

Tumor Somatic Immune Phenotype Prediction Driven by DNA Sequence and Deep Learning

Tianrui Qi, Jing He

Oncology Group
Therapeutic Area Genetics (TAG)
Regeneron Genetics Center (RGC)

Background

Significance:

- What? Describe the presence and activity of immune cells such as T cells and macrophages within the tumor tissue, i.e., immune response.
- How? Assessed using techniques like immunohistochemistry, flow cytometry, and genomic sequencing
 methods such as RNA sequencing to quantify immune cells in the tumor.
- Why? Predict a patient's response to immunotherapy; higher infiltration indicating increased sensitivity to treatment, i.e., may achieve better outcomes.

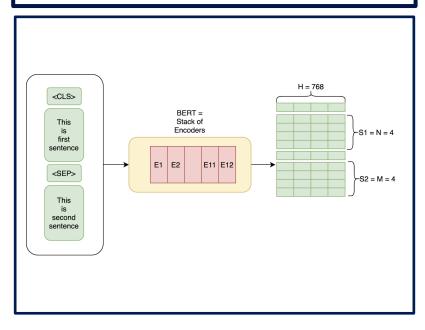
Opportunity 1: Data

- Stanford data (#patients = 8, #samples = 23, normal and tumor):
 Basal Cell Carcinoma pre and post anti-PD1 treatment that enhanced tumor immune infiltration.
- TCGA SKCM data (#patients = 470, #samples = 928, normal blood and tumor): Leukocyte Fraction from other omics data.
- RGC data (Germline WXS from blood)

Opportunity 2: Method

- <u>DNABERT</u> (2021): State-of-art performance on prediction of promoters, splice sites and transcription factor binding sites (human).
- <u>DNABERT2</u> (2023): State-of-art performance across 28 distinct datasets across 7 tasks and 4 species (human, mouse, yeast, virus).

Species	Task	Num. Datasets	Num. Classes	Sequence Length
	Core Promoter Detection	3	2	70
	Transcription Factor Prediction	5	2	100
Human	Promoter Detection	3	2	300
	Splice Site Detection	1	3	400
Mouse	Transcription Factor Prediction	5	2	100
Yeast	Epigenetic Marks Prediction	10	2	500
Virus	Covid Variant Classification	1	9	1000


Table 1: Summarization of the Genome Understanding Evaluation (GUE) benchmark.

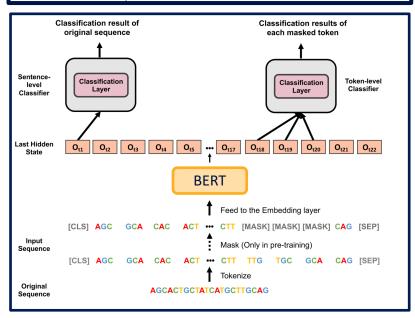
Background: More About Model

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language
{jacobdevlin,mingweichang,kentonl,kristout}@google.com

- Encoder-only models that utilize global context instead of decoder-only models like GPT that are unidirectionally.
- Useful when final predictions have high accuracy based off only an embedding / representation of the inputted sequence

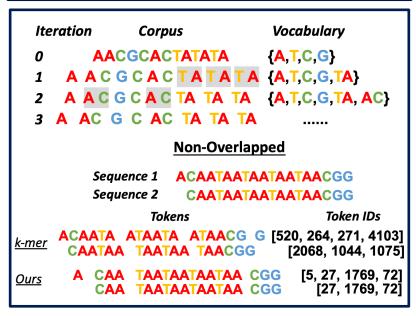
Genome analysis


DNABERT: pre-trained Bidirectional Encoder

Representations from Transformers model for

DNA-language in genome

Yanrong Ji^{1,†}, Zhihan Zhou^{2,†}, Han Liu^{2,*} and Ramana V. Davuluri (5) ^{3,*}


¹Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of

 k-merization scheme for tokenizing the genome to extend BERT from human languae to DNA sequence DNABERT-2: EFFICIENT FOUNDATION MODEL AND BENCHMARK FOR MULTI-SPECIES GENOME

Zhihan Zhou* Yanrong Ji* Weijian Li* Pratik Dutta[†] Ramana Davuluri[†] Han Liu*

Northwestern University* Stony Brook University[†]

- Improve the tokenizing by compression algorithm Byte Pair Encoding (BPE) that merges frequent pairs of nucleotides instead a specific k-mer
- Biologically significant tokens

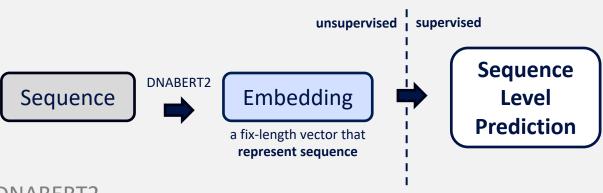
Goals

Stanford

WXS
sample

TCGA SKCM

RGC


Sample Level Tumor Immune Infiltration Prediction

- Goal 1: Viability of predict tumor immune infiltration by DNA sequence on Stanford data
- Goal 2: Finetune the pipeline on TCGA SKCM data
- Goal 3: Predict on RGC data

