<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />


<meta name="author" content="Matthew Stephens" />

<meta name="date" content="2017-11-18" />

<title>Connect newVB with single SNP mapping</title>

<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/cosmo.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<link href="site_libs/font-awesome-4.5.0/css/font-awesome.min.css" rel="stylesheet" />

<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
  pre:not([class]) {
    background-color: white;
  }
</style>
<script type="text/javascript">
if (window.hljs) {
  hljs.configure({languages: []});
  hljs.initHighlightingOnLoad();
  if (document.readyState && document.readyState === "complete") {
    window.setTimeout(function() { hljs.initHighlightingOnLoad(); }, 0);
  }
}
</script>



<style type="text/css">
h1 {
  font-size: 34px;
}
h1.title {
  font-size: 38px;
}
h2 {
  font-size: 30px;
}
h3 {
  font-size: 24px;
}
h4 {
  font-size: 18px;
}
h5 {
  font-size: 16px;
}
h6 {
  font-size: 12px;
}
.table th:not([align]) {
  text-align: left;
}
</style>


</head>

<body>

<style type = "text/css">
.main-container {
  max-width: 940px;
  margin-left: auto;
  margin-right: auto;
}
code {
  color: inherit;
  background-color: rgba(0, 0, 0, 0.04);
}
img {
  max-width:100%;
  height: auto;
}
.tabbed-pane {
  padding-top: 12px;
}
button.code-folding-btn:focus {
  outline: none;
}
</style>


<style type="text/css">
/* padding for bootstrap navbar */
body {
  padding-top: 51px;
  padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar)  */
.section h1 {
  padding-top: 56px;
  margin-top: -56px;
}

.section h2 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h3 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h4 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h5 {
  padding-top: 56px;
  margin-top: -56px;
}
.section h6 {
  padding-top: 56px;
  margin-top: -56px;
}
</style>

<script>
// manage active state of menu based on current page
$(document).ready(function () {
  // active menu anchor
  href = window.location.pathname
  href = href.substr(href.lastIndexOf('/') + 1)
  if (href === "")
    href = "index.html";
  var menuAnchor = $('a[href="' + href + '"]');

  // mark it active
  menuAnchor.parent().addClass('active');

  // if it's got a parent navbar menu mark it active as well
  menuAnchor.closest('li.dropdown').addClass('active');
});
</script>


<div class="container-fluid main-container">

<!-- tabsets -->
<script>
$(document).ready(function () {
  window.buildTabsets("TOC");
});
</script>

<!-- code folding -->




<script>
$(document).ready(function ()  {

    // move toc-ignore selectors from section div to header
    $('div.section.toc-ignore')
        .removeClass('toc-ignore')
        .children('h1,h2,h3,h4,h5').addClass('toc-ignore');

    // establish options
    var options = {
      selectors: "h1,h2,h3",
      theme: "bootstrap3",
      context: '.toc-content',
      hashGenerator: function (text) {
        return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
      },
      ignoreSelector: ".toc-ignore",
      scrollTo: 0
    };
    options.showAndHide = true;
    options.smoothScroll = true;

    // tocify
    var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>

<style type="text/css">

#TOC {
  margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
  position: relative;
  width: 100%;
}
}


.toc-content {
  padding-left: 30px;
  padding-right: 40px;
}

div.main-container {
  max-width: 1200px;
}

div.tocify {
  width: 20%;
  max-width: 260px;
  max-height: 85%;
}

@media (min-width: 768px) and (max-width: 991px) {
  div.tocify {
    width: 25%;
  }
}

@media (max-width: 767px) {
  div.tocify {
    width: 100%;
    max-width: none;
  }
}

.tocify ul, .tocify li {
  line-height: 20px;
}

.tocify-subheader .tocify-item {
  font-size: 0.90em;
  padding-left: 25px;
  text-indent: 0;
}

.tocify .list-group-item {
  border-radius: 0px;
}


</style>

<!-- setup 3col/9col grid for toc_float and main content  -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>

