Last updated: 2018-06-05
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date 
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
 ✔ Environment: empty 
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
 ✔ Seed: 
set.seed(1) 
The command set.seed(1) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
 ✔ Session information: recorded 
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
 ✔ Repository version: 4a93c87 
wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
    Ignored:    .sos/
    Ignored:    data/.sos/
    Ignored:    output/MatrixEQTLSumStats.Portable.Z.coved.K3.P3.lite.single.expanded.V1.loglik.rds
    Ignored:    workflows/.ipynb_checkpoints/
    Ignored:    workflows/.sos/
Untracked files:
    Untracked:  analysis/files.txt
    Untracked:  fastqtl_to_mash_output/
    Untracked:  gtex6_workflow_output/
Unstaged changes:
    Modified:   analysis/gtex.Rmd
| File | Version | Author | Date | Message | 
|---|---|---|---|---|
| Rmd | 4a93c87 | Peter Carbonetto | 2018-06-05 | wflow_publish(“ExpressionAnalysis.Rmd”) | 
| html | 19b5442 | Peter Carbonetto | 2018-06-05 | Build site. | 
| Rmd | 0a5d3bc | Peter Carbonetto | 2018-06-05 | Renamed Fig.ExpressionAnalysis.Rmd as ExpressionAnalysis.Rmd. | 
| html | 0a5d3bc | Peter Carbonetto | 2018-06-05 | Renamed Fig.ExpressionAnalysis.Rmd as ExpressionAnalysis.Rmd. | 
| html | afc401f | Peter Carbonetto | 2017-09-20 | Moved doc to docs. | 
| Rmd | e1e48df | Peter Carbonetto | 2017-09-20 | Reorganized many of the files. | 
In this analysis, we assess whether tissue-specific eQTLs we identified can be explained by tissue-specific expression. Specifically, we take genes with tissue-specific eQTLs, and examine the distribution of expression in the eQTL-affected tissue relative to expression in other tissues.
In the next code chunk, we load some GTEx summary statistics (average gene expression values and z-scores), as well as some of the results generated from the mash analysis of the GTEx data.
Expression is here defined as median across individuals of the log Reads per Kilobase Mapped (RPKM).
data <- read.csv("../data/AvgExpr.csv.gz",header = TRUE)
out  <- readRDS("../data/MatrixEQTLSumStats.Portable.Z.rds")
maxz <- out$test.z
qtl.names <-
  sapply(1:length(rownames(maxz)),
         function(x) unlist(strsplit(rownames(maxz)[x], "[_]"))[[1]])
rownames(data) <- data[,1]
expr.data      <- data[,-1]
out    <- readRDS(paste("../output/MatrixEQTLSumStats.Portable.Z.coved.K3.P3",
                        "lite.single.expanded.V1.posterior.rds",sep = "."))
pmash <- out$posterior.means
lfsr  <- out$lfsr
colnames(lfsr) <- colnames(pmash) <- colnames(maxz)
rownames(lfsr) <- rownames(pmash) <- rownames(maxz)
expr.sort <- expr.data[rownames(expr.data)%in%qtl.names,]
a         <- match(qtl.names,rownames(expr.sort))
expr.sort <- expr.sort[a,]
missing.tissues    <- c(7,8,19,20,24,25,31,34,37)
exp.sort           <- expr.sort[,-missing.tissues]
colnames(exp.sort) <- colnames(maxz)Here we define a couple functions used to compare the densities and CDFs of gene expression levels.
plot_tissuespecifictwo = function(tissuename,lfsr,ymax,curvedata,title,
                                  thresh=0.05,subset=1:44,exclude=0.01) {
  index_tissue=which(colnames(lfsr) %in% tissuename);
  ybar=title
  
  # Create a matrix showing whether or not lfsr satisfies threshold.
  sigmat = lfsr <= thresh;
  sigs=which(rowSums(sigmat[,index_tissue,drop=FALSE])==length(tissuename) &
             rowSums(sigmat[,-index_tissue,drop=FALSE])==0)
  norm.spec=density(curvedata[sigs,index_tissue])
  norm.other=density(curvedata[-sigs,index_tissue])
  xmin=min(norm.spec$x,norm.other$x)-1
  ymin=min(norm.spec$y,norm.other$y)
  xmax=max(norm.spec$x,norm.other$x)+1
  plot(norm.other,xlim = c(xmin,xmax),ylim=c(0,ymax),
       col="black",main=tissuename,xlab="log(RPKM)")
  
  lines(norm.spec,col="red")
  legend("right",legend = c("All Genes","Tissue Specific"),
         col=c("black","red"),pch=c(1,1))
  }
plot_tissuespecificthree = function(tissuename,lfsr,ymax,curvedata,title,
                                    thresh=0.05,subset=1:44,exclude=0.01) {
  index_tissue=which(colnames(lfsr) %in% tissuename);
  ybar=title
  