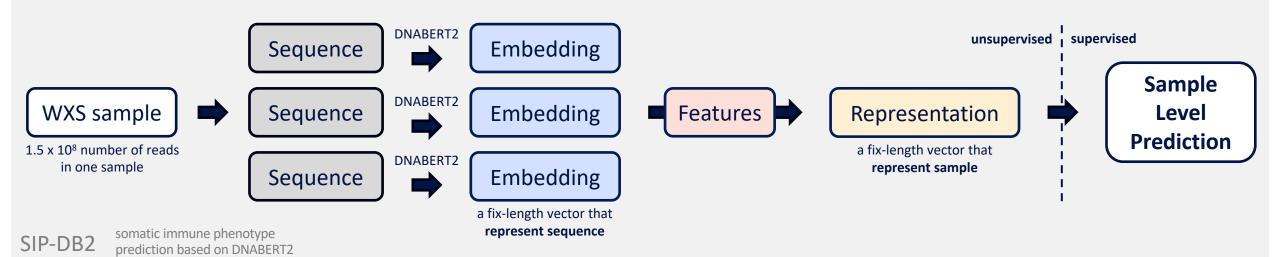
Challenges: Requiring Context-specific Adaptation

Problem DNABERT2 Tries to Solve

Species	Task	Num. Datasets	Num. Classes	Sequence Length
	Core Promoter Detection	3	2	70
	Transcription Factor Prediction	5	2	100
Human	Promoter Detection	3	2	300
	Splice Site Detection	1	3	400
Mouse	Transcription Factor Prediction	5	2	100
Yeast	Epigenetic Marks Prediction	10	2	500
Virus	Covid Variant Classification	1	9	1000

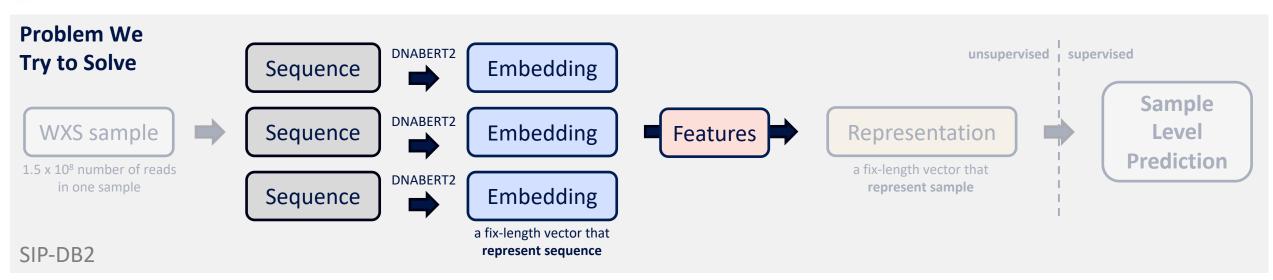
Table 1: Summarization of the Genome Understanding Evaluation (GUE) benchmark.

DNABERT2


Problem We Try to Solve

Gap between sequence and sample level prediction:

- 1. Number of reads vary by samples, chromosomes
- 2. Reads between samples not match, cannot compare directly


How we going to solve:

- 1. Feature select the most informative positions
- 2. Extract reads from these positions to represent the sample

Methods(v1): How to Represent a Given WXS Sample?

Select Features

c: index of chromosome, 1-22 & X

N_c: num of reads for chromosome c, all samples

 K_c : num of features(positions) for chromosome c, i.e., $K_c = 0.1 \times N_c$

	Sequence	Position
1	TCTTGCACA	51,442
		•••
K _c	CTGGAAAC	2,764,524
N_c	AAGCACTCAA	6,463,840
		1

DNABERT2

	Embedding	Position
1	-0.032, -0.121,, 0.071	51,442
•••		•••
K _c	-0.137, -0.090,, 0.107	2,764,524
		•••
N_c	0.022, -0.076,, -0.085	6,463,840

