Formalisms:
QM & Computing




Some Important Announcement

= | have to quit SNU as | have to undergo my visa application.

Still, | will have my student ID card so hopefully | can request
admittance claiming my card doesn’t work...?

(Seriously, this place is so good!)




Schedule

. Introduction to Quantum Computing

. Formalisms in QM & Computing - Today

. Quantum Computations

. Realisations of Quantum Computers

. Quantum Noise, Operations, and Distances
. Error Corrections

. Quantum Entropy & Information Theory




Before going in...

No Rocket Science today!

Today, we have three things to do.

1. Tensor Products,

2. Basics in QM: Projections/POVM/Mixed Ensembles

3. Basics in CompSci: Turing Machines/Circuits/Complexity

Some prerequisites: Basic Linear Algebra/Bra-Ket
Formalisms/Graph Theory

Today’s session shall be short; | expect around 45 min.




Quick Overview on Linear Algebra

= Vector spaces: Usually, we call the columns ‘vectors’.

= Srsly, everyone will know how to add/subtract/multiply matrices.

= Linear Independence? Hermitians? Operators?




Tensor Products

This is a way of putting vector spaces together to form larger
vector spaces.

Ve w

Notations: |[vw) = |v)Q|w)




Properties of Tensor Products

= z(IV®[w)) =(z|v))o|w) = [V} (z|w))
= (Iv1)+[v2)) BIw)=|v1)Q|w)+|v2) ®|w).
* VI (wl)Hw2)) =V)R[w1)+V)R[w2).

= Easy?




Linear Operators Acting on V @ W

= Suppose |v) and |w) are vectors in V and W , and A and B are
linear operators on V and W.

= (Ae B)(lv) ® |w)) =Alv) © Blw).

= To ensure linearity, (A ® B)( X; a;|v))®|w;)) =X; a;A|v;)QB|w;)




Linear Operators Acting on V @ W

Indeed, an arbitrary linear operator C mappingVeWtoV'e W'
can be represented as a linear combination of tensor products of
operators mapping VtoV'and Wto W

C =Y;cA;®B;

Inner Products: Define the inner product as <
¥ ailv)®lwy) , X b |v;)®|w;')> = Xy aiby{vi|v; ) (wi|w;')




Explicit Calculation of the Tensor
Product

Suppose Ais an m by n matrix, and B is a p by g matrix.
ng

The Kronecker Product —m 0

AnB ApB ... A,.B

Ang AzzB cos Aan

ARB = mp.

AmlB AmZB coo A-m'nB

Example 1. Calculate the Tensor Product of; and g

Example 2. Calculate the Tensor Product of the X and Y Pauli
matrices.




The Polar and Singular Value
Decompositions

(Polar) Let A be a linear operator on a vector space V . Then there
exists unitary U and positive operators J and K such that

A = U] = KU where the unique positive operators J and K satisfying
these equations are defined by J = VATA and K = VAAt. Moreover,

if Ais invertible then U is unique.

(Singular Value) Let A be a square matrix. Then there exist unitary
matrices U and V , and a diagonal matrix D with non-negative
entries such that

A = UDV.




Projective Measurements

A projective measurement is described by an observable, M

Of course, M has a spectral decomposition, noted as M =
2m MBy

This concept is simple, if not trivial.

Let p(m) = (Y|P, |Y), then after the measurement gives m, the

Pinl$)
Jp(m)

wave function collapses to




POVM measurements

Abbreviation for Positive Operator-Valued Measure

Measurement Operator M,,,: the probability of outcome m is
given as p(m) = (Y|P} B, |v)

Define E,, = PI'P,,, then ¥, E,, = 1 & p(m) = (Y|E,,|)

The set of E,,, is known as the POVM.




Incoherent mixtures

Consider the Stern-Gerlach experiment

For the + and — states, we DO NOT have information on the
phase differences. (This will cause huge problems.)

What does|a) = c,|+) + c,|—) imply? Can this state explain the
terrible situation above?

This is more with probability and statistics, not wave functions.




Ensemble Averages

Let’s introduce ‘probabilities’: w,,w_ in SG experiment.

Pure Ensemble: Every member can be characterised by the same
ket.