<div class="toc-content col-xs-12 col-sm-8 col-md-9">




<div class="navbar navbar-default  navbar-fixed-top" role="navigation">
  <div class="container">
    <div class="navbar-header">
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
      </button>
      <a class="navbar-brand" href="index.html">misc</a>
    </div>
    <div id="navbar" class="navbar-collapse collapse">
      <ul class="nav navbar-nav">
        <li>
  <a href="index.html">Home</a>
</li>
<li>
  <a href="about.html">About</a>
</li>
<li>
  <a href="license.html">License</a>
</li>
      </ul>
      <ul class="nav navbar-nav navbar-right">
        <li>
  <a href="https://github.com/jdblischak/workflowr">
    <span class="fa fa-github"></span>
     
  </a>
</li>
      </ul>
    </div><!--/.nav-collapse -->
  </div><!--/.container -->
</div><!--/.navbar -->

<div class="fluid-row" id="header">



<h1 class="title toc-ignore">Connect newVB with single SNP mapping</h1>
<h4 class="author"><em>Matthew Stephens</em></h4>
<h4 class="date"><em>2017-11-18</em></h4>

</div>


<!-- The file analysis/chunks.R contains chunks that define default settings
shared across the workflowr files. -->
<!-- Update knitr chunk options -->
<!-- Insert the date the file was last updated -->
<p><strong>Last updated:</strong> 2017-11-18</p>
<!-- Insert the code version (Git commit SHA1) if Git repository exists and R
 package git2r is installed -->
<p><strong>Code version:</strong> 4125d0a</p>
<div id="background" class="section level1">
<h1>Background</h1>
<p>Here I derive the variational updates based on standard Bayesian computations for the single-SNP model. I also implement a version that has clearer connections with that model and show it gives the same results as the original.</p>
</div>
<div id="derivation" class="section level1">
<h1>Derivation</h1>
<div id="one-snp-model" class="section level2">
<h2>One SNP model</h2>
<p>Consider the single-SNP (“one eQTL per gene”) regression model. That is the model <span class="math display">\[Y = Xb + E\]</span> where <span class="math inline">\(X\)</span> is <span class="math inline">\(n \times p\)</span> and <span class="math inline">\(b\)</span> is <span class="math inline">\(p \times 1\)</span> and the prior on <span class="math inline">\(b\)</span> is that exactly one element of <span class="math inline">\(b\)</span> is nonzero, with <span class="math display">\[b_j \sim (1-\pi_j) \delta_0 + \pi_j N(0,\sigma_b^2).\]</span></p>
<p>Let <span class="math inline">\(F_1(q)\)</span> denote the VB lower bound for this model, where <span class="math inline">\(q\)</span> is a variational distribution on <span class="math inline">\(b\)</span>. Then:</p>
<p><span class="math display">\[F_1(q; X,Y) = E_q[-||Y-Xb||^2/(2\sigma^2)] + E_q[\log p(b)/q(b)] + \text{const}\]</span> We know that the posterior distribution for <span class="math inline">\(b\)</span> is easily computed, and that it maximizes the lower-bound <span class="math inline">\(F_1(q)\)</span> over <em>all possible</em> <span class="math inline">\(q\)</span>. Let <span class="math inline">\(p_\text{post}\)</span> denote this posterior. That is</p>
<p><span class="math display">\[p_\text{post} = \arg \max F_1(q).\]</span></p>