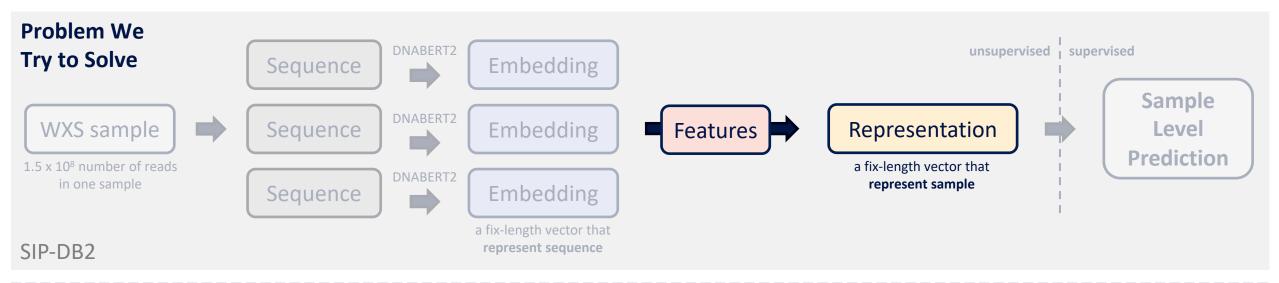
max of cross reads distance

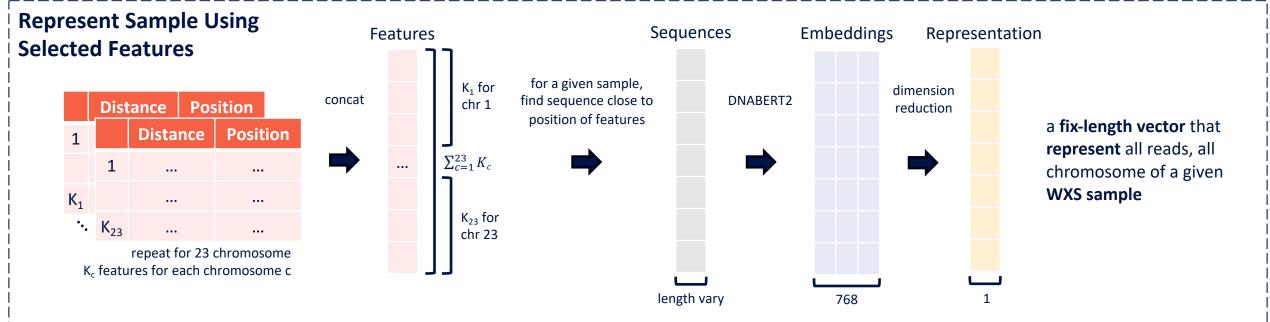
	Distance	Position
1	9.7	51,442
	•••	
K _c	6.5	2,764,524
	•••	•••
N_c	12.1	6,463,840

sort by distance

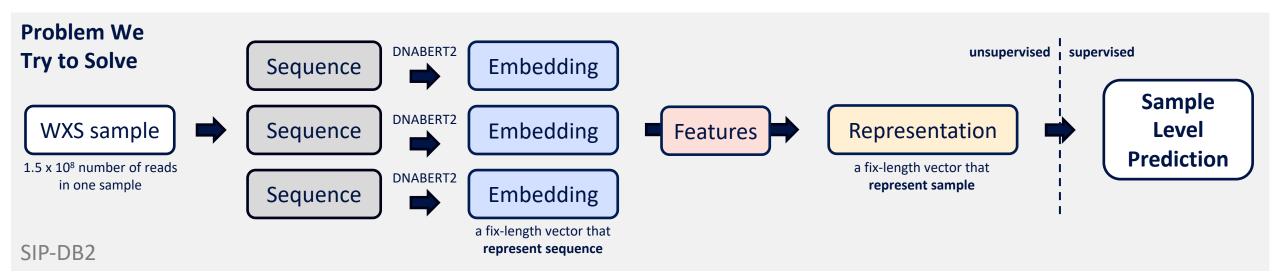
keep top K_c positions

	Distance	Position
1	12.1	6,463,840
	•••	•••
K _c	9.7	51,442
	ال منام ما منا	


we have K_c number of most informative position of chromosome c


length vary by reads

fix-length vector of 768


Methods(v1): How to Represent a Given WXS Sample?

Methods(v1): Profiling of Each Steps

Filter Sequence using SNPs

Resource

- CPU: 1 core / process
- Memory: 45GB / process; depend on length (bp) of WXS, which is fixed
- Disk: 0.2GB / 1M reads;
 30GB / sample with 150M reads

Speed

30K reads / second;
 1.5 hour / sample with 150M reads

Sequence to Embedding

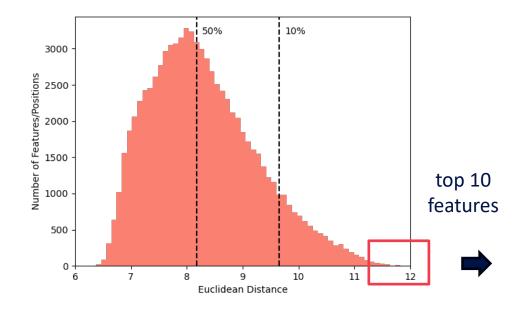
Resource

- CPU: 1 core / process
- GPU (T4): at least 2GB / process; depend on batch size
- Memory: 3GB / 1M reads; depend on number of reads and save to disk frequency
- Disk: 3GB / 1M reads;
 4.5GB / sample with 1.5M reads after SNPs filter
 Speed
- 500 reads / second; 1 hour / sample with 1.5M reads after SNPs filter

Feature Selection

Resource

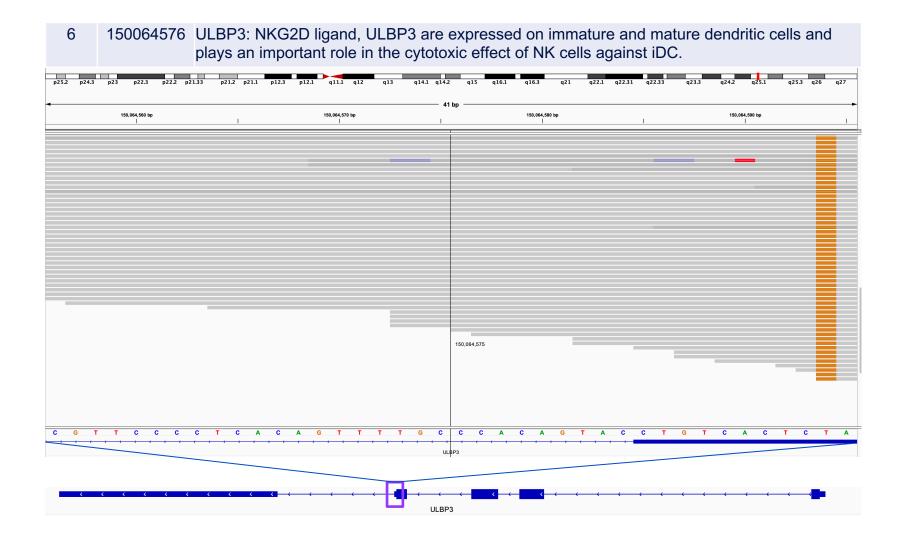
- CPU: 5 core / process
- Memory: 2GB / sample pair where each sample with 1.5M reads after SNPs filter
- Disk: 0.5MB / 1M reads; 300MB if we use 400 samples with 1.5M reads each