Mixed Ensemble: Roughly speaking, only a fraction of members are
represented by the same ket. Let’s write the fractions as w;.

Xiwi =1

Obviously, the states DO NOT have to be orthogonal nor coincide
with the dimension of the ket space.

Example: In spin Y2 systems, 50% in z+, 20% in x+, 30% in y+




Density Operator

Ensemble Average: [A] = ZiWi<a(i)|A|a(i)) =

Yidar Wi|<a’|a(i))|2a’, where a’ is the eigenket of A.
We can look this in other generalised basis kets (suppose b’, b”)

The basic property of the ensemble that DOES NOT depend on
the observable can be factored out.

[A] = X, Zpi (T wip"|a® N a®|b') (b']Alb")

Density operator: p = );; Wl-|a(")) (a(i)|




Properties of Density Operators

= [A] = X, Xp(b"|p|b") (b'|A|D") = tr(pA)
o tr(p) = Ty T wilt' @) |p) = 1

= pP=p (P =1

= \We can obviously put the density operator in a matrix form..




Example

Find the Density Operator in Matrix Form in the following states.
1. A completely polarised beam for z+-spin & y+-spin

2. Incoherent mixture of 50% z+ and 50% z-. Calculate the
ensemble average for S. (Not z-direction!)

3. 75-25 mixture of Sz+ and Sx+. Calculate the ensemble
averages for Sx, Sy, and Sz.




Time Evolution of Density Operators

p(to) = X;wila®) (a®|
Let time evolution to happen, and consider that the kets obey the
Schrodinger equation!
ih =2 = 3, wi(H|a®, to; t) (a®, to; t] = |a®, to; t){a D, to; t|H)
= —[p, H]

Note that the Schrodinger equation displays OPPOSITE signs
when applied to conjugates. Also, this looks quite similar to the
Heisenberg equation of motion.

Classical Analogue (Liouville’s Thm): Z—’; = —[p, H]




Continuum Generalisation

= Change the sigmas to integrals.
= |I'm not going to write this (My hands hurt.).
= (plx"y = Xywipi (x"i (x)

=  Trivial?




Quantum Statistical Mechanics: Entropy

Define o = —tr(plnp)

Okay, let’s only consider the diagonal cases. (If not, it shall get
messy...)

Then, o = — Yy prxlnpir

Example. Calculate o for completely random ensemble and pure
ensemble. (N states)

Wait, can’t we define S = ka? (k is Boltzmann const, but actually
it can be any constant!)




Four Parts of the Turing Machine

(a) a program, rather like an ordinary computer;

(b) a finite state control, which acts like a stripped-down
microprocessor, co-ordinating the other operations of the
machine;

(c) a tape, which acts like a computer memory;

and (d) a read- write tape-head, which points to the position on
the tape which is currently readable or writable.




Four Parts of the Turing Machine

Finite State Control
Consists of a finite set of internal states g4, 95 ... g,

m is a variable; sufficiently large m does NOT alter the abilities
of the machine for this effect.

It provides temporary storage off-tape, and a central place where
all processing for the machine may be done.

qs & qp, : Denotes start and end of the execution




Four Parts of the Turing Machine

Prog ram Finite State

—~— Control

~ | I»

Read/Write
Head

0|1




Programming in the Turing Machine

finite ordered list of program lines of the form (q, x, q', X', s)

g, q’ are the states; x, x’ are the alphabets. S denotes the next
action.

1. Find the state which internal state is q and the alphabet is x.

2. If you can't, the state goes g;, and terminated. Else, change
the internal state to q’ with alphabet x'.

3. Proceed as s dictates.




What will this programme compute?

Ans: Constant function f(x)=1

Will anyone try?
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Church-Turing Thesis

The class of functions computable by a Turing machine
corresponds exactly to the class of functions which we would
naturally regard as being computable by an algorithm.

No exceptions found to date.

Quiz. Can anyone construct the Turing machine with TWO
tapes?




Universal Turing Machines

Thm. Two-tape Turing machines can simulate One-tape Turing
machines.

Generalisation: There is a universal Turing machine that can
simulate an arbitrary Turing machine.

= | will not go on with the construction. (Little out of scope..)




