<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />


<meta name="author" content="Sarah Urbut" />


<title>Primary correlation patterns identified by mash in GTEx data</title>

<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/readable.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>

<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
  pre:not([class]) {
    background-color: white;
  }
</style>
<script type="text/javascript">
if (window.hljs) {
  hljs.configure({languages: []});
  hljs.initHighlightingOnLoad();
  if (document.readyState && document.readyState === "complete") {
    window.setTimeout(function() { hljs.initHighlighting(); }, 0);
  }
}
</script>



<style type="text/css">
h1 {
  font-size: 34px;
}
h1.title {
  font-size: 38px;
}
h2 {
  font-size: 30px;
}
h3 {
  font-size: 24px;
}
h4 {
  font-size: 18px;
}
h5 {
  font-size: 16px;
}
h6 {
  font-size: 12px;
}
.table th:not([align]) {
  text-align: left;
}
</style>


</head>

<body>

<style type = "text/css">
.main-container {
  max-width: 940px;
  margin-left: auto;
  margin-right: auto;
}
code {
  color: inherit;
  background-color: rgba(0, 0, 0, 0.04);
}
img {
  max-width:100%;
  height: auto;
}
.tabbed-pane {
  padding-top: 12px;
}
button.code-folding-btn:focus {
  outline: none;
}
</style>


<style type="text/css">
/* padding for bootstrap navbar */
body {
  padding-top: 51px;
  padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar)  */
.section h1 {
  padding-top: 56px;
  margin-top: -56px;
}

.section h2 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h3 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h4 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h5 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h6 {
  padding-top: 56px;
  margin-top: -56px;
}
</style>

<script>
// manage active state of menu based on current page
$(document).ready(function () {
  // active menu anchor
  href = window.location.pathname
  href = href.substr(href.lastIndexOf('/') + 1)
  if (href === "")
    href = "index.html";
  var menuAnchor = $('a[href="' + href + '"]');

  // mark it active
  menuAnchor.parent().addClass('active');

  // if it's got a parent navbar menu mark it active as well
  menuAnchor.closest('li.dropdown').addClass('active');
});
</script>


<div class="container-fluid main-container">

<!-- tabsets -->
<script>
$(document).ready(function () {
  window.buildTabsets("TOC");
});
</script>

<!-- code folding -->




<script>
$(document).ready(function ()  {

    // move toc-ignore selectors from section div to header
    $('div.section.toc-ignore')
        .removeClass('toc-ignore')
        .children('h1,h2,h3,h4,h5').addClass('toc-ignore');

    // establish options
    var options = {
      selectors: "h1,h2,h3",
      theme: "bootstrap3",
      context: '.toc-content',
      hashGenerator: function (text) {
        return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
      },
      ignoreSelector: ".toc-ignore",
      scrollTo: 0
    };
    options.showAndHide = true;
    options.smoothScroll = true;

    // tocify
    var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>

<style type="text/css">

#TOC {
  margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
  position: relative;
  width: 100%;
}
}


.toc-content {
  padding-left: 30px;
  padding-right: 40px;
}

div.main-container {
  max-width: 1200px;
}

div.tocify {
  width: 20%;
  max-width: 260px;
  max-height: 85%;
}

@media (min-width: 768px) and (max-width: 991px) {
  div.tocify {
    width: 25%;
  }
}

@media (max-width: 767px) {
  div.tocify {
    width: 100%;
    max-width: none;
  }
}

.tocify ul, .tocify li {
  line-height: 20px;
}

.tocify-subheader .tocify-item {
  font-size: 0.90em;
  padding-left: 25px;
  text-indent: 0;
}

.tocify .list-group-item {
  border-radius: 0px;
}


</style>

<!-- setup 3col/9col grid for toc_float and main content  -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>

<div class="toc-content col-xs-12 col-sm-8 col-md-9">




<div class="navbar navbar-default  navbar-fixed-top" role="navigation">
  <div class="container">
    <div class="navbar-header">
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
      </button>
      <a class="navbar-brand" href="index.html">MASH analysis of GTEx</a>
    </div>
    <div id="navbar" class="navbar-collapse collapse">
      <ul class="nav navbar-nav">
        <li>
  <a href="index.html">Overview</a>
</li>
      </ul>
      <ul class="nav navbar-nav navbar-right">
        <li>
  <a href="https://github.com/stephenslab/gtexresults">source</a>
</li>
      </ul>
    </div><!--/.nav-collapse -->
  </div><!--/.container -->
</div><!--/.navbar -->
<!-- Add a small amount of space between sections. -->
<style type="text/css">
div.section {
  padding-top: 12px;
}
</style>

