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Some Important Announcement

§ I have to quit SNU as I have to undergo my visa application.

§ Still, I will have my student ID card so hopefully I can request 
admittance claiming my card doesn’t work…?

§ (Seriously, this place is so good!)



z Schedule

§ 1. Introduction to Quantum Computing

§ 2. Formalisms in QM & Computing - Today

§ 3. Quantum Computations

§ 4. Realisations of Quantum Computers

§ 5. Quantum Noise, Operations, and Distances

§ 6. Error Corrections

§ 7. Quantum Entropy & Information Theory



z
Before going in…

§ No Rocket Science today!

§ Today, we have three things to do.

§ 1. Tensor Products,

§ 2. Basics in QM: Projections/POVM/Mixed Ensembles

§ 3. Basics in CompSci: Turing Machines/Circuits/Complexity

§ Some prerequisites: Basic Linear Algebra/Bra-Ket
Formalisms/Graph Theory

§ Today’s session shall be short; I expect around 45 min.



z
Quick Overview on Linear Algebra

§ Vector spaces: Usually, we call the columns ‘vectors’.

§ Srsly, everyone will know how to add/subtract/multiply matrices.

§ Linear Independence? Hermitians? Operators?



z
Tensor Products

§ This is a way of putting vector spaces together to form larger 
vector spaces. 

§ 𝑉 ⊗𝑊

§ Notations: |𝑣𝑤⟩ = |𝑣⟩⨂|𝑤⟩



z
Properties of Tensor Products

§ z (|v⟩⊗|w⟩) =(z|v⟩)⊗|w⟩ = |v⟩⊗ (z|w⟩)

§ (|v1⟩+|v2⟩) ⨂|w⟩=|v1⟩⊗|w⟩+|v2⟩⊗|w⟩. 

§ |v⟩⊗ (|w1⟩+|w2⟩) =|v⟩⊗|w1⟩+|v⟩⊗|w2⟩. 

§ Easy?



z
Linear Operators Acting on V ⊗W 

§ Suppose |v⟩ and |w⟩ are vectors in V and W , and A and B are 
linear operators on V and W.

§ (A ⊗ B)(|v⟩ ⊗ |w⟩) ≡ A|v⟩ ⊗ B|w⟩.  

§ To ensure linearity, (A ⊗ B)( ∑ 𝑎,|𝑣,⟩⨂|𝑤,⟩�
, ) =∑ 𝑎,𝐴|𝑣,⟩⨂𝐵|𝑤,⟩�

,



z
Linear Operators Acting on V ⊗W

§ Indeed, an arbitrary linear operator C mapping V ⊗ W to V ′ ⊗ W ′ 
can be represented as a linear combination of tensor products of 
operators mapping V to V ′ and W to W 

§ 𝐶 = ∑ 𝑐,𝐴,⨂𝐵,�
,

§ Inner Products: Define the inner product as <
∑ 𝑎,|𝑣,⟩⨂|𝑤,⟩�
, 	 , ∑ 𝑏67𝑣6′9⨂7𝑤6′9�

� > = ∑ 𝑎,∗𝑏6 𝑣, 𝑣6′ 𝑤, 𝑤6′�
,6



z
Explicit Calculation of the Tensor 

Product
§ Suppose A is an m by n matrix, and B is a p by q matrix. 

§ The Kronecker Product

§ Example 1. Calculate the Tensor Product of 12 and 23.

§ Example 2. Calculate the Tensor Product of the X and Y Pauli 
matrices.



z
The Polar and Singular Value 

Decompositions
§ (Polar) Let A be a linear operator on a vector space V . Then there 

exists unitary U and positive operators J and K such that 

§ 𝐴 = 𝑈𝐽 = 𝐾𝑈 where the unique positive operators J and K satisfying 
these equations are defined by J ≡ √A†A and K ≡ √AA†. Moreover, 
if A is invertible then U is unique. 