<p>Note that we can write <span class="math inline">\(F_1\)</span> as follows: <span class="math display">\[F_1(q; X,Y) = -1/(2\sigma^2) E_q[Y&#39;Y + b&#39;X&#39;Xb -2Y&#39;Xb]  + E_q[\log p(b)/q(b)] + \text{const}\]</span></p>
<p><span class="math display">\[F_1(q; X,Y) = -1/(2\sigma^2) E_q[b&#39;X&#39;Xb -2Y&#39;Xb]  + E_q[\log p(b)/q(b)] + \text{const}\]</span> where the constant does not depend on <span class="math inline">\(q\)</span>.</p>
</div>
<div id="two-snp-model" class="section level2">
<h2>Two SNP model</h2>
<p>Now consider the two-SNP model <span class="math display">\[Y = Xb_1 + Xb_2 + E.\]</span></p>
<p>Let <span class="math inline">\(q(b_1,b_2) = q_1(b_1)q_2(b_2)\)</span> be the variational approximation to the posterior on <span class="math inline">\(b_1,b_2\)</span>.</p>
<p>The variational lower bound is <span class="math display">\[F_2(q_1,q_2; X,Y) = E_{q_1,q_2}[-||Y-Xb_1 - Xb_2||^2/(2\sigma^2)] + 
E_{q_1}[\log p(b_1)/ q_1(b_1)] + E_{q_2}[\log p(b_2)/ q_2(b_2)] + \text{const}\]</span></p>
<p>Now consider maximizing <span class="math inline">\(F_2\)</span> over <span class="math inline">\(q_2\)</span> only, treating <span class="math inline">\(q_1\)</span> as fixed. That is we must maximize: <span class="math display">\[F_2(q_2; X,Y) = E_{q_1,q_2}[-||Y-Xb_1 - Xb_2||^2/(2\sigma^2)] + 
 E_{q_2}[\log p(b_2)/ q_2(b_2)] + \text{const}\]</span> which we can write <span class="math display">\[F_2(q_2;X,Y) = -1/(2\sigma^2) E_{q_1,q_2}[(Y-Xb_1)&#39;(Y-Xb_1) +  b_2&#39;X&#39;Xb_2 -2(Y-Xb_1)&#39;Xb_2] + 
 E_{q_2}[\log p(b_2)/ q_2(b_2)] + \text{const}\]</span> which, again absorbing some terms that do not depend on <span class="math inline">\(q_2\)</span> into the constant: <span class="math display">\[F_2(q_2; X,Y) = -1/(2\sigma^2) E_{q_2}[b_2&#39;X&#39;Xb_2 -2(Y-X\bar{b}_1)&#39;Xb_2] + 
 E_{q_2}[\log p(b_2)/ q_2(b_2)] + \text{const}\]</span> where <span class="math inline">\(\bar{b}_1\)</span> denotes <span class="math inline">\(E_{q_1}(b_1)\)</span>.</p>
<p>Thus we can write <span class="math inline">\(F_2\)</span> as a function of the single SNP problem <span class="math inline">\(F_1\)</span>, but with <span class="math inline">\(Y\)</span> replaced with the residualized version <span class="math inline">\(Y-X\bar{b}_1\)</span>: <span class="math display">\[F_2(q_2; X,Y) = F_1(q; X, Y-X\bar{b}_1) + \text{const}\]</span> In other words we can optimize <span class="math inline">\(F_2\)</span> over <span class="math inline">\(q_2\)</span>, with <span class="math inline">\(q_1\)</span> fixed, by applying single-SNP Bayesian computations to the residualized <span class="math inline">\(Y\)</span>s.</p>
<p>Similarly we can optimize <span class="math inline">\(F_2\)</span> over <span class="math inline">\(q_1\)</span> with <span class="math inline">\(q_2\)</span> fixed the same way.</p>
<p>And the same idea extends to arbitrary numbers of SNPs.</p>
</div>
</div>
<div id="example" class="section level1">
<h1>Example</h1>
<p>Here we code up the idea directly in terms of single-SNP computations, just to make it clear.</p>
<pre class="r"><code>knitr::read_chunk(&quot;newVB.funcs.R&quot;)</code></pre>
<pre class="r"><code>new_varbvsnormupdate &lt;- function (X, sigma, sa, xy, d, alpha0, mu0, Xr0) {