The Entscheidungsproblem

Is there an algorithm to decide all the problems of mathematics?
Ans: No.
Counterexample: The Halting Problem

Explanation: does the machine with Turing number x halt upon
input of the number y?




TURING(x)

y = HALT(x)
if y = 0 then
halt
else
loop forever

end if

The Halting Problem

Define h(x): 1 if halts, O if not halts if the input is x

If there is an algorithm to solve the halting problem, then there
surely is an algorithm to evaluate h(x) (Call it HALT(x))

Since HALT is a valid program, TURING must also be a valid
program, with some Turing number t.

By def, h(t)=1 if and only if TURING halts at t.

Programme: halts when h(t)=0



Circuits




Additional Gates in Classical
Computations

FANIN & FANOUT: | explained those last class.

CROSSOVER: The value of two bits are interchanged.

Not a gate, but the preparation of extra ancilla or work bits, or to
allow extra working space during the computation is allowed.




y

Half & Full Adders
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Figure 3.5. Half-adder circuit. The carry bit ¢ is set to 1 when z and y are both 1, otherwise it is 0.
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Figure 3.6. Full-adder circuit.




Universality of NAND

Step 1. Boolean Functions.

Boolean has 4 operations: Identity, Bit Flip (NOT), changing
input to 0 (AND), changing input to 1 (OR)

Let’s use induction from this!




Universality of NAND

Suppose that any function on n bits may be computed by a
circuit, and let f be a function on n + 1 bits.

Deﬂne fO and f1 fO = f(O, X1,Xp ...xn),fl — f(].,xl, X2 ...xn)

These are n-bits, so they are computable with circuits.




Universality of NAND

= Depending on the first input, we can make the output the correct
answer:




Universality of NAND

Step 3.

Universality requires: Wires, Ancilla Bits, FANOUT,
CROSSOVER, AND, XOR, and NOT gates.

These all can be simulated with NAND. (I won't do it.)

Therefore, it is proved.




Some Extras: Quantum Complexity
Theory

How much resources (time included!) do we need to do a certain
task? How efficiently can we do it?

Strong Church-Turing Thesis: Any model of computation can be
simulated on a probabilistic Turing machine with at most a
polynomial increase in the number of elementary operations
required.

Shannon (1949): For any n = 2, there is an n-ary boolean
function f such that no boolean circuits with 2*n/(2n) or fewer
gates can compute it.



The P-Class

= P: class of computational problems that can be solved quickly on
a classical computer

*Quickly ~ In polynomial time

Most tasks we know how to do will probably be P.




NP-Class

= (1) If x € L then there exists a witness string w such that M
halts in the state qY after a time polynomial in |x| when the
machine is started in the state x-blank-w.

(2) If x/= L then for all strings w which attempt to play the role
of a witness, the machine halts in state gN after a time
polynomial in |[x| when M is started in the state x-blank-w.

Factoring: Given a composite integer m and | < m, does m have
a non-trivial factor less than 1?




Completeness

There is a language L in the complexity class which is the ‘most
difficult’ to decide, in the sense that every other language in the
complexity class can be reduced to L.

Not all complexity classes have complete problems.
P-complete definitely exists.

Example for NP-complete: Circuit Satisfiability Problem (CSAT,
Cook-Levin Theorem)




PSPACE-Class

PSPACE: problems which can be solved using resources which
are few in spatial size, but not necessarily in time

It is easy to see that P and NP are in PSPACE; we don’t know
whether non P-complete problems are in PSPACE

Thm. the class of problems solvable on a quantum computer in
polynomial time is a subset of PSPACE. (Not now!)

So, if P=PSPACE, we are doomed.




Other Complexity Classes

BPP: class of problems that can be solved using randomized
algorithms in polynomial time, if a bounded probability of error is
allowed in the solution to the problem.

L: Solvable in Logarithmic Time
EXP: Solvable in Exponential Time

MAXSNP: Set of problems possible to efficiently verify
approximate solutions to the problem.

Quiz. Determine the relations between EXP, L, P, PSPACE, and
NP.




Landauer’s Principle

Complexity does not necessarily mean time and space; energy
is included.

Landauer’s Principle: When a computer erases a single bit of
information, the amount of energy dissipated into the
environment is at least k;, T In2.

‘Erasing’ data (i.e. irreversible) requires energy!
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