§ (Singular Value) Let A be a square matrix. Then there exist unitary 
matrices U and V , and a diagonal matrix D with non-negative 
entries such that 

§ 𝐴	 = 	𝑈𝐷𝑉	.	



z
Projective Measurements

§ A projective measurement is described by an observable, M 

§ Of course, M has a spectral decomposition, noted as 𝑀 =
∑ 𝑚𝑃F�
F

§ This concept is simple, if not trivial.

§ Let 𝑝 𝑚 = 𝜓 𝑃F 𝜓 , then after the measurement gives m, the 

wave function collapses to IJ|K⟩
L(F)�



z
POVM measurements

§ Abbreviation for Positive Operator-Valued Measure 

§ Measurement Operator 𝑀F: the probability of outcome m is 
given as 𝑝 𝑚 = 𝜓 𝑃F

O𝑃F 𝜓

§ Define 𝐸F = 𝑃F
O𝑃F, then ∑ 𝐸F�

F = 1	&	𝑝 𝑚 = 𝜓 𝐸F 𝜓

§ The set of 𝐸F is known as the POVM.



z
Incoherent mixtures

§ Consider the Stern-Gerlach experiment

§ For the + and – states, we DO NOT have information on the 
phase differences. (This will cause huge problems.)

§ What does|𝑎⟩ = 𝑐R|+⟩ + 𝑐R|−⟩ imply? Can this state explain the 
terrible situation above?

§ This is more with probability and statistics, not wave functions.



z
Ensemble Averages

§ Let’s introduce ‘probabilities’: 𝑤R,𝑤U in SG experiment.

§ Pure Ensemble: Every member can be characterised by the same 
ket.

§ Mixed Ensemble: Roughly speaking, only a fraction of members are 
represented by the same ket. Let’s write the fractions as 𝑤,.

§ ∑ 𝑤,�
, = 1.

§ Obviously, the states DO NOT have to be orthogonal nor coincide 
with the dimension of the ket space.

§ Example: In spin ½ systems, 50% in z+, 20% in x+, 30% in y+



z
Density Operator

§ Ensemble Average: 𝐴 = ∑ 𝑤, 𝛼(,) 𝐴 𝛼(,)�
, =

∑ ∑ 𝑤, 𝑎′ 𝛼(,) W𝑎′�
XY

�
, , where a’ is the eigenket of A.

§ We can look this in other generalised basis kets (suppose b’, b’’)

§ The basic property of the ensemble that DOES NOT depend on 
the observable can be factored out.

§ 𝐴 = ∑ ∑ (∑ 𝑤, 𝑏′′ 𝛼(,) 𝛼(,) 𝑏′�
,

�
ZYY

�
ZY )	 𝑏′ 𝐴 𝑏′′

§ Density operator: ρ = ∑ 𝑤,7𝛼(,)9�
, \𝛼(,)7



z
Properties of Density Operators

§ 𝐴 = ∑ ∑ 𝑏′′ 𝜌 𝑏′�
ZYY

�
ZY 	 𝑏′ 𝐴 𝑏′′ = 𝑡𝑟(𝜌𝐴)

§ 𝑡𝑟 𝜌 = ∑ ∑ 𝑤, 𝑏′ 𝛼(,) 𝛼(,) 𝑏′�
ZY

�
, = 1

§ 𝜌W = 𝜌	 ⟶ tr 𝜌W = 1

§ We can obviously put the density operator in a matrix form..



z
Example

§ Find the Density Operator in Matrix Form in the following states.

§ 1. A completely polarised beam for z+-spin & y+-spin

§ 2. Incoherent mixture of 50% z+ and 50% z-. Calculate the 
ensemble average for S. (Not z-direction!)

§ 3. 75-25 mixture of Sz+ and Sx+. Calculate the ensemble 
averages for Sx, Sy, and Sz.



z
Time Evolution of Density Operators

§ 𝜌(𝑡c) = ∑ 𝑤,7𝛼(,)9�
, \𝛼(,)7

§ Let time evolution to happen, and consider that the kets obey the 
Schrodinger equation!