  # Get the number of samples (n) and variables (p).
  n &lt;- nrow(X)
  p &lt;- ncol(X)

  L = nrow(alpha0) # alpha0 and mu0 must be L by p
  pi = rep(1,p)

  # Check input X.
  if (!is.double(X) || !is.matrix(X))
    stop(&quot;Input X must be a double-precision matrix&quot;)

  # Check inputs sigma and sa.
  if (length(sigma) != 1 | length(sa) != 1)
    stop(&quot;Inputs sigma and sa must be scalars&quot;)


  # Check input Xr0.
  if (length(Xr0) != n)
    stop(&quot;length(Xr0) must be equal to nrow(X)&quot;)


  # Initialize storage for the results.
  alpha &lt;- alpha0
  mu    &lt;- mu0
  Xr    &lt;- Xr0

  # Repeat for each effect to update
  for (l in 1:L) {
    # remove lth effect
    Xr = Xr - X %*% (alpha[l,]*mu[l,])

    # Compute the variational estimate of the posterior variance.
    s &lt;- sa*sigma/(sa*d + 1)

    # Update the variational estimate of the posterior mean.
    mu[l,] &lt;- s/sigma * (xy - t(X) %*% Xr)

    # Update the variational estimate of the posterior inclusion
    # probability. This is basically prior (pi) times BF.
    # The BF here comes from the normal approx - could be interesting
    # to replace it with a t version that integrates over sigma?
    alpha[l,] &lt;- pi*exp((log(s/(sa*sigma)) + mu[l,]^2/s)/2)

    alpha[l,] &lt;- alpha[l,]/sum(alpha[l,])

    # Update Xr by adding back in the $l$th effect
    Xr &lt;- Xr + X %*% (alpha[l,]*mu[l,])
  }

  return(list(alpha = alpha,mu = mu,Xr = Xr,s=s))
}

# Just repeated applies those updates
# X is an n by p matrix of genotypes
# Y a n vector of phenotypes
# sa the variance of the prior on effect sizes (actually $\beta \sim N(0,sa sigma)$ where the residual variance sigma here is fixed to the variance of Y based on a small effect assumption.)
fit = function(X,Y,sa=1,sigma=NULL,niter=100,L=5,calc_elbo=FALSE){
  if(is.null(sigma)){
    sigma=var(Y)
  }
  p =ncol(X)
  xy = t(X) %*% Y
  d = colSums(X * X)
  alpha0= mu0 = matrix(0,nrow=L,ncol=p)
  Xr0 = X %*% colSums(alpha0*mu0)
  elbo = rep(NA,niter)
  for(i in 1:niter){
    res = new_varbvsnormupdate(X, sigma, sa, xy, d, alpha0, mu0, Xr0)
    alpha0 = res$alpha
    mu0 = res$mu
    Xr0 = res$Xr
    if(calc_elbo){
      elbo[i] = elbo(X,Y,sigma,sa,mu0,alpha0)
    }
  }
  return(c(res,list(elbo=elbo)))
}

#this is for scaled prior in which effect prior variance is sa * sigma
elbo = function(X,Y,sigma,sa,mu,alpha){
  L = nrow(alpha)
  n = nrow(X)
  p = ncol(X)

  Xr = (alpha*mu) %*% t(X)
  Xrsum = colSums(Xr)

  d = colSums(X*X)
  s &lt;- sa*sigma/(sa*d + 1)

  postb2 = alpha * t(t(mu^2) + s)

  Eloglik =  -(n/2) * log(2*pi* sigma) -
    (1/(2*sigma)) * sum(Y^2) +
    (1/sigma) * sum(Y * Xrsum) -
    (1/(2*sigma)) * sum(Xrsum^2) +
    (1/(2*sigma)) * sum((Xr^2)) -
    (1/(2*sigma)) * sum(d*t(postb2))

  KL1 = sum(alpha * log(alpha/(1/p)))
  KL2 = - 0.5* sum(t(alpha) * (1 + log(s)-log(sigma*sa)))
  + 0.5 * sum(postb2)/(sigma*sa)

  return(Eloglik - KL1 - KL2)
}


# This computes the average lfsr across SNPs for each l, weighted by the
# posterior inclusion probability alpha
lfsr_fromfit = function(res){
  pos_prob = pnorm(0,mean=t(res$mu),sd=sqrt(res$s))
  neg_prob = 1-pos_prob
  1-rowSums(res$alpha*t(pmax(pos_prob,neg_prob)))
}

#find how many variables in the 95% CI
# x is a probability vector
n_in_CI_x = function(x){
  sum(cumsum(sort(x,decreasing = TRUE))&lt;0.95)+1
}

# return binary vector indicating if each point is in CI
# x is a probability vector
in_CI_x = function(x){
  n = n_in_CI_x(x)
  o = order(x,decreasing=TRUE)
  result = rep(0,length(x))
  result[o[1:n]] = 1
  return(result)
}

