 as well, showing ¢ € Q as desired.

Lemma. Suppose A is a simple central K-algebra and B is a simple K-algebra. Then A @k B is
simple.

Proof. Suppose I is a nonzero ideal (in this proof, ideal means two-sided) of A ® B. Let S be the
set of all nonzero elements in I of the form Z?zl a; ® b; such that the set {b1,...,b,} is K-linearly
independent. Then S is the set of all nonzero elements of I, since if b; = Z#j Aibi,

Z%‘@bi = (a; ® bj) +Zai®bi = (a; ®Z)\ibi) +Zai®bi = Z()\iaj +a;) ®@b;
i i#] i#] i#] i#]
Let u = Z?Zl a; @ b; € S be an element minimal in n. There must exist some 1 < j < n where
a; # 0. Since a; # 0 and A is simple, we have Aa;A = A, so there exist some a,a’ € A with aa;a’ = 1.
Thus we may replace u by (a ® 1)u(a’ ® 1) to assume that a; = 1. Now let a € A be arbitrary. We
compute

(a@Du—ula®1) = Z[a,ai] ® b;
i#£j
where [a, a;] = aa; — a;a is the commutator. Because n was minimal, it must be the case that
Z[a, ai] ® bz =0.
i#]
Lemma. Suppose V, W are K-vector spaces where {ws,...,w,} C W\{0} and {v1,...,v,} CV are
linearly independent. Then {v; ® wi,...,v, ® w,} CV @K W is linearly independent.

Proof. Suppose that
Z /\i(%‘ ® wi) =0.
Letting V'V be the dual vector space of V, there exists a K-linear map
VoW = Homg (VY W), v@w— (f— flv)w).

Let T : V¥V — W be the map corresponding to >, A;(a; ® b;). Since we assume this sum is trivial,
so too is T. For v € V, let vV € V'V be defined as in the lemma in the proof of Exercise 17. For any
1 < j < n, we then have

0= T(’U;/) = Z)\ﬂ}]\/(vl)w, = /\jwj

because v;/ (v;) = 0;; by definition of vjv and that the v; are linearly independent. But because w; # 0,
it follows that A\; = 0, and since j was arbitrary, the claim follows. |
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Because the b; are linearly independent, we can apply to the lemma to see that [a, a;] = 0 for each
i. Since a was arbitrary, it follows that each a; € Z(A) = K. Thus

Z%@bi = Zl®aibi = 1®Zaibi~
i i i
Letting b= ). a;b; € B, we see b # 0 and 1 ® b € I. By simplicity of B, we have BbB = B, so there
exist some a,c € B where abc = 1. Since 1 ® b € I, we have
I>(1®a)(leb(l®c)=1Qabc=1
so indeed I = A ® B. |

We apply the above lemma to see that K ® K°P is simple (since K is central simple clearly implies
K°P is too). Now we define the map

O: LRK?P — End(K), a®b®+— (x> azbh).

One verifies that this is a homomorphism of Q-algebras, hence its kernel is an ideal of K ® K°P .
Since ker @ is an ideal of K ® K°P, either ker ® = 0 or ker ® = K ® K£°? . However, we see that

d(1®1) =idg

so ker @ is a proper ideal, hence trivial by simplicity. Thus ® is injective. Because dimg K ® K°P =
16 = dimg End(K), it follows that ® is surjective as well, hence an isomorphism of Q-algebras, so.

K ® K°? =2 End(K).
Because K is a 4-dimensional Q-vector space, we get
End(K) = M, (Q)

as well. Thus all that remains is to show that K°° = K as Q-algebras, i.e., there exists an anti-
automorphism of K. Let ¢(a + ba + ¢8 + daf) = a — ba — ¢ — dafS. We know that

Y(q)a € Q
and ¥(g)g = 0 iff ¢ = 0. One also verifies that

Y(q1a2) = ¥(g2)v(q1)
and 92 = id. Thus v is an anti-automorphism, so finally

KoK =K®K? =End(K) =2 Mi(Q).

Exercise 20

Statement. Let K be an imaginary quadratic field with ring of integers O. Prove that the orders of
KC are precisely the rings Z + fO for integers f > 0. The integer f is called the conductor of the order.

