MAE 560: Applied Computational Fluid Dynamics Project 3

By Varad Lad, ASU ID: 1226212769 (NO COLLABORATION)

(D1)

Mesh Resolution = 0.01

Time Step size used for simulation = 1000

Time Step size = 0.06

Iteration = 10

Element Size	Time Step Size (s)	Number of Time Steps	Max Iterations
0.001	0.06	1000	10

To calculate Estimated Reynolds no.

 μ = 0.0012 kg/Ms

 $\rho = 790 \text{ kg/m}^3$

D = 0.04 m

v= 0.025 m/s

Re= $\rho vD/\mu$; (790 × 0.025) × 0.04/0.0012 = **658.36**

Contour plots of y-velocity at t= 1min

Contour plots of stream function t= 1min

Contour plots of vorticity magnitude t= 1min

A plot of lift force as function of time t=0 to t=1 min

(D4)

Run 1

	Amplitude (in Newton)	Period (in second)
Circular Cylinder	0.0126	7.4s
Elliptical Cylinder, Run 1	0.0579	9s
Elliptical Cylinder, Run 2	0.0149	12.4s

(D5)

A plot of the mesh along the plane of symmetry for the case.

(D6)

Contour plots of x-velocity on the plane of symmetry with θ = 22.5°

Contour plots of x-velocity on the plane of symmetry with θ = 45°

Contour Plots of X- Velocity over the inlet, at $\theta = 45^{\circ}$

	Lift Force (in Newton)	Drag Force (in Newton)
$\theta = 0^{\circ}$	7.40	3.489
θ = 22.5°	63.18	19.1222
θ = 45°	44.55	59.8660

Task 3

(D9)

Run1 - Contour plots of y-velocity on the horizontal Plane -

Run1 - Contour plots of y-velocity on the vertical Plane -

Run2 - Contour plots of y-velocity on the vertical Plane-

(D10)

Run1 Contour plots of turbulence kinetic energy

Run1 Contour plots of turbulence viscosity

- Maximum turbulent viscosity on this plane (μ_{Tmax}): 5.73×10-2
- Estimating the ratio between μ_{Tmax} & μ : μ_{Tmax}/μ = 3.21 × 103
- From the value above we can compare,
 The values of the Turbulent Viscosity = 0.057392554 and molecular
 Viscosity = 1.7994e-05

The turbulent viscosity (0.0573392554) surpasses the molecular viscosity of air by more than 3 orders of magnitude, signifying the dominance of turbulent effects over molecular effects in this flow at z=3 m on the horizontal plane.

(D11)

	Total Drag (N)	Pressure Term of Drag (N)	Viscous Term of Drag (N)
Run1 (X – Direction)	0.65422	0.6647	-0.0006998
Run2 (X – Direction)	-1.18552	-1.1510	-0.001904

	Total Drag (N)	Pressure Term of Drag (N)	Viscous Term of Drag (N)
Run1 (Y – Direction)	29.6333	28.982130	0.15598662
Run2 (Y – Direction)	-40.98552	-40.97895	-0.0745712

(D12)

A contour plot of the y-velocity at t = 1min.

(D13)

A plot of lift force vs. time from the transient simulation