Formal Languages and Automata

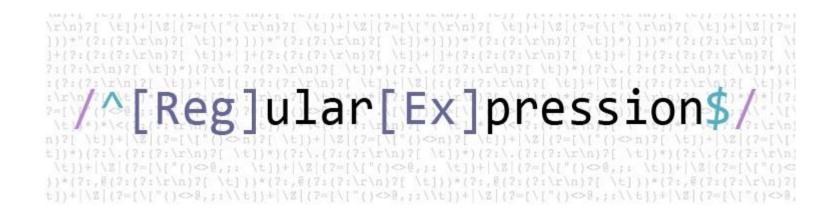
Day 1: Basic concepts

Disclaimer

• Due to the speaker's lack of English proficiency, this material may contain Korean.

• 발표자의 한국어 능력 부족으로, 이 발표자료에 영어가 섞여 있습니다(?)

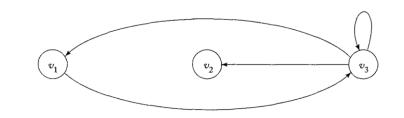
두유노



Regular expression (regex)

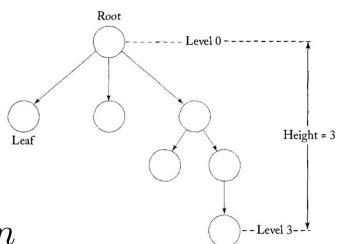
- Some examples (in Javascript RegExp)
- /^[0-9]{2,3}-[0-9]{3,4}-[0-9]{4}\$/
- /^(((http(s?))\:\/\/)?)([0-9a-zA-Z\-]+\.)+[a-zA-Z]{2,6}(\:[0-9]+)?(\/\S*)?\$/
- /^(?:[0-9]{2}(?:0[1-9]|1[0-2])(?:0[1-9]|[1,2][0-9]|3[0,1]))-[1-4][0-9]{6}\$/
- What it means to be <u>regular</u>?
 - → 정규 = 正規 = せいき = ...

Mathematical preliminaries



- Sets
- Functions
- Graphs and trees
- Proof techniques (induction / contradiction)

[Example 1] Prove that a binary tree of height n has at most 2^n leaves.



Basic concepts

Languages

• Grammars

Automata

Languages

- 한국어, English, 日本語, 汉语, python, ...
- Formal languages <u>precise!</u>
- Alphabet Σ finite, nonempty set
- Strings finite sequences of symbols from the alphabet

$$\Sigma = \{a, b\} \rightarrow abab, aaabbba, \cdots$$

Strings

$$w = a_1 a_2 \cdots a_n$$
$$v = b_1 b_2 \cdots b_m$$

• Concatenation
$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

• Reverse
$$w^R = a_n \cdots a_2 a_1$$

• Length
$$|w| = n$$

• Empty string
$$\lambda \Rightarrow |\lambda| = 0, \ \lambda w = w\lambda = w$$

Strings – cont'd

- Substring of w any string of consecutive characters in w
- $w = vu \Rightarrow v$ is prefix, u is suffix

[Example 2] Prove that |uv| = |u| + |v|.

Strings – cont'd

- w^n string obtained by repeating w n times
- Special case $w^0 = \lambda$

- Σ^* strings obtained by concatenating zero or more symbols from Σ
- $\Sigma^+ = \Sigma^* \{\lambda\}$
- Language: subset of Σ^* (broad definition)
- Sentence: string in a language

Strings – cont'd

• Let $\Sigma=\{a,b\}$. Then $\Sigma^*=\{\lambda,a,b,aa,ab,ba,bb,aaa,aab,\cdots\}.$

- The set $\{a, aa, aab\}$ is a language on Σ .
- The set $L = \{a^n b^n : n \ge 0\}$ is also a language on Σ .

Languages

- Complement $\bar{L} = \Sigma^* L$
- Reverse $L^R = \{w^R \colon w \in L\}$
- Concatenation $L_1L_2 = \{xy \colon x \in L_1, y \in L_2\}$
- L^n : easy $L^0 = \{\lambda\}$
- Star-closure $L^* = L^0 \cup L^1 \cup L^2 \cdots$ [Kleene closure]
- Positive closure $L^+ = L^1 \cup L^2 \cdots$ [Kleene plus]

Languages – cont'd

```
[Example 3] If L = \{a^n b^n : n \ge 0\},
```

$$L^2 =$$
 $L^R =$
 $\bar{L} =$
 $L^* =$

Limitation of set notation?

Grammars

• A grammar G is defined as a quadruple

$$G = (V, T, S, P),$$

where V is a finite set of objects called **variables**, T is a finite set of objects called **terminal symbols**, $S \in V$ is a special symbol called the **start** variable, P is a finite set of **productions**.

Sets V, T are nonempty and disjoint.

• $x \in (V \cup T)^+, y \in (V \cup T)^*$

$$w = uxv \quad \xrightarrow{\text{Production rule } x \to y} \quad z = uyv$$

• This is written as $w \Rightarrow z$: w derives z

$$w_1 \Rightarrow w_2 \Rightarrow \cdots \Rightarrow w_n$$

• This is written as $w_1 \stackrel{*}{\Rightarrow} w_n : w_1$ derives w_n

• $w \stackrel{*}{\Rightarrow} w$

• Let G = (V, T, S, P) be a grammar. Then the set

$$L(G) = \left\{ w \in T^* \colon S \stackrel{*}{\Rightarrow} w \right\}$$

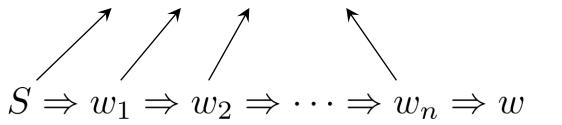
is the language generated by G.

