Last updated: 2018-10-19
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(20180414)
The command set.seed(20180414)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 744b917
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.Rhistory
Untracked files:
Untracked: analysis/null.Rmd
Untracked: analysis/test.Rmd
Untracked: data/geneMatrix.tsv
Untracked: data/liter_data_4_summarize_ld_1_lm_less_3.rds
Untracked: data/meta.tsv
Untracked: docs/figure/test.Rmd/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Here we try susie on some example change point problems, and compare with other methods for change point detection in the changepoint
package (penalized methods), bcp
package (Bayesian MCMC method), and genlasso
(L1 penalty method).
First we define some useful functions to run susie on changepoint problems and plot the CSs.
susie_cp = function(y,auto=FALSE,...){
n=length(y)
X = matrix(0,nrow=n,ncol=n-1)
for(j in 1:(n-1)){
for(i in (j+1):n){
X[i,j] = 1
}
}
if(auto){
s = susie_auto(X,y,...)
} else {
s = susie(X,y,...)
}
return(s)
}
#plot a time series y with confidence sets from susie fit s overlaid
# does - 0.5 so that singletons show up
# this is a ggplot version
susie_plot_cp = function(s,y){
library("ggplot2")
df<-data.frame(x = 1:length(y),y = y)
CS = s$sets$cs
p= ggplot(df) + geom_point(mapping=aes_string(x="x", y="y"))
for(i in 1:length(CS)){
p = p + annotate("rect", fill = "red", alpha = 0.5,
xmin = min(CS[[i]])-0.5, xmax = max(CS[[i]])+0.5,
ymin = -Inf, ymax = Inf)
}
p
}
# this is just a function to add the changepoints to a base grapics plot
plot_cs = function(s){
CS = s$sets$cs
for(i in 1:length(CS)){
rect(min(CS[[i]])-0.5,-5,max(CS[[i]])+0.5,5,col = rgb(1,0,0,alpha=0.5),border=NA)
}
}
This example comes from Killick and Eckley
library(changepoint)
Loading required package: zoo
Attaching package: 'zoo'
The following objects are masked from 'package:base':
as.Date, as.Date.numeric
Successfully loaded changepoint package version 2.2.2
NOTE: Predefined penalty values changed in version 2.2. Previous penalty values with a postfix 1 i.e. SIC1 are now without i.e. SIC and previous penalties without a postfix i.e. SIC are now with a postfix 0 i.e. SIC0. See NEWS and help files for further details.
set.seed(10)
eg1=c(rnorm(100,0,1),rnorm(100,1,1),rnorm(100,0,1),rnorm(100,0.2,1))
ts.plot(eg1,xlab="Index")
Version | Author | Date |
---|---|---|
a45f3cd | stephens999 | 2018-10-18 |
true_mean = c(rep(0,100),rep(1,100),rep(0,100),rep(0.2,100))
Here we apply susie to this example. It finds 2 (out of the three) changepoints.
library("susieR")
eg1.s = susie_cp(eg1)
ts.plot(eg1,xlab="Index")
lines(predict(eg1.s),col=2,lwd=2)
plot_cs(eg1.s)
Version | Author | Date |
---|---|---|
a45f3cd | stephens999 | 2018-10-18 |
Try the bcp package
library(bcp)
Loading required package: grid
eg1.bcp<- bcp(eg1)
plot(eg1.bcp, main = "Univariate Change Point Example")
Version | Author | Date |
---|---|---|
a45f3cd | stephens999 | 2018-10-18 |
legacyplot(eg1.bcp)
plot(eg1.bcp$posterior.prob[-1], susie_get_PIP(eg1.s))
plot(eg1.bcp$posterior.mean, predict(eg1.s))
plot(eg1.bcp$posterior.prob[-1])
points(susie_get_PIP(eg1.s), col = 2)
plot(eg1)
lines(true_mean, col = 2, lwd = 2)
lines(predict(eg1.s), col = 3, lwd = 2)
lines(eg1.bcp$posterior.mean, col = 4, lwd = 2)
mean((eg1.bcp$posterior.mean - true_mean) ^ 2)
[1] 0.0366996
mean((predict(eg1.s) - true_mean) ^ 2)
[1] 0.03081035
This is a real-data example from the changepoint package.
data(Lai2005fig4)
lai = Lai2005fig4[,5]
lai.default=cpt.mean(lai,method="PELT")
lai.s = susie_cp(lai)
lai.bcp = bcp(lai)
lai.bcp.long = bcp(lai,mcmc=5000)
Results from changepoint:
plot(lai.default,pch=20,col="grey",cpt.col="black",type="p",xlab="Index")
Version | Author | Date |
---|---|---|
a45f3cd | stephens999 | 2018-10-18 |
cpts(lai.default)
[1] 81 85 89 96 123 133
coef(lai.default)
$mean
[1] 0.2468910 4.6699210 0.4495538 4.5902489 0.2079891 4.2913844 0.2291286
From susie (which seems to “miss” one of the changepoints):
plot(lai)
lines(predict(lai.s),col=2)
Version | Author | Date |
---|---|---|
a45f3cd | stephens999 | 2018-10-18 |
lai.s$elbo
[1] -Inf -345.8855 -340.9082 -332.0314 -320.1672 -310.2676 -302.9654
[8] -297.6058 -293.6073 -290.5957 -288.3099 -286.5210 -284.8860 -282.7483
[15] -280.1089 -278.0768 -276.6409 -275.5822 -274.7859 -274.1864 -273.7356
[22] -273.3947 -273.1329 -272.9270 -272.7608 -272.6239 -272.5094 -272.4130
[29] -272.3319 -272.2641 -272.2079 -272.1621 -272.1250 -272.0952 -272.0716
[36] -272.0529 -272.0381 -272.0265 -272.0175 -272.0105 -272.0051 -272.0010
[43] -271.9979 -271.9955 -271.9938 -271.9925 -271.9915
From bcp:
plot(lai)
lines(lai.bcp$posterior.mean, col = 3, lwd = 2)
lines(lai.bcp.long$posterior.mean, col = 4, lwd = 2)
plot(lai.bcp.long$posterior.prob)
which(lai.bcp.long$posterior.prob>0.99)
[1] 53 54 81 85 89 96 123 133
See if this is maybe a convergence issue solved by susie_auto
:
lai.s.auto = susie_cp(lai,auto=TRUE)
plot(lai)
lines(predict(lai.s.auto),col=2)
plot_cs(lai.s.auto)
lai.s.auto$elbo
[1] -Inf -245.7007 -245.6279 -245.5400 -245.4322 -245.2919 -245.0801
[8] -244.6691 -243.6458 -242.1472 -241.9562 -241.8816 -241.8067 -241.7264
[15] -241.6426 -241.5578 -241.4743 -241.3936 -241.3169 -241.2447 -241.1771
[22] -241.1140 -241.0552 -241.0004 -240.9494 -240.9017 -240.8572 -240.8154
[29] -240.7762 -240.7393 -240.7045 -240.6717 -240.6407 -240.6114 -240.5836
[36] -240.5572 -240.5322 -240.5084 -240.4858 -240.4643 -240.4439 -240.4244
[43] -240.4059 -240.3882 -240.3714 -240.3554 -240.3401 -240.3255 -240.3116
[50] -240.2984 -240.2858 -240.2737 -240.2622 -240.2513 -240.2408 -240.2309
I wonder if this is an example where the auto version is also finding a local optimum (with many changepoints), and that the best solution would have fewer? Maybe investigate further later.
s0 = susie_init_coef(cpts(lai.default),diff(unlist(coef(lai.default))),length(lai)-1)
lai.s_b = susie_cp(lai,s_init=s0)
plot(lai)
lines(predict(lai.s_b),col=2)
plot_cs(lai.s_b)
lai.s_b$elbo
[1] -Inf -476.7494 -429.8976 -383.4484 -348.1532 -320.5661 -302.5209
[8] -289.8122 -280.1721 -272.7621 -267.0347 -262.5531 -258.9807 -256.0733
[15] -253.6597 -251.6212 -249.8752 -248.3625 -247.0400 -245.8753 -244.8437
[22] -243.9256 -243.1053 -242.3700 -241.7091 -241.1139 -240.5767 -240.0911
[29] -239.6517 -239.2535 -238.8925 -238.5649 -238.2676 -237.9977 -237.7527
[36] -237.5303 -237.3285 -237.1456 -236.9799 -236.8299 -236.6943 -236.5718
[43] -236.4613 -236.3618 -236.2722 -236.1918 -236.1197 -236.0551 -235.9974
[50] -235.9458 -235.8999 -235.8590 -235.8227 -235.7905 -235.7620 -235.7367
[57] -235.7145 -235.6948 -235.6775 -235.6623 -235.6490 -235.6372 -235.6270
[64] -235.6180 -235.6102 -235.6034 -235.5974 -235.5922 -235.5877 -235.5838
[71] -235.5804 -235.5775 -235.5749 -235.5727 -235.5708 -235.5692 -235.5678
[78] -235.5665 -235.5655 -235.5646
lai.s_c = susie_cp(lai,s_init=lai.s_b,estimate_prior_variance=TRUE)
plot_cs(lai.s_c)
plot(lai)
lines(predict(lai.s_b),col=2,type="s")
plot_cs(lai.s_c)
lai.s_c$elbo
[1] -Inf -218.6124 -218.3783 -218.1978 -218.0523 -217.9320 -217.8306
[8] -217.7436 -217.6682 -217.6019 -217.5433 -217.4910 -217.4441 -217.4019
[15] -217.3637 -217.3290 -217.2975 -217.2688 -217.2425 -217.2185 -217.1965
[22] -217.1763 -217.1578 -217.1408 -217.1252 -217.1108 -217.0976 -217.0855
[29] -217.0744 -217.0642 -217.0548 -217.0462 -217.0383 -217.0311 -217.0245
[36] -217.0184 -217.0129 -217.0079 -217.0033 -216.9991 -216.9953 -216.9919
[43] -216.9888 -216.9859 -216.9834 -216.9811 -216.9790 -216.9771 -216.9754
[50] -216.9739 -216.9725 -216.9713 -216.9702 -216.9692
Also try trendfilter in the genlasso package:
library("genlasso")
Loading required package: Matrix
Loading required package: igraph
Attaching package: 'igraph'
The following objects are masked from 'package:stats':
decompose, spectrum
The following object is masked from 'package:base':
union
lai.tf = trendfilter(lai,ord=0)
lai.tf.cv = cv.trendfilter(lai.tf)
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
opt = which(lai.tf$lambda==lai.tf.cv$lambda.min) #optimal value of lambda
lai.tf.fit= lai.tf$fit[,opt]
plot(lai)
lines(lai.tf.fit,type="s",col=2,lwd=2)
bhat.tf = diff(lai.tf$beta[,opt])
bhat.tf = ifelse(abs(bhat.tf<1e-5),0,bhat.tf) # make very small values 0
s0.tf = susie_init_coef(which(bhat.tf!=0),bhat.tf[bhat.tf!=0],length(lai)-1)
lai.s.tf = susie_cp(lai,s_init = s0.tf,estimate_prior_variance=TRUE)
lai.s.tf$elbo
[1] -Inf -405.7173 -364.7052 -344.1847 -336.1369 -332.8231 -330.8278
[8] -329.1923 -327.5745 -325.1110 -321.0096 -317.6677 -314.5475 -311.6704
[15] -309.0480 -306.6274 -304.3418 -302.1151 -299.8204 -297.0738 -294.4913
[22] -293.2757 -292.1828 -291.1844 -290.2599 -289.4007 -288.6002 -287.8530
[29] -287.1544 -286.5004 -285.8875 -285.3124 -284.7726 -284.2654 -283.7886
[36] -283.3401 -282.9180 -282.5206 -282.1462 -281.7934 -281.4606 -281.1466
[43] -280.8500 -280.5696 -280.3043 -280.0528 -279.8140 -279.5866 -279.3695
[50] -279.1612 -278.9602 -278.7643 -278.5711 -278.3770 -278.1768 -277.9625
[57] -277.7224 -277.4390 -277.0883 -276.6390 -276.0364 -275.1461 -273.9363
[64] -272.7732 -272.0091 -271.6603 -271.3907 -271.1490 -270.9279 -270.7239
[71] -270.5347 -270.3586 -270.1942 -270.0405 -269.8966 -269.7618 -269.6354
[78] -269.5169 -269.4057 -269.3014 -269.2035 -269.1117 -269.0255 -268.9447
[85] -268.8688 -268.7976 -268.7307 -268.6679 -268.6089 -268.5535 -268.5014
[92] -268.4524 -268.4063 -268.3629 -268.3220 -268.2834 -268.2469 -268.2125
[99] -268.1799 -268.1490 -268.1198
plot(lai)
lines(predict(lai.s.tf),col=2)
plot_cs(lai.s.tf)
This one is described as a “hard” example (with one change point) in the bcp examples.
set.seed(5)
x <- rep(c(0,1), each=50)
eg2 <- x + rnorm(50, sd=1)
eg2.bcp <- bcp(eg2)
plot(eg2.bcp, main="Univariate Change Point Example")
Try susie:
eg2.s = susie_cp(eg2)
plot(eg2)
lines(x,lwd=2)
lines(predict(eg2.s),col=2,lwd=2)
lines(eg2.bcp$posterior.mean,col=3,lwd=2)
It is a bit wiggly, so try increasing the number of iterations (from default of 500):
eg2.bcp.long <- bcp(eg2,mcmc = 5000,return.mcmc=TRUE)
plot(eg2)
lines(x,lwd=2)
lines(predict(eg2.s),col=2,lwd=2)
lines(eg2.bcp.long$posterior.mean,col=3,lwd=2)
points(eg2.bcp.long$mcmc.means[1000,],col=4,lwd=2)
points(eg2.bcp.long$mcmc.means[5000,],col=5,lwd=2)
plot(colMeans(eg2.bcp.long$mcmc.means),col=4)
lines(eg2.bcp$posterior.mean)
That is suprising that the long and short run agree so closely. But
eg2.bcp.short <- bcp(eg2,mcmc=100,return.mcmc=TRUE)
plot(eg2.bcp.short$posterior.mean,eg2.bcp$posterior.mean)
This example comes from demo(coriell)
in the bcp package.
data(coriell)
chrom11 <- as.vector(na.omit(coriell$Coriell.05296[coriell$Chromosome==11]))
chrom11.bcp <- bcp(chrom11)
plot(chrom11.bcp, main="Coriell chromosome 11 (bcp)")
Here it compares results with DNAcopy package (also part of the demo)
library("DNAcopy")
n <- length(chrom11)
cbs <- segment(CNA(chrom11, rep(1, n), 1:n), verbose = 0)
cbs.ests <- rep(unlist(cbs$output[6]), unlist(cbs$output[5]))
op <- par(mfrow=c(2,1),col.lab="black",col.main="black")
op2 <- par(mar=c(0,4,4,2),xaxt="n", cex.axis=0.75)
plot(1:n, chrom11.bcp$data[,2], col="grey", pch=20, xlab="Location",
ylab="Posterior Mean",
main="Coriell chromosome 11 (DNAcopy)")
lines(cbs.ests, col="red")
lines(chrom11.bcp$posterior.mean, lwd=2)
par(op2)
op3 <- par(mar=c(5,4,0,2), xaxt="s", cex.axis=0.75)
plot(1:n, chrom11.bcp$posterior.prob, type="l", ylim=c(0,1),
xlab="Location", ylab="Posterior Probability", main="")
for (i in 1:(dim(cbs$output)[1]-1)) {
abline(v=cbs$output$loc.end[i], col="red")
}
par(op3)
par(op)
Try susie. Note that this example illustrates a case where a variable (here 66) occurs in multiple CSs… something we don’t yet fully understand the implications of I think.