  # Create a matrix showing whether or not lfsr satisfies threshold.
  sigmat = lfsr <= thresh
  sigs=which(rowSums(sigmat[,index_tissue,drop=FALSE])==length(tissuename) &
             rowSums(sigmat[,-index_tissue,drop=FALSE])==0)
  norm.spec=ecdf(curvedata[sigs,index_tissue])
  norm.other=ecdf(curvedata[-sigs,index_tissue])
  plot(norm.other,ylim=c(0,ymax),
       col="black",main=tissuename,xlab="log(RPKM)")
  
    lines(norm.spec,col="red",cex=0.1)
    legend("right",legend = c("All Genes","Tissue Specific"),
           col=c("black","red"),pch=c(1,1))
  } The two plots below compare the densities and cumulative distribution functions of the expression levels for all genes (black), and for genes identified as having a “tissue-specific” eQTL (red) in testis.
plot_tissuespecifictwo(tissuename = "Testis",lfsr = lfsr,
                       curvedata = log(exp.sort),title = "Test",
                       thresh = 0.05 ,ymax=0.5)
| Version | Author | Date | 
|---|---|---|
| 0a5d3bc | Peter Carbonetto | 2018-06-05 | 
plot_tissuespecificthree(tissuename = "Testis",lfsr = lfsr,
                         curvedata = log(exp.sort),title = "Test",
                         thresh = 0.05 ,ymax=1)
| Version | Author | Date | 
|---|---|---|
| 0a5d3bc | Peter Carbonetto | 2018-06-05 | 
The distribution functions are reasonably similar.
Next we show the same two plots for thyroid.
plot_tissuespecifictwo(tissuename = "Thyroid",lfsr = lfsr,
                       curvedata = log(exp.sort),title = "Test",
                       thresh = 0.05,ymax = 0.5)
| Version | Author | Date | 
|---|---|---|
| 0a5d3bc | Peter Carbonetto | 2018-06-05 | 
plot_tissuespecificthree(tissuename = "Thyroid",lfsr = lfsr,
                         curvedata = log(exp.sort),title = "Test",
                         thresh = 0.05,ymax = 1)
| Version | Author | Date | 
|---|---|---|
| 0a5d3bc | Peter Carbonetto | 2018-06-05 | 
Next, we look at the distributions in whole blood cells.
plot_tissuespecifictwo(tissuename = "Whole_Blood",lfsr = lfsr,
                       curvedata = log(exp.sort),title = "Test",
                       thresh = 0.05,ymax=0.5)
| Version | Author | Date | 
|---|---|---|
| 0a5d3bc | Peter Carbonetto | 2018-06-05 | 
plot_tissuespecificthree(tissuename = "Whole_Blood",lfsr = lfsr,
                         curvedata = log(exp.sort),title = "Test",
                         thresh = 0.05 ,ymax=1)
| Version | Author | Date | 
|---|---|---|
| 0a5d3bc | Peter Carbonetto | 2018-06-05 | 
Finally, we examine the gene expression distributions in fibroblasts.
plot_tissuespecifictwo(tissuename = "Cells_Transformed_fibroblasts",
                       lfsr = lfsr,curvedata = log(exp.sort),title = "Test",
                       thresh = 0.05,ymax=0.5)
| Version | Author | Date | 
|---|---|---|
| 0a5d3bc | Peter Carbonetto | 2018-06-05 | 
plot_tissuespecificthree(tissuename = "Cells_Transformed_fibroblasts",
                        lfsr = lfsr,curvedata = log(exp.sort),title = "Test",
                        thresh = 0.05 ,ymax=1)
| Version | Author | Date | 
|---|---|---|
| 0a5d3bc | Peter Carbonetto | 2018-06-05 | 
In each case, the distribution functions are similar. This tells us that tissue-specific eQTLs are not simply reflecting tissue-specific expression.
sessionInfo()
# R version 3.4.3 (2017-11-30)
# Platform: x86_64-apple-darwin15.6.0 (64-bit)
# Running under: macOS High Sierra 10.13.4
# 
# Matrix products: default
# BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
# 
# locale:
# [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
# 
# attached base packages:
# [1] stats     graphics  grDevices utils     datasets  methods   base     
# 
# loaded via a namespace (and not attached):
#  [1] workflowr_1.0.1.9000 Rcpp_0.12.16         digest_0.6.15       
#  [4] rprojroot_1.3-2      R.methodsS3_1.7.1    backports_1.1.2     
#  [7] git2r_0.21.0         magrittr_1.5         evaluate_0.10.1     
# [10] stringi_1.1.7        whisker_0.3-2        R.oo_1.21.0         
# [13] R.utils_2.6.0        rmarkdown_1.9        tools_3.4.3         
# [16] stringr_1.3.0        yaml_2.1.18          compiler_3.4.3      
# [19] htmltools_0.3.6      knitr_1.20This reproducible R Markdown analysis was created with workflowr 1.0.1.9000