Formal Languages
and Automata

Day 2: Finite Automata

Before indulging into DFAs

* Let's review some basic concepts:

» Languages
e Grammars
 Automata

Languages

« Complement L=Y*—-1L

* Reverse LR ={whf:welL}

« Concatenation LiLs ={xy:x € L1,y € Ly}
e L":easy L'={\}

» Star-closure L*=IL°UL*UL?--- [Kleene closure]
e Positive closure Lt =L1UlL?--. [Kleene plus]

Grammars

A grammar G is defined as a quadruple
G=((V,T,S,P),

where V is a finite set of objects called variables,
T is a finite set of objects called terminal symbols,

S €V is a special symbol called the start variable,
P is a finite set of productions.

Sets V,T" are nonempty and disjoint.

Grammars — cont'd

e ze(VUT)T,ye (VUT)*

Production rule © — y
W = UV > 2 = UuUyv

e This is written as w = z : w derives z

Grammars — cont'd
e Llet G = (V,T,S,P) be a grammar. Then the set
L(G) = {weT*: S:*>w}

Is the language generated by G.

 If w e L(G), then the sequence
S=w=>wy == w, =W

Is a derivation of the sentence w.

Automata

e Input file
 Storage
« Control unit

* Internal states
* Transition function

 Configuration
* Move

Input file

U

Control unit

Qutput

Storage

Automata — cont'd

1,0)/0
49 (1, 1)/1

Deterministic Finite Accepters

A deterministic finite accepter is defined by the quintuple
M = (Q72757QO7F)7

@ a finite set of
>, a finite set of symbols — input alphabet

J: Q x ¥ — @ a total function — transition function
go € @ the initial state
F C @ a set of final states

Deterministic Finite Accepters

* Transition graphs — clear and intuitive

- Vertices = states
- Edges = transitions

Initial state 1 1
qo € Q)

Transition
6(qo,1) = q1

m_ﬂ\;.g/@

Final state(s)
g1 € FCQ

0 0
- 0
odpoE o)
_//
1 1 Internal state(s)
g2 € Q

Deterministic Finite Accepters

« Deterministic finite accepter M = (Q, %, 9, qo, F)
< Transition graph Gy

[Example 1] M = ({QO7Q17QQ}7{071}767 QO7{Q1})
where ¢ Is given by

5(Q07 O) — qo, 6((]07 1) — {1,
5((]13 O) — 40, 6(Q17 1) — (g2,
5((127 O) — ({2, 5(Q27 1) — q1.

Deterministic Finite Accepters

S
o vv

Deterministic Finite Accepters

« Extended transition function *: Q@ x ¥* — Q.
[Idea] d(qo,a) = q1, 6(q1,b) = g2 = 0" (qo, ab) = qo.

Formally, we can define §* recursively by

6%(q,)) = g *
|5 (¢, wa) = 6(6(q.w),a) LSS P ETOE)

\

Languages and DFAs

* The language accepted by a DFA M = (Q, %, 4, qo, F)
s the set of all strings on X accepted by M.

* Formally,
L(M)={w € ¥*: §*(qo,w) € F}.

Languages and DFAs

[Example 2] Find L(M).

a a, b

B -

Languages and DFAs

Theorem
For every ¢i,q; € Q, w € X7,

0*(qi,w) = q; if and only if there is in G, [a walk with
label w from ¢; to ¢;.]

0

0
0 1
Proof — Simple induction. W—F_//‘C

1 1

Languages and DFAs

[Example 3] Find a deterministic finite accepter that recognizes
the set of all strings on ¥ = {a, b} with the prefix ab.

Languages and DFAs

[Example 4] Find a DFA that accepts all the strings on {0,1},
except those containing the substring 001.

Regular Languages

L Is regular < there exists some DFA M s.t. L = L(M).

[Example 5] Show that the language
L ={awa: w € {a,b}*}
IS reqgular.

— How about L2, 13, ... 7

Nondeterministic Finite Accepters

A deterministic finite accepter is defined by the quintuple
M = (Q92757QO7F)7

@ a finite set of internal states
>, a finite set of symbols — input alphabet

J: Q x X — (@ a total function — transition function
qo € @ the initial state

F C @ a set of final states

Nondeterministic Finite Accepters

A nondeterministic finite accepter is defined by the quintuple
M = (Q92757QO7F)7

@ a finite set of internal states
>, a finite set of symbols — input alphabet

6: Q x (XU{N}) — 29 — transition function
go € @ the initial state

F C @ a set of final states

Nondeterministic Finite Accepters

o O C

T
Camwo

Nondeterministic Finite Accepters

e Extended transition function for NFA
5* (q,,;,w) — ?

qj € 0*(qi,w) < There is a walk in the transition graph
from g¢; to ¢; labeled w.

Languages and NFAs

* The language accepted by a DFA M = (Q, %, 4, qo, F)
s the set of all strings on X accepted by M.

* Formally,
L(M)={w € ¥*: §*(qo,w) € F}.

Languages and NFAs

* The language accepted by a NFA M = (Q, %, 4, qo, F)
s the set of all strings on X accepted by M.

* Formally,
L(M)={weX*: §"(q,w) € F# T}

Equivalence of Finite Accepters
« My, Ms are equivalent if L(M;) = L(Ms)

e In what sense are DFAs and NFAs different?

procedure: nfa_to_dfa

1. Create a graph Gp with vertex {qo}. Identify this vertex as the initial
vertex.
2. Repeat the following steps until no more edges are missing.

Take any vertex {gi, ¢;, ..., gk } of Gp that has no outgoing edge for some
a € .

Compute §* (¢;,a),0" (g;,a) ..., 0" (qk, a).
Then form the union of all these §*, yielding the set {q;, gm, ..., gn }.

Create a vertex for Gp labeled {qi, gm,...,qn} if it does not already
exist.

Add to Gp an edge from {gi,qj,..-,qx} to {@, @m,....,qn} and label it
with a.

3. Every state of Gp whose label contains any ¢y € Fiv is identified as a
final vertex.

4. If My accepts A, the vertex {qo} in Gp is also made a final vertex.

0,1

0,1

DFA’

"NFA-to

Next seminar

* Regu
* Regu
* Regu

ar Languages
ar Expressions
ar Grammars

« Some programming