<!-- Add a small amount of space between sections. -->
<style type="text/css">
div.section {
  padding-top: 12px;
}
</style>

<div class="fluid-row" id="header">



<h1 class="title toc-ignore">Primary correlation patterns identified by mash in GTEx data</h1>
<h4 class="author"><em>Sarah Urbut</em></h4>

</div>


<p><strong>Last updated:</strong> 2018-05-18</p>
<strong>workflowr checks:</strong> <small>(Click a bullet for more information)</small>
<ul>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>R Markdown file:</strong> up-to-date </summary></p>
<p>Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.</p>
</details>
</li>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>Environment:</strong> empty </summary></p>
<p>Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.</p>
</details>
</li>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>Seed:</strong> <code>set.seed(1)</code> </summary></p>
<p>The command <code>set.seed(1)</code> was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.</p>
</details>
</li>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>Session information:</strong> recorded </summary></p>
<p>Great job! Recording the operating system, R version, and package versions is critical for reproducibility.</p>
</details>
</li>
<li>
<p><details> <summary> <strong style="color:blue;">✔</strong> <strong>Repository version:</strong> <a href="https://github.com/stephenslab/gtexresults/tree/37ef62cb8ae666219c794ed6986354e66562f3df" target="_blank">37ef62c</a> </summary></p>
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated. <br><br> Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use <code>wflow_publish</code> or <code>wflow_git_commit</code>). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
<pre><code>
Ignored files:
    Ignored:    .sos/
    Ignored:    data/.sos/
    Ignored:    workflows/.ipynb_checkpoints/
    Ignored:    workflows/.sos/