Speed

 1 second / sample pair with 1.5M reads each after SNPs filter; O(sample²)

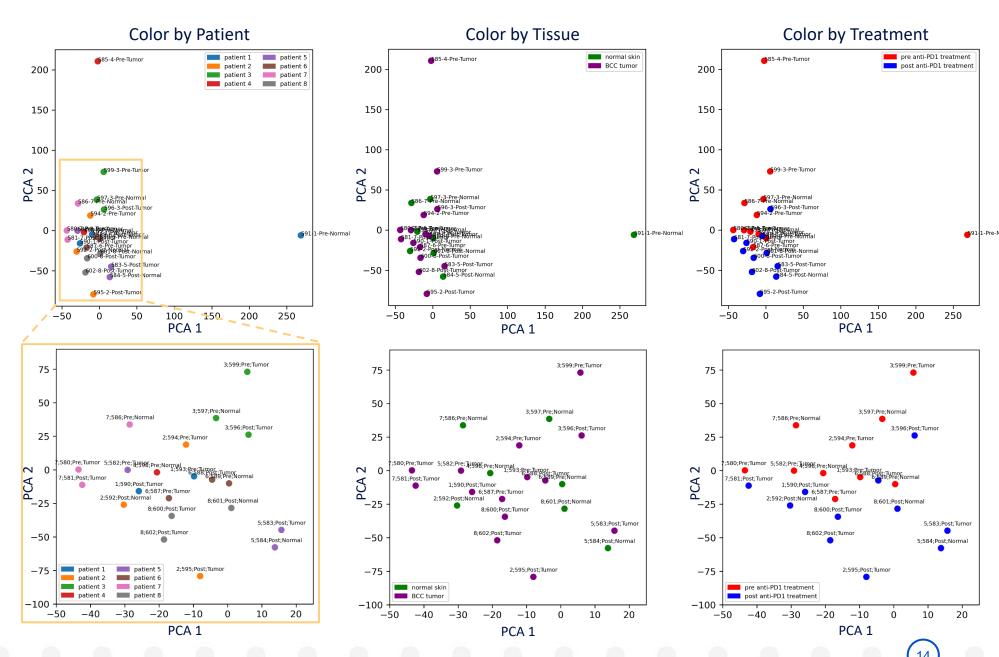
Results: Biological Interpretation of the Top Features

Distribution of features' distance of chromosome 6 Feature Selection by method(v1) Train on Stanford (N=23)



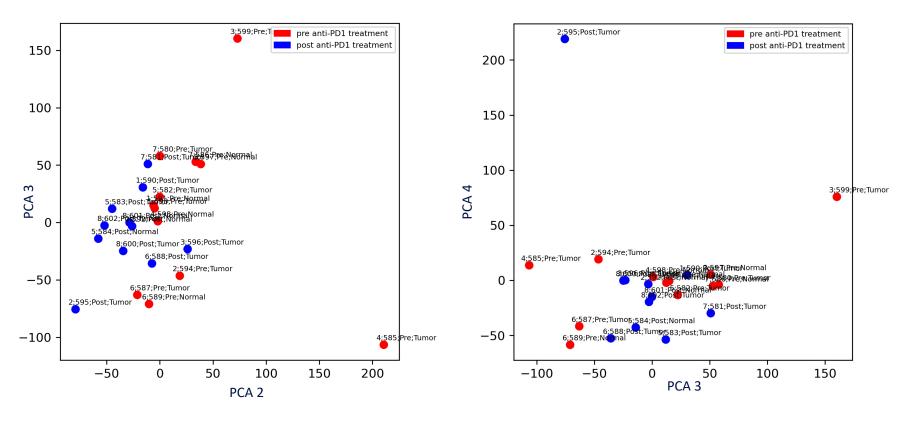
Distance can use as score to indicate how important this feature/position is

Chr	Position	Annotation
6	31148372	HLA-C
6	150064576	ULBP3: NKG2D ligand, ULBP3 are expressed on immature and mature dendritic cells and plays an important role in the cytotoxic effect of NK cells against iDC.
6	31271878	HLA-C
6	90147296	BACH2: Enables sequence-specific double-stranded DNA binding activity. Involved in primary adaptive immune response involving T cells and B cells.
6	31271900	HLA-C
6	31222832	nearest gene HCG27 and HLA-C. LncRNA HCG27 Promotes Glucose Uptake Ability of HUVECs by MiR-378a-3p/MAPK1 Pathway
6	31586832	LST1, leukocyte specific transcript 1
6	150025312	RAET1L, RAET1L belongs to the RAET1 family of major histocompatibility complex (MHC) class I-related genes, which are located within a 180-kb cluster on chromosome 6q24.2-q25.3.
6	31271884	HLA-C
6	32052816	TNXB, tenascin XB, his protein plays an important role in organizing and maintaining the structure of tissues that support the body's muscles, joints, organs, and skin (connective tissues).