§ 𝑖ħ ef
eg
= ∑ 𝑤,(𝐻7𝛼(,), 𝑡c; 𝑡9�

, \𝛼(,), 𝑡c; 𝑡7 − 7𝛼 , , 𝑡c; 𝑡9\𝛼 , , 𝑡c; 𝑡7𝐻)	
										= −[ρ, 𝐻]

§ Note that the Schrodinger equation displays OPPOSITE signs 
when applied to conjugates. Also, this looks quite similar to the 
Heisenberg equation of motion.

§ Classical Analogue (Liouville’s Thm): ef
eg
= −[𝜌, 𝐻]



z
Continuum Generalisation

§ Change the sigmas to integrals.

§ I’m not going to write this (My hands hurt.).

§ 𝑥′′ 𝜌 𝑥′ = ∑ 𝑤,𝜓,(𝑥YY)𝜓,∗(𝑥Y)�
,

§ Trivial?



z
Quantum Statistical Mechanics: Entropy

§ Define 𝜎 = −tr(𝜌𝑙𝑛𝜌)

§ Okay, let’s only consider the diagonal cases. (If not, it shall get 
messy…)

§ Then, 𝜎 = −∑ 𝜌pp𝑙𝑛𝜌pp�
p

§ Example. Calculate 𝜎 for completely random ensemble and pure 
ensemble. (N states)

§ Wait, can’t we define 𝑆 = 𝑘𝜎? (k is Boltzmann const, but actually 
it can be any constant!)



z
Four Parts of the Turing Machine

§ (a) a program, rather like an ordinary computer; 

§ (b) a finite state control, which acts like a stripped-down 
microprocessor, co-ordinating the other operations of the 
machine; 

§ (c) a tape, which acts like a computer memory; 

§ and (d) a read- write tape-head, which points to the position on 
the tape which is currently readable or writable. 



z
Four Parts of the Turing Machine

§ Finite State Control

§ Consists of a finite set of internal states 𝑞t, 𝑞W … 𝑞F

§ m is a variable; sufficiently large m does NOT alter the abilities 
of the machine for this effect.

§ It provides temporary storage off-tape, and a central place where 
all processing for the machine may be done. 

§ 𝑞v	&	𝑞w : Denotes start and end of the execution



z
Four Parts of the Turing Machine

§ Tape

§ one-dimensional object, which stretches off to infinity in one 
direction. 

§ The tape consists of an infinite sequence of tape squares. We 
number the tape squares 0,1,2,3,.... 

§ Each square has one symbol drawn from some alphabet (e.g., 
0, 1, b (blank), ▷ (marks the left edge)

§ The read-and-write head identifies the current tape square.



z
Programming in the Turing Machine

§ finite ordered list of program lines of the form ⟨q, x, q′, x′, s⟩

§ q, q’ are the states; x, x’ are the alphabets. S denotes the next 
action.

§ 1. Find the state which internal state is q and the alphabet is x.

§ 2. If you can’t, the state goes 𝑞w and terminated. Else, change 
the internal state to q’ with alphabet x’.

§ 3. Proceed as s dictates. 



z
Example

§ What will this programme compute?

§ Ans: Constant function f(x)=1

§ Will anyone try?



z
Church-Turing Thesis

§ The class of functions computable by a Turing machine 
corresponds exactly to the class of functions which we would 
naturally regard as being computable by an algorithm. 

§ No exceptions found to date.

§ Quiz. Can anyone construct the Turing machine with TWO 
tapes?



z
Universal Turing Machines

§ Thm. Two-tape Turing machines can simulate One-tape Turing 
machines.

§ Generalisation: There is a universal Turing machine that can 
simulate an arbitrary Turing machine.

§ I will not go on with the construction. (Little out of scope..)



z
The Entscheidungsproblem

§ Is there an algorithm to decide all the problems of mathematics?

§ Ans: No.

§ Counterexample: The Halting Problem 

§ Explanation: does the machine with Turing number x halt upon 
input of the number y? 



z
The Halting Problem

§ Define h(x): 1 if halts, 0 if not halts if the input is x

§ If there is an algorithm to solve the halting problem, then there 
surely is an algorithm to evaluate h(x) (Call it HALT(x))

§ Since HALT is a valid program, TURING must also be a valid 
program, with some Turing number t. 

