
Tag encodings

The tag dictionary (TD) describes the unique combinations of tag id / type that occur on each alignment record.
For example if we search the id / types present in each record and find only two combinations – X1:i BC:Z
SA:Z: and X1:i: BC:Z – then we have two dictionary entries in the TD map.

Let Li = {Ti0, Ti1, . . . , Tix} be a list of all tag ids for a record Ri, where i is the sequential record index and
Tij denotes j-th tag id in the record. The list of unique Li is stored as the TD value in the preservation map.
Maintaining the order is not a requirement for encoders (hence “combinations”), but it is permissible and thus
different permutations, each encoded with their own elements in TD, should be supported by the decoder. Each
Li element in TD is assigned a sequential integer number starting with 0. These integer numbers are referred
to by the TL data series. Using TD, an integer from the TL data series can be mapped back into a list of tag
ids. Thus per alignment record we only need to store tag values and not their ids and types.

The TD is written as a byte array consisting of Li values separated with \0. Each Li value is written as a
concatenation of 3 byte Tij elements: tag id followed by BAM tag type code (one of A, c, C, s, S, i, I, f, F, Z, H
or B, as described in the SAM specification). For example the TD for tag lists X1:i BC:Z SA:Z and X1:i BC:Z
may be encoded as X1CBCZSAZ\0X1CBCZ\0, with X1C indicating a 1 byte unsigned value for tag X1.

Tag values

The encodings used for different tags are stored in a map. The key is 3 bytes formed from the BAM tag id
and type code, matching the TD dictionary described above. Unlike the Data Series Encoding Map, the key
is stored in the map as an ITF8 encoded integer, constructed using (char1 << 16) + (char2 << 8) + type.
For example, the 3-byte representation of OQ:Z is {0x4F, 0x51, 0x5A} and these bytes are interpreted as the
integer key 0x004F515A, leading to an ITF8 byte stream {0xE0, 0x4F, 0x51, 0x5A}.

Key Value data type Name Value

TAG ID 1:TAG TYPE 1 encoding<byte[]> read tag 1 tag values (names and types are
available in the data series code)

...
TAG ID N:TAG TYPE N encoding<byte[]> read tag N ...

Note that tag values are encoded as array of bytes. The routines to convert tag values into byte array and back
are the same as in BAM with the exception of value type being captured in the tag key rather in the value.
Hence consuming 1 byte for types ‘C’ and ‘c’, 2 bytes for types ‘S’ and ‘s’, 4 bytes for types ‘I’, ‘i’ and ‘f’, and
a variable number of bytes for types ‘H’, ