The Anatomy of a Bug

A system-level view of why software has defects.

f, A Skill-Wanderer Learning Module

& NotebookLM

We've all heard the common
explanation for bugs.

Bugs are caused by bad programmers.

The Bug

But what if this only scratches the surface of the truth?

The truth is that bugs are a
normal, inevitable outcome The Bug
of a complex process. »

"If software has users, it has bugs.”

The goal isn’t to assign blame. It's to
understand the hidden forces that create
defects so we can find them earlier and
reduce their impact.

Let's look below the surface.

& NotebooklLM

At the core, software 1s built

by people. And people are
fallible.

Human error is a factor, but it's not a moral
failing. It's a statistical reality. Even the
most skilled developers will:

e Misunderstand complex logic.

e Make assumptions based on their own
experience.

e Miss uncommon ‘edge cases’

e Get tired, stressed, or rushed.

& NotebooklLM

But why do smart people make
simple mistakes? Often, the
problem starts before code is
even written.

One of the biggest sources of bugs is the
documentation—or lack thereof.

» Incomplete: Vital details are missing.

e Ambiguous: Text can be interpreted
in multiple ways.

e Volatile: Requirements change mid-
development.

e Misaligned: Stakeholders expect
something different from what was
written.

\ Fallibility

Y

T W
L o 4
":--' e i
. pe S, !
. i:* A Th G ¥
s 5 i." ,.; - 8
= e

Ambiguous
Requirements

&1 NotebookLM

A ‘simple’ requirement can hide a dozen
potential bugs.

—— () When? (Immediately? Daily digest?)

T el aut —— @ To whom? (Admin? User? Both?)

“The system should <
send a notification.” N— € By what channel? (Email? SMS? In-app?)

~—— (& What if it fails? (Retry? Log error?)

Every unanswered question is a potential defect waiting to happen.

& NotebooklLM

Modern software isn’t built in a
a straight line. It’'s a web of
connections.

Complexity grows faster than our ability to
predict behavior. No single person can

mentally simulate the entire system at once. f R Human
Bugs often emerge from the interaction Fallibility
between: Amblguous
| Reqmrements
e Many interconnected features. T %

e Multiple third-party integrations. '

« Various devices, browsers, and System
operating systems. Complexity

 Diverse and unpredictable user

behaviors.

& NotebookLM

We build for the “Happy Path,” but users
live in the real world.

> S0

Developer Assumption The Reality
e Users follow instructions. e Users do unexpected, illogical things.
e |nputs are reasonable. e |nputs are messy, blank, or formatted
e Systems behave consistently. wrong.
e Datais clean. * Networks fail; databases lock up.

e Data is often corrupted or old.

The Tester's Mindset: "What happens if this assumption is wrong?"

& NotebookLM

Software is built
against the clock and
under pressure.

Ideal development conditions rarely exist.
Real-world constraints force trade-offs:

e Tight deadlines
o Limited budgets Rt Tino

e Marketing promises | Pressure
o Competitive necessity | 4

| Business &

Key Result: Shortcuts are taken, testing time is reduced,
and "Technical Debt" accumulates. Often, bugs are known
but accepted as a calculated risk to meet a deadline.

& NotebookLM

Software rarely runs in a
vacuum. It must survive
in a messy world.

Environment Differences

A feature working on a developer's high-end
laptop might fail on...

 Browsers: Chrome vs. Safari Y. .
» Devices: High-end iPhone vs. budget Android A B“’;‘r':";zs &
o Network: Fast Wi-Fi vs. spotty 4G

Pressure

Integration Failures
Modern systems connect to Payment Gateways,

Environment & Q

Email Services, and Third-party APIs. Each '“tgﬁ;‘:‘"
connection is a potential point of failure. J;L

Many bugs appear between systems, not inside them.

& NotebookLM

The bug you see is just the final
symptom of a dozen hidden causes.

Va¥y
1Lk The Bug

e

Human Fallibility

—— Ambiguous Requirements
. - System Complexity

Business & Time Pressure

Environment &
Integration Chaos

Most bugs are not a failure of coding. They are a failure of process, communication, and managing complexity.
Understanding this is the first step to building better software.

& NotebookLM

Given this reality, the role of the
tester becomes clear. They are
the system’s counterbalance.

Testing is not about distrusting developers—it is about
protecting users from the inevitable complexity of the
system. Testers exist to systematically navigate the
hidden parts of the iceberg.

& NotebooklLM

The Tester’s Mandate:

? Challenge assumptions.

q Ask uncomfortable questions.

Explore risky behavior.

& Represent the real user.

Good testing reduces risk, not ego.

& NotebooklLM

Key Principles for Your Team

Bugs are inevitable; they are not a sign of individual failure.

Most defects come from process, communication, and
complexity issues, not just “bad coding.”

The goal is to understand causes, not to assign blame.

Testers are essential partners in navigating complexity
and protecting users.

& NotebookLM

“Testers look for
causes, not blame.”

Skill-Wanderer

Deeper Understanding for Software Professionals.