Results: Biological Interpretation of the Top Features

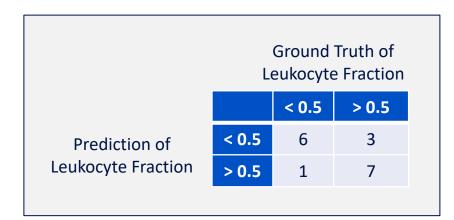
Results: Anti-PD1 Treated Basal Cell Carcinoma Patients from Stanford

- Features select from 23 chromosome of all Stanford data samples
- Projection of embedding to PCA
- Visualization of metadata on PCA (unsupervised)



Results: Anti-PD1 Treated Basal Cell Carcinoma Patients from Stanford

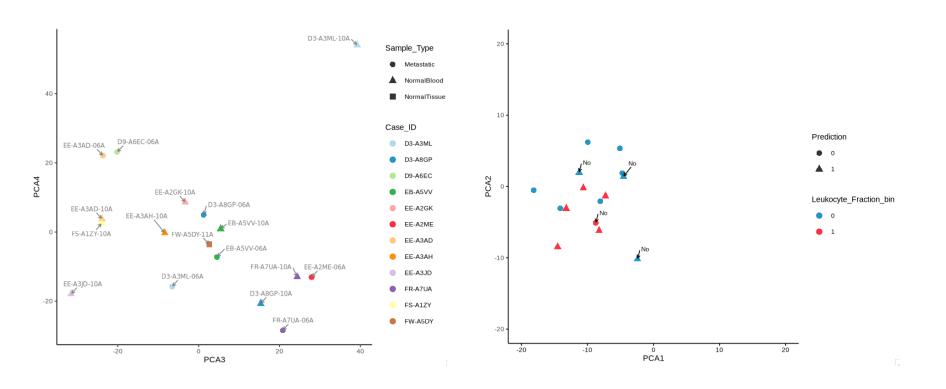
- Features select from 23 chromosome of all Stanford data samples
- Projection of embedding to PCA
- Visualization of metadata on PCA (unsupervised)


Results: Anti-PD1 Treated Basal Cell Carcinoma Patients from Stanford Supplemental for Stanford Metadata

Patien t	Tumor Type	Treatment	Ongoin g Vismo degib treatm ent	Prior treatment	Response	Best % change	pre site	days pre treatment	post site	scRNA days post treatme nt	Adapti ve pre site	Adaptive days pre treatment	Adapti ve post site	Adaptive days post treatmen t	PBMC Adaptive days pre treatment	PBMC Adaptiv e days post treatme nt	Exome pre site	Exome days pre treatme nt	Exome post site	Exome days post treatme nt
su001	всс	Pembrolizu mab	+	Vismodegib	Yes	-81	L arm	-239, -78	L arm	83	L arm	-78, -5	L arm	83, 146	-239	104	L arm	-78	L arm	146
su002	всс	Pembrolizu mab	-	Vismodegib	Yes	0*	Nose	0	Nose	62	Nose	-602	NA	NA	NA	117	Nose	0	Nose	62
su003	всс	Pembrolizu mab	-	Vismodegib	Yes	-100	R arm	-243	R chest	16, 121	NA	NA	R chest	15	-243	16	R arm	-244	R arm	155
su004	всс	Cemiplimab	-	-	Yes	-25	Knee	1	Knee	38	NA	NA	NA	NA	NA	NA	Knee	0	NA	NA
su005	всс	Pembrolizu mab	-	Vismodegib	No	5	L ear	0	L ear	105	L ear	-28	L ear	42	0	42	L ear	0	L ear	105
su006	всс	Pembrolizu mab	+	Vismodegib	No	-11	R neck	0	R neck	21	R neck	-280	R neck	140	-84	140	R neck	-79	R neck	21
su007	всс	Pembrolizu mab	-	Vismodegib	No	10	L cheek	-3	L cheek	60	L cheek	-3	L cheek	60	-1855	39	L cheek	-3	L cheek	60
su008	всс	Pembrolizu mab	+	Vismodegib	No	0	R arm	-91	R arm	43	R arm	-43	R arm	42	-98	43	NA	NA	R arm	43

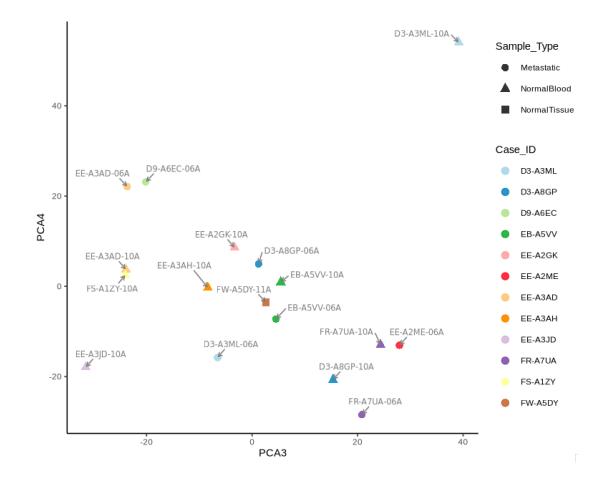
Results: Immune Prediction of Untreated Melanoma Patient from TCGA

- Features select from 23 chromosome of all Stanford data samples
- Projection of embedding to PCA
- Visualization of metadata on PCA (unsupervised)
- 13/17 samples predicted correctly

