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Hall's marriage theorem
In mathematics, Hall's marriage theorem, proved by Philip Hall (1935), is a theorem with two
equivalent formulations:

The combinatorial formulation deals with a collection of finite sets. It gives a necessary
and sufficient condition for being able to select a distinct element from each set.
The graph theoretic formulation deals with a bipartite graph. It gives a necessary and
sufficient condition for finding a matching that covers at least one side of the graph.
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Let  be a (possibly infinite) family of finite subsets of , where the members of  are counted
with multiplicity. (That is,  may contain the same set several times.)[1]

A transversal for  is the image of an injective function  from  to  such that  is an
element of the set  for every  in the family . In other words,  selects one representative from
each set in  in such a way that no two sets from  get the same representative. An alternative
term for transversal is system of distinct representatives.

The collection S satisfies the marriage condition when for each subfamily ,
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Restated in words, the marriage condition asserts that every subfamily  of  covers at least 
different members of .

If the marriage condition fails then there cannot be a transversal  of .

Proof

Suppose that the marriage condition
fails, i.e., that for some subcollection 
of ,  Suppose, by

way of contradiction, that a transversal 
 of  also exists.

The restriction of  to the offending
subcollection  would be an injective
function from  into . This is

impossible by the pigeonhole principle
since . Therefore no

transversal can exist if the marriage
condition fails.

Hall's theorem states that the converse is also true:

Hall's Marriage Theorem — A family S of finite sets has a transversal if and only
if S satisfies the marriage condition.

Example 1: Consider S = {A1, A2, A3} with

A1 = {1, 2, 3}
A2 = {1, 4, 5}
A3 = {3, 5}.

A valid transversal would be (1, 4, 5). (Note this is not
unique: (2, 1, 3) works equally well, for example.)

Example 2: Consider S = {A1, A2, A3, A4} with

A1 = {2, 3, 4, 5}
A2 = {4, 5}
A3 = {5}
A4 = {4}.

No valid transversal exists; the marriage condition is violated as is shown by the subfamily W =
{A2, A3, A4}. Here the number of sets in the subfamily is |W| = 3, while the union of the three sets
A2 U A3 U A4 contains only 2 elements of X.

Examples

example 1, marriage condition met
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Example 3: Consider S = {A1, A2, A3, A4} with

A1 = {a, b, c}
A2 = {b, d}
A3 = {a, b, d}
A4 = {b, d}.

The only valid transversals are (c, b, a, d) and (c, d, a,
b).

The standard example of an application of the
marriage theorem is to imagine two groups; one of n men, and one of n women. For each woman,
there is a subset of the men, any one of which she would happily marry; and any man would be
happy to marry a woman who wants to marry him. Consider whether it is possible to pair up (in
marriage) the men and women so that every person is happy.

If we let Ai be the set of men that the i-th woman would be happy to marry, then the marriage
theorem states that each woman can happily marry a man if and only if the collection of sets {Ai}
meets the marriage condition.

Note that the marriage condition is that, for any subset  of the women, the number of men whom
at least one of the women would be happy to marry, , be at least as big as the number of

women in that subset, . It is obvious that this condition is necessary, as if it does not hold, there
are not enough men to share among the  women. What is interesting is that it is also a sufficient
condition.

Let G be a finite bipartite graph with bipartite sets X and Y
(i.e. G := (X + Y, E)). An X-saturating matching is a matching
which covers every vertex in X.

For a subset W of X, let  denote the neighborhood of
W in G, i.e. the set of all vertices in Y adjacent to some element
of W. The marriage theorem in this formulation states that
there is an X-saturating matching if and only if for every
subset W of X:

In other words: every subset W of X has sufficiently many
adjacent vertices in Y.

Easy direction: we assume that some matching M saturates every vertex of X, and prove that
Hall's condition is satisfied for all W ⊆ X. Let M(W) denote the set of all vertices in Y matched by
M to a given W. By definition of a matching, |M(W)| = |W|. But M(W) ⊆ NG(W), since all elements

example 2, marriage condition violated
Application to marriage

Graph theoretic formulation

blue edges represent a matching

Proof of the graph theoretic version
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of M(W) are neighbours of W. So, |NG(W)| ≥ |M(W)| and hence, |NG(W)| ≥ |W|.