We let K = Q(v/D) where D is a squarefree negative integer. We recall that O is the maximal
finitely generated Z-submodule of K, so any order of K is automatically a subring of O. It’s also a
general fact from algebraic number theory that O = Z[w] where

%, if D=1 mod4
w =
\/5, otherwise

but we only need that O = Z + Zw and {1,w} is Z-linearly independent.
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Proof. Let R be an order of K. We know that 1 € R, so Z C R. Also, Z # R otherwise K = Q®R =
Q ®Z = Q which is absurd. Thus rank R > 2. Also, rank O = 2 and R C O implies that rank R < 2,
so rank R = 2. Now let {1,z} be a Z-basis for R. Because rank O = rankR, e := [O : R] < co. Then

exr =a+ fw
for some a, f € Z. Therefore fw € R, so
Z+ fO=7Z+ZfwCR.
Since f =[O0 : Z+ fO), if we define d = [R : Z + fO], we have
e = fd.

Note: we know d < oo because Z + fO is a submodule of the free module O (and Z is a PID), or
alternatively
rankZ + fO = dimgQ ® (Z + fO) = dimg K = 2 = rank R.

Thus
fdr=a+ fw= f(de —w) =a

sodr —w € Z and o := % € Z. Therefore
dr=a+w

which shows
ODR=Z+ZxDZ+Zde =7+ Zw = O

so equality holds throughout. Therefore x = b + cdx for some b, ¢ € Z. But this implies that b = 0
and c¢d =1, hence d =1, i.e., R=7Z+ fO as desired. |

Exercise 30

Statement. Let A be a finite abelian group of order N". Suppose that for every D | N we have
#A[D] = D", where A[D] denotes the subgroup consisting of all elements annihilated by D. Prove
that

A (Z/NZ)".

Proof. By the structure theorem for finitely generated abelian groups,
n
A=Pz/piz
i=1
with each p; a rational prime. We also let N =[] j qjj with each g; distinct rational primes. Because
[ =#A=nN"= Hq;:ff
7 q;j

it follows that each p; is some g;, and for each j,

Z €; = T’fj.

pi=q;
We rewrite
1@ @ 7/
g Pi=4qj
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Now we will show that for any prime ¢ and positive integers e, f, Z/q°Z[¢/] = ¢™*{ef}, Indeed, if
f = e, then every element of Z/q°Z is annihilated by ¢, so Z/q°Z[q’] = #7/¢°Z = q¢°. Now suppose
f < e and we consider the multiplication by ¢/ map on Z/q°Z. Its kernel is ¢°~/7Z/q°Z, which is
isomorphic to Z/qZ, hence has ¢/ elements. For each g, we let A; = @pi:qj Z/q?jZ. We notice
that for any m > 1 and any abelian groups B, C, we have (B @ C)[m] = B[m] @& C[m] because b ® ¢
is annihilated by m iff b and ¢ both are. In addition, if ¢ is a prime prime not dividing a m > 1 and

e > 1, we have
Z/q°ZIm) =0

since every element of Z/q®Z has order dividing ¢°, hence cannot also divide m unless it’s trivial since
ged(m, ¢°) = 1. Thus for any e, j,

A[Qf]g(@Aj)[Qﬂ%Aj[q] EB(Z/q‘”Z[ i)

hence
H qmln{e 61} E min{e,e; }
q5 .

pi=q;

On the other hand, for e < f;, we have by hypothesis
#Alg5] = ¢§"
Putting these two together, we get that for any e < f;,
Z min{e, e; } = er.
Pi=q;

Letting e = 1, we see that
#Hpi=q}=r

Now let e(;) = min,,—y,{e;} and suppose for a contradiction that e(;) +1 < f;. Then

regy + #ei > e} = #pi = qitegy + #e > et = D e+ Y (egy+1) = (egy+

ei=e(j) €i>e(j)
This shows
r=#{e;.>epnt <#pi=ql=r
which is clearly impossible, so we get that e(;) > f;. On the other hand, e(;) < f; since
rfi =vg, (#A) = Zel Ze
Pi=q; Pi=q;

with equality iff each e; = e(;). This shows e(;) = f;, and moreover that each e; = e(;) = f;. Therefore

4= @ 25z = (2/ePz)

Pi=4q;

IIZ

A= @A =@ (z/qz) = Dz | =@/vay
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Chapter IV: The Formal Group of an Elliptic Curve

Exercises

Exercise 1

Statement. Let F(X,Y) € R[X,Y] be a power series satisfying
FIX,Y)=X+Y +... and F(X,F(Y,2)) = F(F(X,Y),2).