Untracked files:
    Untracked:  gtex6_workflow_output/

</code></pre>
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. </details>
</li>
</ul>
<details> <summary> <small><strong>Expand here to see past versions:</strong></small> </summary>
<ul>
<table style="border-collapse:separate; border-spacing:5px;">
<thead>
<tr>
<th style="text-align:left;">
File
</th>
<th style="text-align:left;">
Version
</th>
<th style="text-align:left;">
Author
</th>
<th style="text-align:left;">
Date
</th>
<th style="text-align:left;">
Message
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/stephenslab/gtexresults/blob/37ef62cb8ae666219c794ed6986354e66562f3df/analysis/Fig.Uk3.Rmd" target="_blank">37ef62c</a>
</td>
<td style="text-align:left;">
Peter Carbonetto
</td>
<td style="text-align:left;">
2018-05-18
</td>
<td style="text-align:left;">
wflow_publish(“Fig.Uk*.Rmd“)
</td>
</tr>
<tr>
<td style="text-align:left;">
html
</td>
<td style="text-align:left;">
<a href="https://cdn.rawgit.com/stephenslab/gtexresults/02aae6b955edcf92c589ea7506995951b506af19/docs/Fig.Uk3.html" target="_blank">02aae6b</a>
</td>
<td style="text-align:left;">
Peter Carbonetto
</td>
<td style="text-align:left;">
2018-05-18
</td>
<td style="text-align:left;">
Revised Fig.Uk8.Rmd for analysis of testis-specific effects components.
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/stephenslab/gtexresults/blob/e1016bbe3191f29e5c72e366efc82df71abd19da/analysis/Fig.Uk3.Rmd" target="_blank">e1016bb</a>
</td>
<td style="text-align:left;">
Peter Carbonetto
</td>
<td style="text-align:left;">
2018-05-18
</td>
<td style="text-align:left;">
wflow_publish(c(“Fig.Uk8.Rmd”, “Fig.Uk3.Rmd”, “Fig.Uk2.Rmd”))
</td>
</tr>
<tr>
<td style="text-align:left;">
html
</td>
<td style="text-align:left;">
<a href="https://cdn.rawgit.com/stephenslab/gtexresults/64f17306996f04327577f0d698f3bfd0c9213d8c/docs/Fig.Uk3.html" target="_blank">64f1730</a>
</td>
<td style="text-align:left;">
Peter Carbonetto
</td>
<td style="text-align:left;">
2018-05-18
</td>
<td style="text-align:left;">
Small revision to Uk3 Rmd file, and extensive revisions to Uk2 Rmd file.
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/stephenslab/gtexresults/blob/73c0ebd0b6dd457944cf4ce2c03f7ee39ad9fe9f/analysis/Fig.Uk3.Rmd" target="_blank">73c0ebd</a>
</td>
<td style="text-align:left;">
Peter Carbonetto
</td>
<td style="text-align:left;">
2018-05-18
</td>
<td style="text-align:left;">
wflow_publish(c(“Fig.Uk2.Rmd”, “Fig.Uk3.Rmd”))
</td>
</tr>
<tr>
<td style="text-align:left;">
html
</td>
<td style="text-align:left;">
<a href="https://cdn.rawgit.com/stephenslab/gtexresults/957b7e4054163fdc048213e01230d5cef7fd6df1/docs/Fig.Uk3.html" target="_blank">957b7e4</a>
</td>
<td style="text-align:left;">
Peter Carbonetto
</td>
<td style="text-align:left;">
2018-05-18
</td>
<td style="text-align:left;">
Created separate code chunk in Fig.Uk2.Rmd for computed correlation matrix.
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/stephenslab/gtexresults/blob/178efd2e8a5f73bfba058ef8379020d027d761c1/analysis/Fig.Uk3.Rmd" target="_blank">178efd2</a>
</td>
<td style="text-align:left;">
Peter Carbonetto
</td>
<td style="text-align:left;">
2018-05-18
</td>
<td style="text-align:left;">
wflow_publish(“Fig.Uk3.Rmd”)
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/stephenslab/gtexresults/blob/725c3055522eacf9b37b1aff77c80c95d55087a8/analysis/Fig.Uk3.Rmd" target="_blank">725c305</a>
</td>
<td style="text-align:left;">
Peter Carbonetto
</td>
<td style="text-align:left;">
2018-05-16
</td>
<td style="text-align:left;">
Added a sentence to Fig.Uk2.Rmd.
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/stephenslab/gtexresults/blob/04f6a2154f8ac6e7eced0f9e02df4543481679ae/analysis/Fig.Uk3.Rmd" target="_blank">04f6a21</a>
</td>
<td style="text-align:left;">
Peter Carbonetto
</td>
<td style="text-align:left;">
2018-05-16
</td>
<td style="text-align:left;">
Working on revisions to Fig.Uk2.Rmd.
</td>
</tr>
<tr>
<td style="text-align:left;">
html
</td>
<td style="text-align:left;">
<a href="https://cdn.rawgit.com/stephenslab/gtexresults/04f6a2154f8ac6e7eced0f9e02df4543481679ae/docs/Fig.Uk3.html" target="_blank">04f6a21</a>
</td>
<td style="text-align:left;">
Peter Carbonetto
</td>
<td style="text-align:left;">
2018-05-16
</td>
<td style="text-align:left;">
Working on revisions to Fig.Uk2.Rmd.
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/stephenslab/gtexresults/blob/d2554195ff98ad0f5fedf04c61fbbb5ba86c360b/analysis/Fig.Uk3.Rmd" target="_blank">d255419</a>
</td>
<td style="text-align:left;">
Peter Carbonetto
</td>
<td style="text-align:left;">
2018-05-16
</td>
<td style="text-align:left;">
wflow_publish(“Fig.Uk3.Rmd”)
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/stephenslab/gtexresults/blob/cb41bece271e16d090a3f5882af8ed4a65c28e06/analysis/Fig.Uk3.Rmd" target="_blank">cb41bec</a>
</td>
<td style="text-align:left;">
Peter Carbonetto
</td>
<td style="text-align:left;">
2018-05-09
</td>
<td style="text-align:left;">
In Fig.Uk3.Rmd, added pathnames for files containing results from Gao’s analysis pipeline.
</td>
</tr>
<tr>
<td style="text-align:left;">
html
</td>
<td style="text-align:left;">
<a href="https://cdn.rawgit.com/stephenslab/gtexresults/cb41bece271e16d090a3f5882af8ed4a65c28e06/docs/Fig.Uk3.html" target="_blank">cb41bec</a>
</td>
<td style="text-align:left;">
Peter Carbonetto
</td>
<td style="text-align:left;">
2018-05-09
</td>
<td style="text-align:left;">
In Fig.Uk3.Rmd, added pathnames for files containing results from Gao’s analysis pipeline.
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/stephenslab/gtexresults/blob/0dacdff1f591ba61c32823db3a5048fa7c583375/analysis/Fig.Uk3.Rmd" target="_blank">0dacdff</a>
</td>
<td style="text-align:left;">
Peter Carbonetto
</td>
<td style="text-align:left;">
2018-05-07
</td>
<td style="text-align:left;">
wflow_publish(“Fig.Uk3.Rmd”)
</td>
</tr>
<tr>
<td style="text-align:left;">
Rmd
</td>
<td style="text-align:left;">
<a href="https://github.com/stephenslab/gtexresults/blob/80f285faf2eaf3c1e1b4fc25317c58996d5b2525/analysis/Fig.Uk3.Rmd" target="_blank">80f285f</a>
</td>