Hard direction: we assume that there is no X-saturating matching and prove that Hall's
condition is violated for at least one W ⊆ X. Let M be a maximum matching, and u a vertex not
saturated by M. Consider all alternating paths (i.e., paths in G alternately using edges outside and
inside M) starting from u. Let the set of all points in Y connected to u by these alternating paths be
Z, and the set of all points in X connected to u by these alternating paths (including u itself) be W.
No maximal alternating path can end in a vertex in Y, lest it would be an augmenting path, so that
we could augment M to a strictly larger matching by toggling the status (belongs to M or not) of all
the edges of the path. Thus every vertex in Z is matched by M to a vertex in W \ {u}. Conversely,
every vertex v in W \ {u} is matched by M to a vertex in Z (namely, the vertex preceding v on an
alternating path ending at v). Thus, M provides a bijection of W \ {u} and Z, which implies |W| =
|Z| + 1. On the other hand, NG(W) ⊆ Z: let v in Y be connected to a vertex w in W. If the edge (w,v)
is in M, then v is in Z by the previous part of the proof, otherwise we can take an alternating path
ending in w and extend it with v, getting an augmenting path and showing that v is in Z. Hence,
|NG(W)| ≤ |Z| = |W| − 1 < |W|.

Define a Hall violator as a subset W of X for which |NG(W)| < |W|. If W is a Hall violator, then
there is no matching that saturates all vertices of W. Therefore, there is also no matching that
saturates X. Hall's marriage theorem says that a graph contains an X-saturating matching if-and-
only-if it contains no Hall violators. The following algorithm proves the hard direction of the
theorem: it finds either an X-saturating matching or a Hall violator. It uses, as a subroutine, an
algorithm that, given a matching M and an unmatched vertex x0, either finds an M-augmenting
path or a Hall violator containing x0.

It uses

1. Initialize M := {}. // Empty matching.
2. Assert: M is a matching in G.
3. If M saturates all vertices of X, then return the X-saturating matching M.
4. Let x0 be an unmatched vertex (a vertex in X \ V(M)).

5. Using the Hall violator algorithm, find either a Hall violator or an M-augmenting path.
6. In the first case, return the Hall violator.
7. In the second case, use the M-augmenting path to increase the size of M (by one

edge), and go back to step 2.

At each iteration, M grows by one edge. Hence, this algorithm must end after at most |E|
iterations. Each iteration takes at most |X| time. The total runtime complexity is similar to the
Ford-Fulkerson method for finding a maximum cardinality matching.

Let S = (A1, A2, ..., An) where the Ai are finite sets which need not be distinct. Let the set X = {A1,
A2, ..., An} (that is, the set of names of the elements of S) and the set Y be the union of all the
elements in all the Ai.

Constructive proof of the hard direction

Equivalence of the combinatorial formulation and the graph-theoretic
formulation

https://proxy.jljljl.workers.dev/-----https://en.wikipedia.org/wiki/Hall_violator
https://proxy.jljljl.workers.dev/-----https://en.wikipedia.org/wiki/Hall_violator
https://proxy.jljljl.workers.dev/-----https://en.wikipedia.org/wiki/Maximum_cardinality_matching


2020/2/5 Hall's marriage theorem - Wikipedia

https://proxy.jljljl.workers.dev/-----https://en.wikipedia.org/wiki/Hall%27s_marriage_theorem 5/8

We form a finite bipartite graph G := (X + Y, E), with bipartite sets X and Y by joining any element
in Y to each Ai which it is a member of. A transversal of S is an X-saturating matching (a matching
which covers every vertex in X) of the bipartite graph G. Thus a problem in the combinatorial
formulation can be easily translated to a problem in the graph-theoretic formulation.

The theorem has many other interesting "non-marital" applications. For example, take a standard
deck of cards, and deal them out into 13 piles of 4 cards each. Then, using the marriage theorem,
we can show that it is always possible to select exactly 1 card from each pile, such that the 13
selected cards contain exactly one card of each rank (Ace, 2, 3, ..., Queen, King).

More abstractly, let G be a group, and H be a finite subgroup of G. Then the marriage theorem can
be used to show that there is a set T such that T is a transversal for both the set of left cosets and
right cosets of H in G.

The marriage theorem is used in the usual proofs of the fact that an (r × n) Latin rectangle can
always be extended to an ((r+1) × n) Latin rectangle when r < n, and so, ultimately to a Latin
square.