§ By def, h(t)=1 if and only if TURING halts at t.

§ Programme: halts when h(t)=0



z
Circuits



z
Additional Gates in Classical 

Computations

§ FANIN & FANOUT: I explained those last class.

§ CROSSOVER: The value of two bits are interchanged.

§ Not a gate, but the preparation of extra ancilla or work bits, or to 
allow extra working space during the computation is allowed.



z
Half & Full Adders



z
Universality of NAND

§ Step 1. Boolean Functions.

§ Boolean has 4 operations: Identity, Bit Flip (NOT), changing 
input to 0 (AND), changing input to 1 (OR)

§ Let’s use induction from this!



z
Universality of NAND

§ Suppose that any function on n bits may be computed by a 
circuit, and let f be a function on n + 1 bits. 

§ Define f0 and f1: 𝑓c = 𝑓 0, 𝑥t, 𝑥W … 𝑥{ , 𝑓t = 𝑓 1, 𝑥t, 𝑥W … 𝑥{

§ These are n-bits, so they are computable with circuits.



z
Universality of NAND

§ Depending on the first input, we can make the output the correct 
answer:



z
Universality of NAND

§ Step 3.

§ Universality requires: Wires, Ancilla Bits, FANOUT, 
CROSSOVER, AND, XOR, and NOT gates.

§ These all can be simulated with NAND. (I won’t do it.)

§ Therefore, it is proved.



z
Some Extras: Quantum Complexity 

Theory

§ How much resources (time included!) do we need to do a certain 
task? How efficiently can we do it?

§ Strong Church-Turing Thesis: Any model of computation can be 
simulated on a probabilistic Turing machine with at most a 
polynomial increase in the number of elementary operations 
required. 

§ Shannon (1949): For any n ≥ 2, there is an n-ary boolean
function f such that no boolean circuits with 2^n/(2n) or fewer 
gates can compute it.



z
The P-Class

§ P: class of computational problems that can be solved quickly on 
a classical computer 

§ *Quickly ~ In polynomial time

§ Most tasks we know how to do will probably be P.



z
NP-Class

§ (1) If x ∈ L then there exists a witness string w such that M 
halts in the state qY after a time polynomial in |x| when the 
machine is started in the state x-blank-w. 

§ (2) If x ̸∈ L then for all strings w which attempt to play the role 
of a witness, the machine halts in state qN after a time 
polynomial in |x| when M is started in the state x-blank-w. 

§ Factoring: Given a composite integer m and l < m, does m have 
a non-trivial factor less than l? 



z
Completeness

§ There is a language L in the complexity class which is the ‘most 
difficult’ to decide, in the sense that every other language in the 
complexity class can be reduced to L. 

§ Not all complexity classes have complete problems.

§ P-complete definitely exists.

§ Example for NP-complete: Circuit Satisfiability Problem (CSAT, 
Cook-Levin Theorem)



z
PSPACE-Class

§ PSPACE: problems which can be solved using resources which 
are few in spatial size, but not necessarily in time

§ It is easy to see that P and NP are in PSPACE; we don’t know 
whether non P-complete problems are in PSPACE

§ Thm. the class of problems solvable on a quantum computer in 
polynomial time is a subset of PSPACE. (Not now!) 

§ So, if P=PSPACE, we are doomed.
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Other Complexity Classes

§ BPP: class of problems that can be solved using randomized 
algorithms in polynomial time, if a bounded probability of error is 
allowed in the solution to the problem. 

§ L: Solvable in Logarithmic Time

§ EXP: Solvable in Exponential Time

§ MAXSNP: Set of problems possible to efficiently verify 
approximate solutions to the problem. 

§ Quiz. Determine the relations between EXP, L, P, PSPACE, and 
NP.
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Landauer’s Principle

§ Complexity does not necessarily mean time and space; energy 
is included.

§ Landauer’s Principle: When a computer erases a single bit of 
information, the amount of energy dissipated into the 
environment is at least 𝑘Z𝑇	ln2.

§ ‘Erasing’ data (i.e. irreversible) requires energy!
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