• If $w \in L(G)$, then the sequence

$$S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \cdots \Rightarrow w_n \Rightarrow w$$

is a **derivation** of the sentence w.

sentential forms of the derivation



Consider the grammar

$$G = (\{S\}, \{a, b\}, S, P),$$

with P given by

$$S \to aSb,$$

 $S \to \lambda.$

Then $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$, so we can write $S \stackrel{*}{\Rightarrow} aabb$.

Conjecture: $L(G) = \{a^n b^n : n \ge 0\}$ – How can we prove it?

[Example 4] Find a grammar that generates

$$L = \{a^n b^{n+1} : n \ge 0\}.$$

[Example 5]

Take $\Sigma = \{a, b\}$, and let $n_a(w)$, $n_b(w)$ denote the number of a, b in the string w. Prove that the grammar G with productions

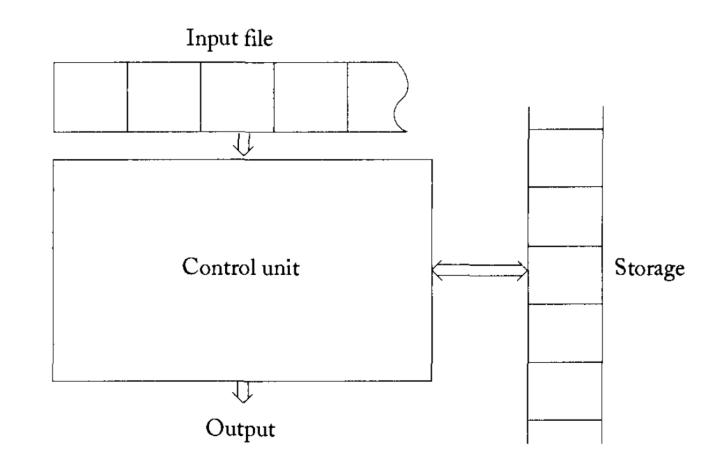
$$S \to SS, S \to \lambda, S \to aSb,$$
 $S \to \lambda, S \to bSa,$ $(= S \to SS|\lambda|aSb|bSa)$

generates the language

$$L = \{w : n_a(w) = n_b(w)\}.$$

Automata

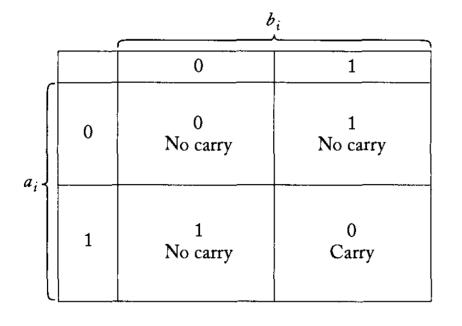
- Input file
- Storage
- Control unit
- Internal states
- Transition function
- Configuration
- Move

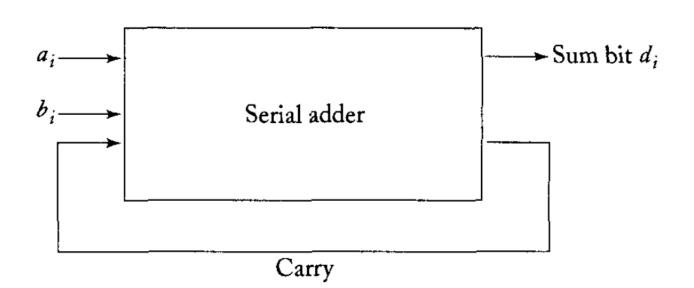


Automata – cont'd

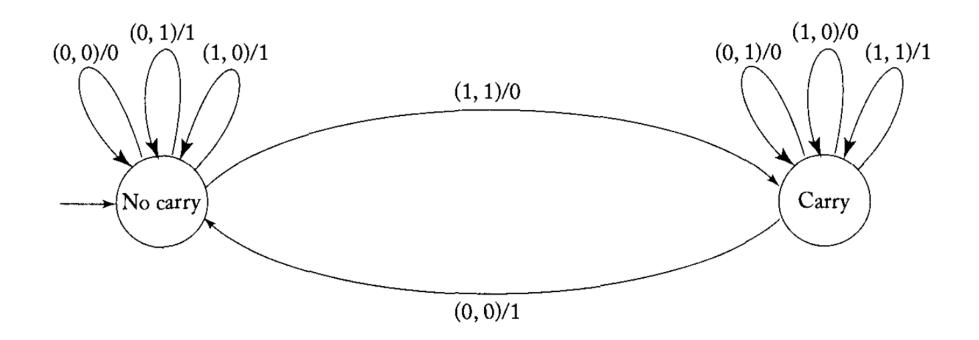
• Bit string
$$x = a_0 a_1 \cdots a_n \Rightarrow v(x) = \sum_{i=0}^n a_i 2^i$$

• Binary adder: adding $x = a_0 a_1 \cdots a_n, y = b_0 b_1 \cdots b_n$ bit by bit





Automata – cont'd



Bonus – Little abstract algebra

Monoid (S, \cdot)

- Associativity $a,b,c \in S \Rightarrow (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Identity element $\exists e \in S \text{ s.t. } a \in S \Rightarrow e \cdot a = a \cdot e = a$
- Σ^* : free monoid generated by Σ [Kleene star of Σ]
- λ : identity element 1_{Σ^*}

$$(\Sigma^*, \bullet) \xrightarrow{\text{length function } | \cdot |} (\mathbb{N}_0, +)$$
"Monoid Homomorphism"

Next seminar

- Deterministic Finite Accepters (DFA)
- Transition Graph
- Regular Languages
- Nondeterministic Finite Accepters (NFA)
- Equivalence between [] and []
- Reduction of the Number of States