Formal Languages and Automata

Day 2: Finite Automata

Before indulging into DFAs

- Let's review some basic concepts:
- Languages
- Grammars
- Automata

Languages

- Complement $\bar{L} = \Sigma^* L$
- Reverse $L^R = \{w^R \colon w \in L\}$
- Concatenation $L_1L_2 = \{xy \colon x \in L_1, y \in L_2\}$
- L^n : easy $L^0 = \{\lambda\}$
- Star-closure $L^* = L^0 \cup L^1 \cup L^2 \cdots$ [Kleene closure]
- Positive closure $L^+ = L^1 \cup L^2 \cdots$

[Kleene closure] [Kleene plus]

Grammars

• A grammar G is defined as a quadruple

$$G = (V, T, S, P),$$

where V is a finite set of objects called **variables**, T is a finite set of objects called **terminal symbols**, $S \in V$ is a special symbol called the **start** variable, P is a finite set of **productions**.

Sets V, T are nonempty and disjoint.

Grammars – cont'd

• $x \in (V \cup T)^+, y \in (V \cup T)^*$

$$w = uxv \quad \xrightarrow{\text{Production rule } x \to y} z = uyv$$

• This is written as $w \Rightarrow z$: w derives z

Grammars – cont'd

• Let G = (V, T, S, P) be a grammar. Then the set $L(G) = \left\{ w \in T^* \colon S \stackrel{*}{\Rightarrow} w \right\}$

is the language generated by G.

• If $w \in L(G)$, then the sequence $S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \cdots \Rightarrow w_n \Rightarrow w$ is a **derivation** of the sentence w.

Automata

- Input file
- Storage
- Control unit
- Internal states
- Transition function
- Configuration
- Move

Automata – cont'd

A deterministic finite accepter is defined by the quintuple

 $M = (Q, \Sigma, \delta, q_0, F),$

- ${\cal Q}~$ a finite set of internal states
- Σ a finite set of symbols **input alphabet**
- $\delta: Q \times \Sigma \to Q$ a total function transition function
- $q_0 \in Q$ the **initial state**
- $F \subseteq Q$ a set of **final states**

• Transition graphs – clear and intuitive

- Vertices = states
- Edges = transitions

• Deterministic finite accepter $M = (Q, \Sigma, \delta, q_0, F)$ \Leftrightarrow Transition graph G_M

[Example 1] $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\})$ where δ is given by

$$\begin{aligned} \delta(q_0, 0) &= q_0, & \delta(q_0, 1) = q_1, \\ \delta(q_1, 0) &= q_0, & \delta(q_1, 1) = q_2, \\ \delta(q_2, 0) &= q_2, & \delta(q_2, 1) = q_1. \end{aligned}$$

• Extended transition function $\delta^*: Q \times \Sigma^* \to Q$. [Idea] $\delta(q_0, a) = q_1, \, \delta(q_1, b) = q_2 \Rightarrow \delta^*(q_0, ab) = q_2$.

Formally, we can define δ^* recursively by

$$\begin{cases} \delta^*(q,\lambda) = q \\ \delta^*(q,wa) = \delta(\delta(q,w),a) \end{cases} \quad (q \in Q, \ w \in \Sigma^*, \ a \in \Sigma) \end{cases}$$

- The language accepted by a DFA $M = (Q, \Sigma, \delta, q_0, F)$ is the set of all strings on Σ accepted by M.
- Formally,

$$L(M) = \{ w \in \Sigma^* \colon \delta^*(q_0, w) \in F \}.$$

[Example 2] Find L(M).

Theorem

For every $q_i, q_j \in Q, w \in \Sigma^+$, $\delta^*(q_i, w) = q_j$ if and only if there is in G_M [a walk with label w from q_i to q_j .]

[Example 3] Find a deterministic finite accepter that recognizes the set of all strings on $\Sigma = \{a, b\}$ with the prefix ab.

[Example 4] Find a DFA that accepts all the strings on $\{0, 1\}$, except those containing the substring 001.

Regular Languages

• L is **regular** \Leftrightarrow there exists some DFA M s.t. L = L(M).

[Example 5] Show that the language $L = \{awa \colon w \in \{a, b\}^*\}$ is regular.

- How about L^2, L^3, \cdots ?

A deterministic finite accepter is defined by the quintuple

 $M = (Q, \Sigma, \delta, q_0, F),$

- ${\cal Q}~$ a finite set of ${\rm internal\ states}$
- Σ a finite set of symbols **input alphabet**
- $\delta: Q \times \Sigma \to Q$ a total function transition function
- $q_0 \in Q$ the **initial state**
- $F \subseteq Q$ a set of **final states**

A nondeterministic finite accepter is defined by the quintuple $M = (Q, \Sigma, \delta, q_0, F),$

- ${\cal Q}~$ a finite set of ${\rm internal\ states}$
- Σ a finite set of symbols **input alphabet**
- $\delta \colon Q \times (\Sigma \cup \{\lambda\}) \to 2^Q$
- transition function
- $q_0 \in Q$ the **initial state**
- $F \subseteq Q$ a set of **final states**

• Extended transition function for NFA

$$\delta^*(q_i, w) = ?$$

 $q_j \in \delta^*(q_i, w) \Leftrightarrow$ There is a walk in the transition graph from q_i to q_j labeled w.

- The language accepted by a DFA $M = (Q, \Sigma, \delta, q_0, F)$ is the set of all strings on Σ accepted by M.
- Formally,

$$L(M) = \{ w \in \Sigma^* \colon \delta^*(q_0, w) \in F \}.$$

- The language accepted by a NFA $M = (Q, \Sigma, \delta, q_0, F)$ is the set of all strings on Σ accepted by M.
- Formally,

$$L(M) = \{ w \in \Sigma^* \colon \delta^*(q_0, w) \in F \neq \emptyset \}.$$

Equivalence of Finite Accepters

- M_1, M_2 are equivalent if $L(M_1) = L(M_2)$
- In what sense are DFAs and NFAs different?

procedure: nfa_to_dfa

- **1.** Create a graph G_D with vertex $\{q_0\}$. Identify this vertex as the initial vertex.
- 2. Repeat the following steps until no more edges are missing.

Take any vertex $\{q_i, q_j, ..., q_k\}$ of G_D that has no outgoing edge for some $a \in \Sigma$.

Compute $\delta^{*}(q_{i}, a), \delta^{*}(q_{j}, a) ..., \delta^{*}(q_{k}, a).$

Then form the union of all these δ^* , yielding the set $\{q_l, q_m, ..., q_n\}$.

Create a vertex for G_D labeled $\{q_l, q_m, ..., q_n\}$ if it does not already exist.

Add to G_D an edge from $\{q_i, q_j, ..., q_k\}$ to $\{q_l, q_m, ..., q_n\}$ and label it with a.

- **3.** Every state of G_D whose label contains any $q_f \in F_N$ is identified as a final vertex.
- **4.** If M_N accepts λ , the vertex $\{q_0\}$ in G_D is also made a final vertex.

Next seminar

- Regular Languages
- Regular Expressions
- Regular Grammars
- Some programming