data=readRDS("../../../Dropbox/simulationsmarch9/independentsim/independentsim.rds")
t=data$tstat;bhat=data$betahat;sebetahat=data$sebetahat;beta=data$beta;v.j=matrix(rep(1,ncol(t)*nrow(t)),ncol=ncol(t),nrow=nrow(t))
mash.means=read.table("../../../Dropbox/simulationsmay12/independentsim_all/independentsimashcutoffomega2jun15posterior.means.txt")[,-1]
ash.means=read.table("../../../Dropbox/simulationsmay12/independentsim_all/univariate.ash.pmind.txt")
bma.means=read.table("../../../Dropbox/simulationsmay12/independentsim_all/noashindependentwithzerobmaallposterior.means.txt")[,-1]
lfsr.mash=read.table("../../../Dropbox/simulationsmay12/independentsim_all/independentsimashcutoffomega2jun15lfsr.txt")[,-1]
lfsr.bma=read.table("../../../Dropbox/simulationsmay12/independentsim_all/noashindependentwithzerobmaalllfsr.txt")[,-1]
lfsr.ash=read.table("../../../Dropbox/simulationsmay12/independentsim_all/univariate.ashind.lfsr.txt")
standard.error=data$sebetahat
pm.mash.beta=mash.means*standard.error
pm.bma.beta=bma.means*standard.error
pm.ash.beta=ash.means*standard.error
thresh=0.05Here, we show the Proportion of Sharing by Sign:
sigmat=(lfsr.mash<=thresh)
nsig= rowSums(sigmat)
#(signall=mean(het.norm(pm.mash.beta[nsig>0,])>0))
(signall.mash=mean(het.norm(pm.mash.beta[1:400,])>0))## [1] 0.5125##BMA
sigmat=(lfsr.bma<=thresh)
nsig= rowSums(sigmat)
#(signall=mean(het.norm(pm.bma.beta[nsig>0,])>0))
(signall.bma=mean(het.norm(pm.bma.beta[1:400,])>0))## [1] 0.5119886##ASH
sigmat=(lfsr.ash<thresh)
nsig= rowSums(sigmat)
#(signall=mean(het.norm(pm.ash.beta[nsig>0,])>0))
(signall.ash=mean(het.norm(pm.ash.beta[1:400,])>0))## [1] 0.5119886(truth=(mean(het.norm(data$beta[1:400,])>0)))## [1] 0.5127841(standard=mean(het.norm(data$betahat[1:400,])>0))## [1] 0.5107386(RMLE=sqrt(mean((standard-truth)^2)))## [1] 0.002045455(RRMSE.mash=sqrt(mean((signall.mash-truth)^2))/RMLE)## [1] 0.1388889(RRMSE.bma=sqrt(mean((signall.bma-truth)^2))/RMLE)## [1] 0.3888889(RRMSE.ash=sqrt(mean((signall.ash-truth)^2))/RMLE)## [1] 0.3888889rmse.all.table=cbind(mash=RRMSE.mash,bmalite=RRMSE.bma,ash=RRMSE.ash)
barplot(as.numeric(rmse.all.table),main="Shared, Unstructured Effects: Sign heterogeneity",
        ylab="relative error (RRMSE)",xlab="Method",col=c("green","blue","red"),names=colnames(rmse.all.table),ylim=c(0,1.5),cex.main=1.5,cex.lab=1,cex.names=1,las=2)data=readRDS("../../../Dropbox/simulationsmarch9/independentsim/independentsim.rds")
t=data$tstat;bhat=data$betahat;sebetahat=data$sebetahat;beta=data$beta;v.j=matrix(rep(1,ncol(t)*nrow(t)),ncol=ncol(t),nrow=nrow(t))
mash.means=read.table("../../../Dropbox/simulationsmay12/independentsim_all/independentsimashcutoffomega2jun15posterior.means.txt")[,-1]
ash.means=read.table("../../../Dropbox/simulationsmay12/independentsim_all/univariate.ash.pmind.txt")
bma.means=read.table("../../../Dropbox/simulationsmay12/independentsim_all/noashindependentwithzerobmaallposterior.means.txt")[,-1]
lfsr.mash=read.table("../../../Dropbox/simulationsmay12/independentsim_all/independentsimashcutoffomega2jun15lfsr.txt")[,-1]
lfsr.bma=read.table("../../../Dropbox/simulationsmay12/independentsim_all/noashindependentwithzerobmaalllfsr.txt")[,-1]
lfsr.ash=read.table("../../../Dropbox/simulationsmay12/independentsim_all/univariate.ashind.lfsr.txt")
standard.error=data$sebetahat
pm.mash.beta=mash.means*standard.error
pm.bma.beta=bma.means*standard.error
pm.ash.beta=ash.means*standard.error
thresh=0.05Here, we show the Proportion of Sharing by Sign:
sigmat=(lfsr.mash<=thresh)
nsig= rowSums(sigmat)
(signall=mean(het.norm(pm.mash.beta[nsig>0,])>0.5))## [1] 0.1285795(signall.mash=mean(het.norm(pm.mash.beta[1:400,])>0.5))## [1] 0.1285795##BMA
sigmat=(lfsr.bma<=thresh)
nsig= rowSums(sigmat)
(signall=mean(het.norm(pm.bma.beta[nsig>0,])>0.5))## [1] 0.1288068(signall.bma=mean(het.norm(pm.bma.beta[1:400,])>0.5))## [1] 0.1288068##ASH
sigmat=(lfsr.ash<thresh)
nsig= rowSums(sigmat)
(signall=mean(het.norm(pm.ash.beta[nsig>0,])>0.5))## [1] 0.1233225(signall.ash=mean(het.norm(pm.ash.beta[1:400,])>0.5))## [1] 0.1283523####SHow that results are robust in specific analysis
(truth=(mean(het.norm(data$beta[1:400,])>0.5)))## [1] 0.1277841(standard=mean(het.norm(data$betahat[1:400,])>0.5))## [1] 0.1286932(RMLE=sqrt(mean((standard-truth)^2)))## [1] 0.0009090909(RRMSE.mash=sqrt(mean((signall.mash-truth)^2))/RMLE)## [1] 0.875(RRMSE.bma=sqrt(mean((signall.bma-truth)^2))/RMLE)## [1] 1.125(RRMSE.ash=sqrt(mean((signall.ash-truth)^2))/RMLE)## [1] 0.625rmse.all.table=cbind(mash=RRMSE.mash,bmalite=RRMSE.bma,ash=RRMSE.ash)
barplot(as.numeric(rmse.all.table),main="Shared, Untructured Effects: Sign heterogeneity",
        ylab="relative error (RRMSE)",xlab="Method",col=c("green","blue","red"),names=colnames(rmse.all.table),ylim=c(0,1.5),cex.main=1.5,cex.lab=1,cex.names=1,las=2)