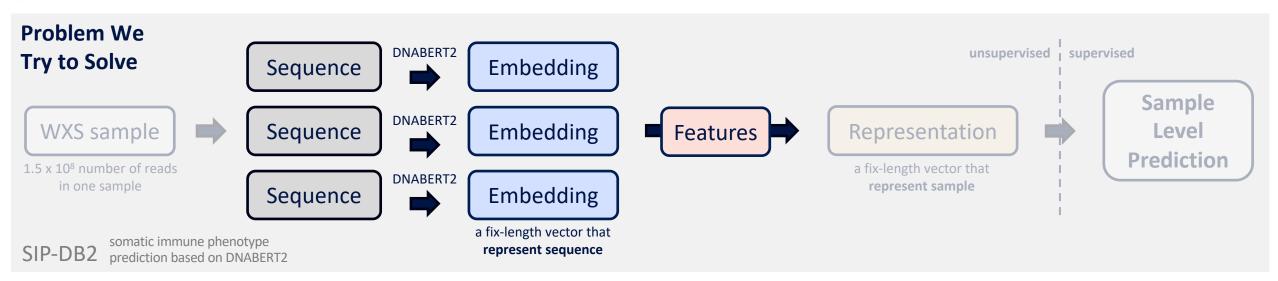


Results: Immune Prediction of Untreated Melanoma Patient from TCGA

- Features select from 23 chromosome of all Stanford data samples
- Projection of embedding to PCA
- Visualization of metadata on PCA (unsupervised)
- 13/17 samples predicted correctly


Results: Immune Prediction of Untreated Melanoma Patient from TCGA Supplemental for TCGA Metadata

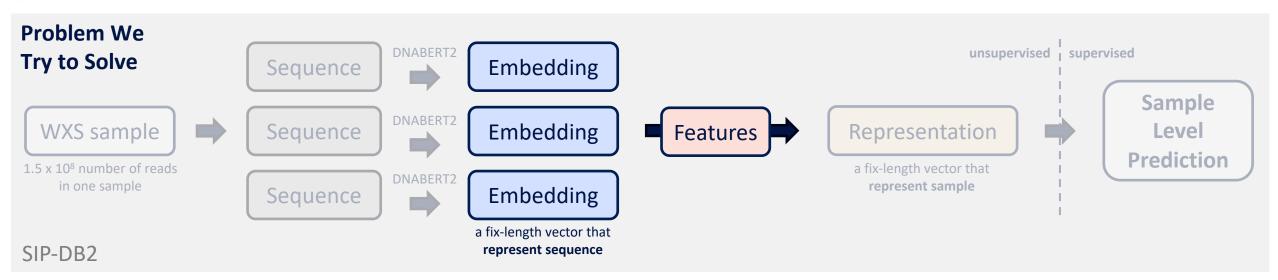
TCGA Participant Barcode	TCGA Subtype	DL prediction	DL predict correct	Leukocyte Fraction	Th1 Cells	Th2 Cells	T Cells CD8	Eosinophils
TCGA-EE-A2GK SKC	M.Triple_WT	Low	No	0.90	-769.06	-647.24	0.08	0.00
TCGA-EB-A5VV NA		High	Yes	0.90	-667.82	-1124.27	0.12	0.00
TCGA-EE-A2ME SKC	M.BRAF_Hotspot_M	High	No	0.80	368.91	896.15	0.28	0.00
TCGA-FR-A7UA NA		High	Yes	0.78	1236.60	279.26	0.41	0.00
TCGA-FW-A5DY NA		High	Yes	0.76	-79.90	-633.45	0.10	0.00
TCGA-EE-A3JD SKC	M.NF1_Any_Mutants	High	Yes	0.72	798.37	763.81	0.16	0.00
TCGA-D3-A8GP NA		High	No	0.05	-1108.04	233.51	0.27	0.00
TCGA-D9-A6EC NA		Low	Yes	0.04	-176.10	336.34	0.04	0.00
TCGA-EE-A3AD SKC	M.BRAF_Hotspot_M	Low	Yes	0.04	-567.50	735.12	0.00	0.00
TCGA-EE-A3AH SKC	M.BRAF_Hotspot_M	Low	Yes	0.04	-1060.93	389.18	0.08	0.01
TCGA-D3-A3ML SKC	M.RAS_Hotspot_Mu	High	No	0.03	-71.67	677.88	0.20	0.00
TCGA-FS-A1ZY SKC	M.RAS_Hotspot_Mu	High	No	0.02	-1010.42	402.17	0.13	0.00


Results: Immune Prediction of Untreated Melanoma Patient from TCGA

- Features select from 23 chromosome of all Stanford data samples
- Projection of embedding to PCA
- Visualization of metadata on PCA (unsupervised)
- 13/17 samples predicted correctly