# Return binary matrix indicating which variables are in CI of each
# of effect
in_CI = function(res){
  t(apply(res$alpha,1,in_CI_x))
}

n_in_CI = function(res){
  apply(res$alpha,1,n_in_CI_x)
}

# computes z score for association between each
# column of X and y
calc_z = function(X,y){
  z = rep(0,ncol(X))
  for(i in 1:ncol(X)){
    z[i] = summary(lm(y ~ X[,i]))$coeff[2,3]
  }
  return(z)
}


# plot p values of data and color in the 95% CIs
# for simulated data, specify b = true effects (highlights in red)
pplot = function(X,y,res,pos=NULL,b=NULL,CImax = 400,...){
  z = calc_z(X,y)
  zneg = -abs(z)
  logp = log10(pnorm(zneg))
  if(is.null(b)){b = rep(0,ncol(X))}
  if(is.null(pos)){pos = 1:ncol(X)}
  plot(pos,-logp,col=&quot;grey&quot;,xlab=&quot;&quot;,ylab=&quot;-log10(p)&quot;,...)
  points(pos[b!=0],-logp[b!=0],col=2,pch=16)
  for(i in 1:nrow(res$alpha)){
    if(n_in_CI(res)[i]&lt;CImax)
      points(pos[which(in_CI(res)[i,]&gt;0)],-logp[which(in_CI(res)[i,]&gt;0)],col=i+2)
  }

}</code></pre>
<pre class="r"><code># single snp bayes regression of Y on each column of X
# Y is n vector
# X is n by p
# prior variane on beta is sa2 * s2 (ie sa2 scaled by residual variance)
# s2 is sigma^2 (residual variance)
single_snp = function(Y,X,sa2=1,s2=1){
  d = colSums(X^2)
  sa2 = s2*sa2 # scale by residual variance
  betahat = (1/d) * t(X) %*% Y
  shat2 = s2/d
  alpha = dnorm(betahat,0,sqrt(sa2+shat2))/dnorm(betahat,0,sqrt(shat2)) #bf on each SNP
  alpha = alpha/sum(alpha) # posterior prob on each SNP
  spost2 = (1/sa2 + d/s2)^(-1) # posterior variance
  mupost = (d/s2)*spost2*betahat
  return(list(alpha=alpha,mu=mupost,s2=spost2))
}

new_vbupdate &lt;- function (X, sigma, sa, Y, d, alpha0, mu0, Xr0) {

  # Get the number of samples (n) and variables (p).
  n &lt;- nrow(X)
  p &lt;- ncol(X)

  L = nrow(alpha0) # alpha0 and mu0 must be L by p
  pi = rep(1,p)

  # Check input X.
  if (!is.double(X) || !is.matrix(X))
    stop(&quot;Input X must be a double-precision matrix&quot;)

  # Check inputs sigma and sa.
  if (length(sigma) != 1 | length(sa) != 1)
    stop(&quot;Inputs sigma and sa must be scalars&quot;)


  # Check input Xr0.
  if (length(Xr0) != n)
    stop(&quot;length(Xr0) must be equal to nrow(X)&quot;)


  # Initialize storage for the results.
  alpha &lt;- alpha0
  mu    &lt;- mu0
  Xr    &lt;- Xr0

  # Repeat for each effect to update
  for (l in 1:L) {
    # remove lth effect
    Xr = Xr - X %*% (alpha[l,]*mu[l,])
    R = Y - Xr
    res = single_snp(R,X,sa,sigma)

    # Compute the variational estimate of the posterior variance.
    s &lt;- res$s2

    # Update the variational estimate of the posterior mean.
    mu[l,] &lt;- res$mu
    
    # Update the variational estimate of the posterior inclusion
    # probability. This is basically prior (pi) times BF.
    # The BF here comes from the normal approx - could be interesting
    # to replace it with a t version that integrates over sigma?
    alpha[l,] &lt;- res$alpha