(a) Show that there is a unique power series i(T') € R[T] satistying F'(T,i(T)) = 0. Prove that i(T")
also satisfies F'(i(T),T) = 0.

(b) Prove that F(X,0) = X and F(0,Y) =Y.
Our approach will be to reduce the proof of (a) to that of (b), and then independently prove (b).
Proof. (a) We will assume (b) holds, so we let

FXY)=X4Y+ > amX"Y"

m,n>=1

We then compute
F(T,i(T)) =T +i(T)+ > amnT™i(T)".

m,n>1

Therefore, if we want 0 = F(T,i(T)), we get
(T)=0 modT

SO we may write

i(T) =Y b

k>1

Continuing the assertion F(7T,i(T")) = 0, we have
0=T+i(T)=T+uT mod T?

since for any m,n > 1, since i(T) = 0 mod T, it follows that T™i(T) = 0 mod T?. Therefore
b1 = —1 is uniquely determined. Now assume for induction that each of by, ...,by_1 are all uniquely
determined. We have

n

¢ L(e=m)/n]
0= Z b TF + Z A T™ Z b T* mod T+,
k=2 m,n>1 k=1

m4n<t

We notice that the only possible term of the polynomial

n

L(£—m)/n]
> ama T > Tt
m,n>1 k=1

m4n</t

involving b, is when k = £, but this is never achieved since m > 1. Therefore

n

¢ L(e=m)/n]
0= Zkak + Z A T™ Z bT* | =0T + P(by,...,by_1)T* mod T
k=2 m,n>1 k=1

m+n<l
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for some polynomial P(by,...,by—1) because by induction we may assume that F(T,i(T)) = 0
mod T*. More explicitly,

P(by,...;be1) = > G Y I10x-

m,n>1 ki+-+k,=f—m =1
m4n<e 1<k; <[ (—m)/n]

Therefore by = —P(by,...,bs—1), so by is uniquely determined as well. This proves uniqueness of i(T),
and also shows that we may select the b; (and must by uniqueness) to be such that for each n > 1,

F(T,i(T))=0 mod T".

Therefore, it must be that actually F(T,i(T)) € R[T] must actually equal 0 (for any f,g € R[T], if
forallm > 1, f =g mod T, then f = g).
Now we must show that F(i(T'),T) = 0 as well. We have

T = F(0,T) = F(F(T,i(T)), T) = F(T, F((T), T)).
For ease of notation, we let g(T') = F(i(T'),T), so we must show g(T') = 0. We know that
T=T+g(T)+ Y amT"g(T)"
m,n>1

0=g(T)+ > amaT™g(T)".

m,n>1

Because for any f,g € R[T], if f =g mod T* for every £ > 1, then f = g, it suffices for our claim to
show that for each £ > 1, g(T) = 0 mod T*. Since each term in the sum is divisible by T, it follows
immediately that ¢(7) =0 mod T. Now by induction, we assume g(7) =0 mod 7*~!. Thus for any
m,n > 1, we get that 7"g(T)” =0 mod T*, hence

0=g(T) modT*

as claimed.
For (b), we write F(X,Y) =>" n>0 Amn XY™ where ago = 0 and a19 = ag1 = 1. We have

F(X,0) = F(X, F(0,0)) = F(F(X,0),0).

Let G(X) = F(X,0) =}, 5, an X" where a,, = ay0, 50

GX)=GGX) = am D> anXx"

m2=1 n=1

This implies

0= amoG(X)™.

m>=2

We will show by induction that c,, = 0 for n > 2. To show as = 0, we have
X+ X?=G(X) =X +a3X? + uX? mod X3

which shows that
Qo = 0.
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Now suppose that ag =+ = ay_1 =0, i.e., G(X)

G(X) =

X)+ Z Am

m>l
hence
0= am|X+
m>=L

Considering the equation modulo X+, we get

0= O(gX[

since X Y 5,0, X" =0 mod X! and for any m >

m

ZanX"

n=>t

which implies that this same expression is congruent to 0 modulo X**! since ¢2

This shows every term in the binomial expansion of

X—I—Zan

n>0

=X+ 3,5, anX". Then

m

X + Z an X"
n>t

m

ZanX"

n>t

mod X‘t!