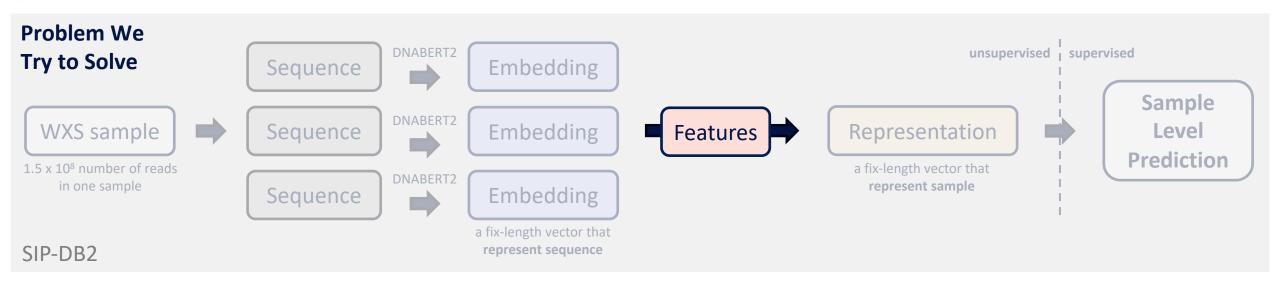
Challenges: Scaling Up from Stanford (N=23) to TCGA (N=928)

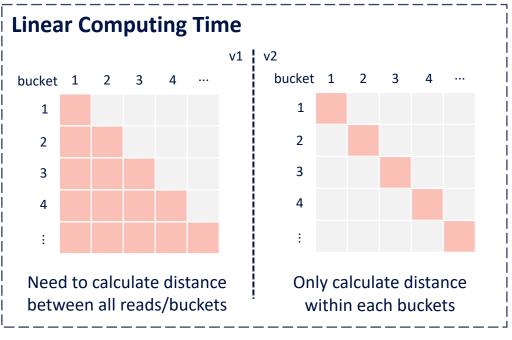
Select Features

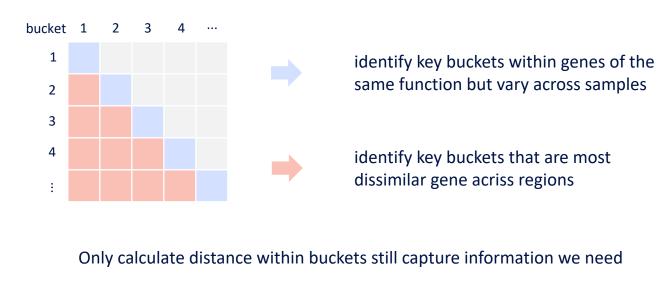

c: index of chromosome, 1-22 & X

N_c: num of reads for chromosome c, all samples

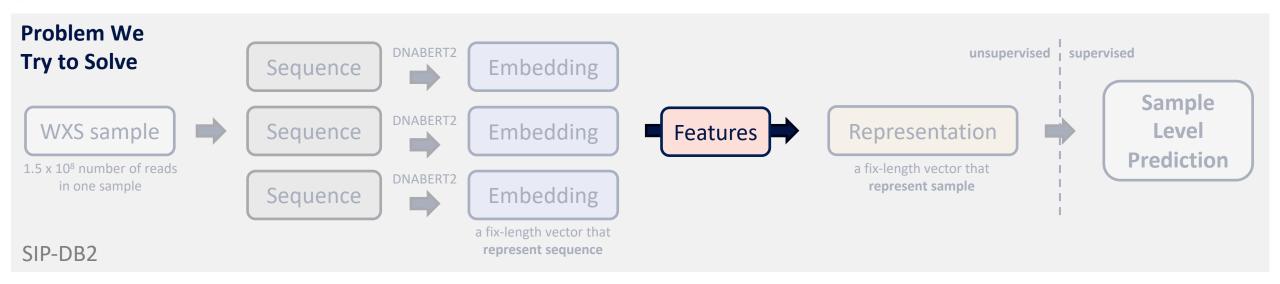
K_c : num of features(positions) for chromosome c, i.e., K_c = 0.1 x N_c										Quadratic computing time								
		Sequence	Position			Embedding	Position	max of		Distance	Position	sort by		Distance	Position			
ļ	1	TCTTGCACA	51442	DNABERT2	1	-0.032, -0.121,, 0.071	51442	cross reads distance	1	9.7	51442	distance	1	12.1	6463840			
İ İ	•••				•••													
į	K_c	CTGGAAAC	2764524		K_{c}	-0.137, -0.090,, 0.107	2764524		K_c	6.5	2764524		K _c	9.7	51442			
į.	•••				•••		•••				•••	keep top K _c		we have K _c	number of			
į L	N_c	AAGCACTCAA	6463840		N_c	0.022, -0.076,, -0.085	6463840		N_c	12.1	6463840	positions	most informative position					
į Į		length vary by reads			ı	fix-length vector of 768								of chro	mosome c			