    Xr &lt;- Xr + X %*% (alpha[l,]*mu[l,])
  }

  return(list(alpha = alpha,mu = mu,Xr = Xr,s=s))
}


fit2 = function(X,Y,sa=1,sigma=NULL,niter=100,L=5,calc_elbo=FALSE){
  if(is.null(sigma)){
    sigma=var(Y)
  }
  p =ncol(X)
  xy = t(X) %*% Y
  d = colSums(X * X)
  alpha0= mu0 = matrix(0,nrow=L,ncol=p)
  Xr0 = X %*% colSums(alpha0*mu0)
  elbo = rep(NA,niter)
  for(i in 1:niter){
    res = new_vbupdate(X, sigma, sa, Y, d, alpha0, mu0, Xr0)
    alpha0 = res$alpha
    mu0 = res$mu
    Xr0 = res$Xr
    if(calc_elbo){
      elbo[i] = elbo(X,Y,sigma,sa,mu0,alpha0)
    }
  }
  return(c(res,list(elbo=elbo)))
}</code></pre>
<pre class="r"><code>set.seed(1)
n = 1000
p = 1000
beta = rep(0,p)
beta[1] = 1
beta[2] = 1
beta[3] = 1
beta[4] = 1
X = matrix(rnorm(n*p),nrow=n,ncol=p)
y = X %*% beta + rnorm(n)

#X = scale(X,center = TRUE,scale=FALSE)
#y = y-mean(y)
res =fit(X,y,niter=10,calc_elbo=TRUE)
res2 =fit2(X,y,niter=10,calc_elbo = TRUE)
all.equal(res$elbo,res2$elbo)</code></pre>
<pre><code>[1] TRUE</code></pre>
<pre class="r"><code>y = read.table(&quot;../data/finemap_data/fmo2.sim/ysim.txt&quot;)
X = read.table(&quot;../data/finemap_data/fmo2.sim/Xresid.txt&quot;)
X = as.matrix(X)
y = as.matrix(y)
res =fit(X,y,niter=50,calc_elbo=TRUE)
res2 =fit(X,y,niter=50,calc_elbo=TRUE)
all.equal(res$elbo,res2$elbo)</code></pre>
<pre><code>[1] TRUE</code></pre>
<pre class="r"><code>res =fit(X,y,sigma=1.2,sa=0.5,niter=50,calc_elbo=TRUE)
res2 =fit(X,y,sigma=1.2,sa=0.5,niter=50,calc_elbo=TRUE)
all.equal(res$elbo,res2$elbo)</code></pre>
<pre><code>[1] TRUE</code></pre>
<pre class="r"><code>plot(res$elbo,main=&quot;elbo is increasing&quot;)</code></pre>
<p><img src="figure/newVB.ss.Rmd/unnamed-chunk-4-1.png" width="672" style="display: block; margin: auto;" /></p>
<div id="session-information" class="section level2">
<h2>Session information</h2>
<!-- Insert the session information into the document -->
<pre class="r"><code>sessionInfo()</code></pre>
<pre><code>R version 3.3.2 (2016-10-31)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: OS X El Capitan 10.11.6

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] backports_1.1.1 magrittr_1.5    rprojroot_1.2   tools_3.3.2    
 [5] htmltools_0.3.6 yaml_2.1.14     Rcpp_0.12.13    stringi_1.1.5  
 [9] rmarkdown_1.7   knitr_1.17      git2r_0.19.0    stringr_1.2.0  
[13] digest_0.6.12   evaluate_0.10.1</code></pre>
</div>
</div>

<hr>
<p>
    This <a href="http://rmarkdown.rstudio.com">R Markdown</a> site was created with <a href="https://github.com/jdblischak/workflowr">workflowr</a>
</p>
<hr>

<!-- To enable disqus, uncomment the section below and provide your disqus_shortname -->

<!-- disqus
  <div id="disqus_thread"></div>
    <script type="text/javascript">
        /* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */
        var disqus_shortname = 'rmarkdown'; // required: replace example with your forum shortname

        /* * * DON'T EDIT BELOW THIS LINE * * */
        (function() {
            var dsq = document.createElement('script'); dsq.type = 'text/javascript'; dsq.async = true;
            dsq.src = '//' + disqus_shortname + '.disqus.com/embed.js';
            (document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq);
        })();
    </script>
    <noscript>Please enable JavaScript to view the <a href="http://disqus.com/?ref_noscript">comments powered by Disqus.</a></noscript>
    <a href="http://disqus.com" class="dsq-brlink">comments powered by <span class="logo-disqus">Disqus</span></a>
-->


</div>
</div>

</div>

<script>

// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
  $('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
  bootstrapStylePandocTables();
});


</script>

<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>