2

=0 mod X‘Z2

> /¢+1 because £ > 2

m

Xn

is congruent to 0 modulo X**!, except for the term X* if m = ¢. This shows a, = 0 as well as claimed.

An identical proof, replacing G(
shows also that F(0,Y) =Y.

X) by

Chapter V: Elliptic Curves over

Exercises

Exercise 1

F(0,Y) =

Statement. Verify the Weil conjectures for V = PV,

Proof. Rationality: we must compute #PV (F,) for

F(F(0,0),Y) = F(0,F(0,Y)) and «,, by agp,
|

Finite Fields
each n > 1. First of all, there are ¢" — 1 distinct

N + 1-tuples of elements in Fy» that all represent the same point in P"(F,n), one for each nonzero

element of Fyn. Thus

(FNH \ 0) qn(N+1) 1 N
]P)n ]F n = = = ’I’Ll.
#P"(Fgn) = " —1 " —1 ;q
Thus
N . mn
Z(V[Fg;T) = exp(y (3 _d")—)
n>1 i=0
Therefore
, N
(¢'T)"

log Z(V/Fy: T)

=2 Zq’”

n>=1 =0




which gives

N
1
Z(V/Fg;T) = H 1—¢T € Q(T).
i=0
Functional Equation: We compute
N N N
1 1 JNT N T 1
Z(V/F; = - = - = . -
(V/ ‘I’qNT) E)l—qz_NT_l il;[)qNT_qz g —qt 1_qN—zT

Thus the Euler characteristic € is N + 1.

Riemann Hypothesis: We have that for each i, Py; = 1 — ¢'T € Z[T] and P41 = 1 € Z[T).
Then for the odd indices, the polynomial has degree 0, hence the claim about the «;; is vacuous. For
Py; =1 —¢'T, we see it has degree 1 and the only a;; is q*, so clearly lai | = qi2.

]

Exercise 12
Statement. Prove that for every prime p > 3, the elliptic curve
E:y =234z

satisfies
#E(F,) =0 mod 4.

Proof. First we consider the case where p = 3 mod 4. By Example 4.5, we know the primes congruent
to 3 modulo 4 are exactly the primes where E(IF, ) is supersingular. We know from Theorem 4.1 (a) that
E(F,) is supersingular iff A, = 0, where A, is the coefficient of 2P~ in the expansion of (x3+2)®~1)/2
in IF,. For p > 5, we have by Hasse’s inequality that

la| < 2/p < p.

Since a = A, = 0 mod p by the proof of Theorem 4.1 (a) and |a| < p, it follows that a = 0 so
#EF,)=p+1—a=p+1=0 mod4.

We explicitly verify that for p = 3, E(F,) = {0, (0,0),(2,0),(—2,0)} so also #E(F,) =p+ 1.

Now we may assume that p =1 mod 4. Clearly it suffices to show #E(F,)[2] = 4 since the order
of a subgroup divides the order of the group containing it. Let i € F, be such that i = —1. We
claim E(F,)[2] = {0, (0,0), (+i,0)}. For this claim, it suffices to show that if P = (z,y) is such that
2P = O, then y = 0 since 23 +x = z(x +1i)(z — 7). We explicitly compute the duplication formula for
E as follows using the formulas from Chapter III:

(@1 (@ et 46 +1)
o) = (4x(x2+ DT 9uy(e® +1) )

Thus 2(z,y) = O iff # = 0,2 = 4, or y = 0. But notice that y = 0 iff z € {£4,0} since y> = 23 + 2 =
2(x +4)(xz — ). Then indeed the only 2-torsion points are {O, (£4,0), (0,0)}.

We write p = m? + n? where we take m to be odd and n even, and let ¢ € End(FE) be the
Frobenius morphism,. By Theorem 2.3.1, we know that ¢ satisfies $? — a¢ +p = 0 in End(E). Since
E(F,) is ordinary, i.e., End(E(F,)) is an order in a quadratic imaginary field, and End(E) D Z]i]
where [i] = (z,y) — (—=,4y) where here i = —1 in F,, it follows that actually End(E) = Z[i]. Now
#p = p = m? + n? gives that ¢ = a + bi up to associates, since Z[i] is a UFD. This shows that
a € {£2m,+2n}. But if a = +2n, then a =0 mod 4, which yields

#EF,)=p+1l—a=p+1=2 mod4

which contradicts our previous assertion, so ¢ = £2m and #E(F,) =p+ 1+ 2m. |
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