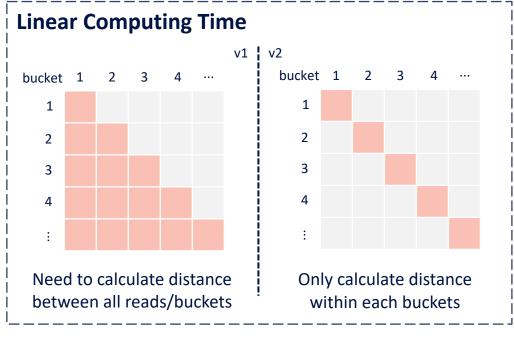

Methods(v2): Bucket Version of Selecting Features

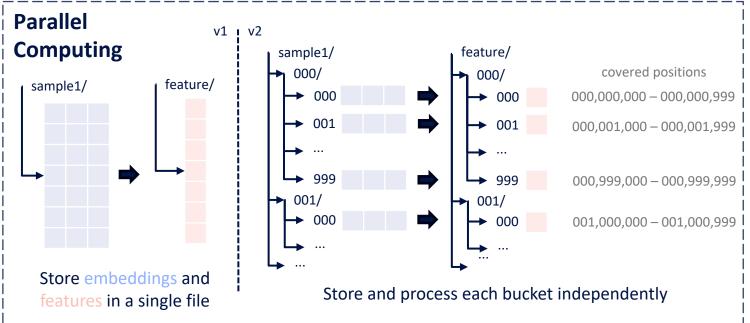



ł	Sele	ect Features									
į					Embedding	Position	Bucket				
į		Embedding	Position	group by	-0.032, -0.121,, 0.071	51,400 - 51,499	514	max of cross	Distance	Bucket	select top k
 	1	-0.032, -0.121,, 0.071	51,442	bucket	•••	5 = 7, 100		reads distance	9.7	514	buckets with max distance
 	•••			_	***	•••	•••	_			_
l	K _c	-0.137, -0.090,, 0.107	2,764,524		-0.137, -0.090,, 0.107	2,764,500 - 2,764,599	27,645	each bucket calculate	6.5	27,645	
						. , , ,	ŕ				
ļ	N_c	0.022, -0.076,, -0.085	6,463,840		•••		***	independently	12.1	6,463,840	
1111		fix-length vector of 768			 0.022, -0.076, ···, -0.085	6,463,800 - 6,463,899	6,463,840				
ŀ											

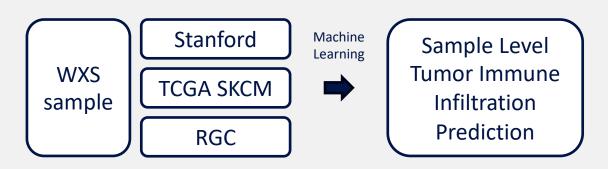
Methods(v2): How Bucket Version Address the Challenges?



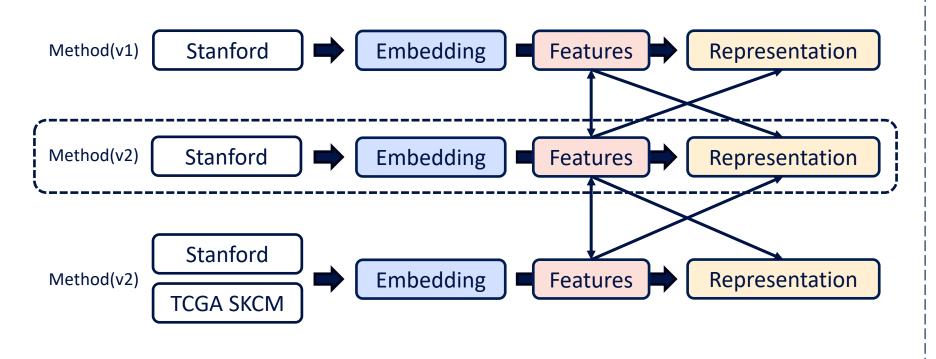




Methods(v2): How Bucket Version Address the Challenges?



Next Steps



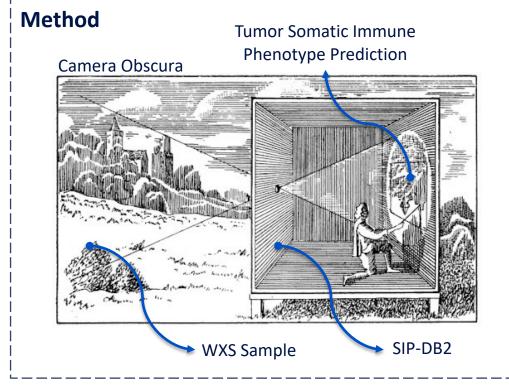
- Goal 1: Viability of predict tumor immune infiltration by DNA sequence on Stanford data
- Goal 2: Finetune the pipeline on TCGA SKCM data
- Goal 3: Predict on RGC data

Verify Our Assumption

Differences of positions/buckets between

- v1 and v2 features
- Stanford and TCGA features by
- checking covered regions
- cross validating the pipeline before jump to prediction

Next Steps

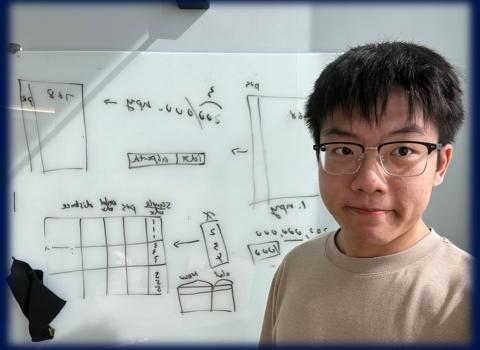

Sample Level
Tumor Immune
Infiltration
Prediction

- Goal 1: Viability of predict tumor immune infiltration by
 DNA sequence on Stanford data
- Goal 2: Finetune the pipeline on TCGA SKCM data
- Goal 3: Predict on RGC data

Vertify Our Assumption

Differences of positions/buckets between

- v1 and v2 features
- Stanford and TCGA features by
- checking covered regions
- cross validating the pipeline before jump to prediction



By vectorizing WXS samples:

- reduce computational demand
- efficient similarity searches
- scalability and multimodality

- Exposed me to data volumes far surpassing those in prior research, sharpening my skills in algorithm design, engineering, and optimization.
- It instilled a translational mindset, an awareness of scalability and practical application, that I aim to bring into optical imaging.