This theorem is part of a collection of remarkably powerful theorems in combinatorics, all of which
are related to each other in an informal sense in that it is more straightforward to prove one of
these theorems from another of them than from first principles. These include:

The König–Egerváry theorem (1931) (Dénes Kőnig, Jenő Egerváry)
König's theorem[2]

Menger's theorem (1927)
The max-flow min-cut theorem (Ford–Fulkerson algorithm)
The Birkhoff–Von Neumann theorem (1946)
Dilworth's theorem.

In particular,[3][4] there are simple proofs of the implications Dilworth's theorem ⇔ Hall's
theorem ⇔ König–Egerváry theorem ⇔ König's theorem.

By examining Philip Hall's original proof carefully, Marshall Hall, Jr. (no relation to Philip Hall)
was able to tweak the result in a way that permitted the proof to work for infinite S.[5] This variant
refines the marriage theorem and provides a lower bound on the number of transversals that a
given S may have. This variant is:[6]

Suppose that (A1, A2, ..., An), where the Ai are finite sets that need not be distinct, is a family of sets
satisfying the marriage condition, and suppose that |Ai| ≥ r for i = 1, ..., n. Then the number of
different transversals for the family is at least r! if r ≤ n and r(r - 1) ... (r - n +1) if r > n.

Applications

Logical equivalences

Infinite families

Marshall Hall Jr. variant
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Recall that a transversal for a family S is an ordered sequence, so two different transversals could
have exactly the same elements. For instance, the family A1 = {1,2,3}, A2 = {1, 2, 5} has both (1, 2)
and (2, 1) as distinct transversals.

The following example, due to Marshall Hall, Jr., shows that the marriage condition will not
guarantee the existence of a transversal in an infinite family in which infinite sets are allowed.

Let S be the family, A0 = {1, 2, 3, ...}, A1 = {1}, A2 = {2}, ..., Ai = {i}, ...

The marriage condition holds for this infinite family, but no transversal can be constructed.[7]

The more general problem of selecting a (not necessarily distinct) element from each of a
collection of non-empty sets (without restriction as to the number of sets or the size of the sets) is
permitted in general only if the axiom of choice is accepted.

The marriage theorem does extend to the infinite case if stated properly. Given a bipartite graph
with sides A and B, we say that a subset C of B is smaller than or equal in size to a subset D of A in
the graph if there exists an injection in the graph (namely, using only edges of the graph) from C to
D, and that it is strictly smaller in the graph if in addition there is no injection in the graph in the
other direction. Note that omitting in the graph yields the ordinary notion of comparing
cardinalities. The infinite marriage theorem states that there exists an injection from A to B in the
graph, if and only if there is no subset C of A such that N(C) is strictly smaller than C in the
graph.[8]

A generalization of Hall's theorem to general graphs (that are not necessarily bipartite) is provided
by the Tutte theorem.

1. Hall, Jr. 1986, pg. 51. It is also possible to have infinite sets in the family, but the
number of sets in the family must then be finite, counted with multiplicity. Only the
situation of having an infinite number of sets while allowing infinite sets is not allowed.

2. The naming of this theorem is inconsistent in the literature. There is the result
concerning matchings in bipartite graphs and its interpretation as a covering of (0,1)-
matrices. Hall, Jr. (1986) and van Lint & Wilson (1992) refer to the matrix form as
König's theorem, while Roberts & Tesman (2009) refer to this version as the Kőnig-
Egerváry theorem. The bipartite graph version is called Kőnig's theorem by Cameron
(1994) and Roberts & Tesman (2009).

3. Equivalence of seven major theorems in combinatorics (https://proxy.jljljl.workers.dev/-
----http://robertborgersen.info/Presentations/GS-05R-1.pdf)

4. Reichmeider 1984
5. Hall, Jr. 1986, pg. 51
6. Cameron 1994, pg.90
7. Hall, Jr. 1986, pg. 51
8. Aharoni, Ron (February 1984). "König's Duality Theorem for Infinite Bipartite Graphs".

Journal of the London Mathematical Society. s2-29 (1): 1–12. doi:10.1112/jlms/s2-29.1.1
(https://proxy.jljljl.workers.dev/-----https://doi.org/10.1112%2Fjlms%2Fs2-29.1.1).
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