<td style="text-align:left;">
Gao Wang
</td>
<td style="text-align:left;">
2017-09-20
</td>
<td style="text-align:left;">
Update figures
</td>
</tr>
<tr>
<td style="text-align:left;">
html
</td>
<td style="text-align:left;">
<a href="https://cdn.rawgit.com/stephenslab/gtexresults/80f285faf2eaf3c1e1b4fc25317c58996d5b2525/docs/Fig.Uk3.html" target="_blank">80f285f</a>
</td>
<td style="text-align:left;">
Gao Wang
</td>
<td style="text-align:left;">
2017-09-20
</td>
<td style="text-align:left;">
Update figures
</td>
</tr>
</tbody>
</table>
</ul>
<p></details></p>
<hr />
<p>“Uk3” is the covariance matrix corresponding to the output of the ExtremeDeconvolution algorithm that was initialized with the rank3 SVD approximation of <span class="math inline">\(X^TX\)</span>. It is the pattern of sharing identified from the dominant covariance matrix (the one with the largest mixture weight).</p>
<p>Here we plot the correlation matrix and the first 3 eigenvectors of “Uk3”. This provides a visualization of the primary patterns of genetic sharing identified by our method, MASH. This code should closely reproduce Figure 3 of the paper.</p>
<div id="set-up-environment" class="section level2">
<h2>Set up environment</h2>
<p>First, we load a couple plotting packages used in the code chunks below.</p>
<pre class="r"><code>library(lattice)
library(colorRamps)</code></pre>
</div>
<div id="load-data-and-mash-results" class="section level2">
<h2>Load data and MASH results</h2>
<p>We load some GTEx summary statistics, as well as some of the results generated from the MASH analysis of the GTEx data.</p>
<pre class="r"><code>covmat &lt;- readRDS(paste(&quot;../output/MatrixEQTLSumStats.Portable.Z.coved.K3.P3&quot;,
                        &quot;lite.single.expanded.rds&quot;,sep = &quot;.&quot;))
pis    &lt;- readRDS(paste(&quot;../output/MatrixEQTLSumStats.Portable.Z.coved.K3.P3&quot;,
                        &quot;lite.single.expanded.V1.pihat.rds&quot;,sep = &quot;.&quot;))$pihat
z.stat &lt;- readRDS(&quot;../data/MatrixEQTLSumStats.Portable.Z.rds&quot;)$test.z
pi.mat &lt;- matrix(pis[-length(pis)],ncol = 54,nrow = 22,byrow = TRUE)
names  &lt;- colnames(z.stat)
colnames(pi.mat) &lt;-
  c(&quot;ID&quot;,&quot;X&#39;X&quot;,&quot;SVD&quot;,&quot;F1&quot;,&quot;F2&quot;,&quot;F3&quot;,&quot;F4&quot;,&quot;F5&quot;,&quot;SFA_Rank5&quot;,names,&quot;ALL&quot;)</code></pre>
<p>Compute the correlations from the <span class="math inline">\(k=3\)</span> covariance matrix.</p>
<pre class="r"><code>k        &lt;- 3
x        &lt;- cov2cor(covmat[[k]])
x[x &lt; 0] &lt;- 0</code></pre>
<p>Next, we load the tissue indices and tissue names:</p>
<pre class="r"><code>colnames(x) &lt;- names
rownames(x) &lt;- names
h &lt;- read.table(&quot;../output/uk3rowindices.txt&quot;)[,1]</code></pre>
<p>For the plots of the eigenvectors, we load the colours that are conventionally used to represent the tissues in plots.</p>
<pre class="r"><code>missing.tissues &lt;- c(7,8,19,20,24,25,31,34,37)
color.gtex &lt;- read.table(&quot;../data/GTExColors.txt&quot;,sep = &quot;\t&quot;,
                         comment.char = &#39;&#39;)[-missing.tissues,]</code></pre>
</div>
<div id="summarize-relative-importance-of-the-covariance-matrices" class="section level2">
<h2>Summarize relative importance of the covariance matrices</h2>
<p>The posterior mixture weights give the relative importance of the covariance matrices for capturing patterns in the data.</p>
<pre class="r"><code>barplot(colSums(pi.mat),las = 2,cex.names = 0.5)</code></pre>
<p><img src="figure/Fig.Uk3.Rmd/plot-mixture-weights-1.png" width="768" style="display: block; margin: auto;" /></p>
<p>Here we see that the SVD component has the largest weight.</p>
</div>
<div id="generate-heatmap-of-uk3-covariance-matrix" class="section level2">
<h2>Generate heatmap of Uk3 covariance matrix</h2>
<p>Now we produce the heatmap showing the full covariance matrix.</p>
<pre class="r"><code>smat &lt;- (x[(h),(h)])
smat[lower.tri(smat)] &lt;- NA
clrs &lt;- colorRampPalette(rev(c(&quot;#D73027&quot;,&quot;#FC8D59&quot;,&quot;#FEE090&quot;,&quot;#FFFFBF&quot;,
                               &quot;#E0F3F8&quot;,&quot;#91BFDB&quot;,&quot;#4575B4&quot;)))(64)
lat &lt;- x[rev(h),rev(h)]
lat[lower.tri(lat)] &lt;- NA
n &lt;- nrow(lat)
print(levelplot(lat[n:1,],col.regions = clrs,xlab = &quot;&quot;,ylab = &quot;&quot;,
                colorkey = TRUE,at = seq(0,1,length.out = 64),
                scales = list(cex = 0.6,x = list(rot = 45))))</code></pre>
<p><img src="figure/Fig.Uk3.Rmd/heatmap-uk3-1.png" width="960" style="display: block; margin: auto;" /></p>
</div>
<div id="plot-eigenvectors-capturing-predominant-patterns" class="section level2">
<h2>Plot eigenvectors capturing predominant patterns</h2>
<p>The eigenvectors capture the predominant patterns in the Uk3 covariance matrix.</p>
<pre class="r"><code>k &lt;- 3
vold  &lt;- svd(covmat[[k]])$v
u     &lt;- svd(covmat[[k]])$u
d     &lt;- svd(covmat[[k]])$d
v     &lt;- vold[h,] # Shuffle so correct order
names &lt;- names[h]
color.gtex &lt;- color.gtex[h,]
for (j in 1:3)
  barplot(v[,j]/v[,j][which.max(abs(v[,j]))],names = &quot;&quot;,cex.names = 0.5,
          las = 2,main = paste0(&quot;EigenVector&quot;,j,&quot;Uk&quot;,k),
          col = as.character(color.gtex[,2]))</code></pre>
<p><img src="figure/Fig.Uk3.Rmd/plot-eigenvectors-1.png" width="576" style="display: block; margin: auto;" /><img src="figure/Fig.Uk3.Rmd/plot-eigenvectors-2.png" width="576" style="display: block; margin: auto;" /><img src="figure/Fig.Uk3.Rmd/plot-eigenvectors-3.png" width="576" style="display: block; margin: auto;" /></p>
<p>The first eigenvector reflects broad sharing among tissues, with all effects in the same direction; the second eigenvector captures differences between brain (and, to a less extent, testis and pituitary) vs other tissues; the third eigenvector primarily captures effects that are stronger in whole blood than elsewhere.</p>
</div>
<div id="session-information" class="section level2">
<h2>Session information</h2>
<pre class="r"><code>sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.4