chrom11.s = susie_cp(chrom11)
plot(1:n, chrom11, col="grey", pch=20, xlab="Location",
ylab="Posterior Mean",
main="Coriell chromosome 11 (DNAcopy)")
lines(predict(chrom11.s),col=2,lwd=2)
chrom11.s$sets
$cs
$cs$L2
[1] 51
$cs$L3
[1] 66
$cs$L4
[1] 63 64 66
$cs$L1
[1] 66 67 68 69 70 71
$purity
min.abs.corr mean.abs.corr median.abs.corr
L2 1.0000000 1.0000000 1.0000000
L3 1.0000000 1.0000000 1.0000000
L4 0.9649213 0.9843474 0.9880822
L1 0.9436735 0.9778424 0.9772150
$cs_index
[1] 2 3 4 1
$coverage
[1] 0.95
abline(v=66)
abline(v=51)
An example from the DNAcopy segment
function:
set.seed(51)
true_mean = rep(c(-0.2,0.1,1,-0.5,0.2,-0.5,0.1,-0.2),c(137,87,17,49,29,52,87,42))
genomdat <- rnorm(500, sd=0.2) + true_mean
plot(genomdat)
chrom <- rep(1:2,c(290,210))
maploc <- c(1:290,1:210)
genomdat.seg <- segment(CNA(genomdat, chrom, maploc))
Analyzing: Sample.1
plot(genomdat.seg)
genomdat.s = susie_cp(genomdat)
plot_cs(genomdat.s)
lines(true_mean,col=1,type="s")
plot(genomdat.s$pip)
genomdat.bcp = bcp(genomdat)
plot(genomdat.bcp)
plot(genomdat.bcp$posterior.mean,predict(genomdat.s))
This example from DNAcopy too. (commented out for now as takes too long.)
# data(coriell)
#
# #Combine into one CNA object to prepare for analysis on Chromosomes 1-23
#
# CNA.object <-CNA(cbind(coriell$Coriell.05296,coriell$Coriell.13330),coriell$Chromosome,coriell$Position,data.type="logratio",sampleid=c("c05296","c13330"))
#
# s = susie_cp(CNA.object$c13330[!is.na(CNA.object$c13330)])
# plot(CNA.object$c13330[!is.na(CNA.object$c13330)])
# plot_cs(s)
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: OS X El Capitan 10.11.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] DNAcopy_1.55.0 genlasso_1.4 igraph_1.2.2 Matrix_1.2-14
[5] bcp_4.0.3 susieR_0.5.0.0347 changepoint_2.2.2 zoo_1.8-4
loaded via a namespace (and not attached):
[1] Rcpp_0.12.19 knitr_1.20 whisker_0.3-2
[4] magrittr_1.5 workflowr_1.1.1 lattice_0.20-35
[7] stringr_1.3.1 tools_3.5.1 R.oo_1.22.0
[10] git2r_0.23.0 htmltools_0.3.6 matrixStats_0.54.0
[13] yaml_2.2.0 rprojroot_1.3-2 digest_0.6.18
[16] R.utils_2.7.0 evaluate_0.12 rmarkdown_1.10
[19] stringi_1.2.4 compiler_3.5.1 backports_1.1.2
[22] R.methodsS3_1.7.1 pkgconfig_2.0.2
This reproducible R Markdown analysis was created with workflowr 1.1.1