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] colorRamps_2.3  lattice_0.20-35

loaded via a namespace (and not attached):
 [1] workflowr_1.0.1.9000 Rcpp_0.12.16         digest_0.6.15       
 [4] rprojroot_1.3-2      R.methodsS3_1.7.1    grid_3.4.3          
 [7] backports_1.1.2      git2r_0.21.0         magrittr_1.5        
[10] evaluate_0.10.1      stringi_1.1.7        whisker_0.3-2       
[13] R.oo_1.21.0          R.utils_2.6.0        rmarkdown_1.9       
[16] tools_3.4.3          stringr_1.3.0        yaml_2.1.18         
[19] compiler_3.4.3       htmltools_0.3.6      knitr_1.20          </code></pre>
</div>

<script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
</script>
<!-- Adjust MathJax settings so that all math formulae are shown using
TeX fonts only; see
http://docs.mathjax.org/en/latest/configuration.html.  This will make
the presentation more consistent at the cost of the webpage sometimes
taking slightly longer to load. Note that this only works because the
footer is added to webpages before the MathJax javascript. -->
<script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
</script>

<hr>
<p>
  This reproducible <a href="http://rmarkdown.rstudio.com">R Markdown</a>
  analysis was created with
  <a href="https://github.com/jdblischak/workflowr">workflowr</a> 1.0.1.9000
</p>
<hr>


</div>
</div>

</div>

<script>

// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
  $('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
  bootstrapStylePandocTables();
});


</script>

<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>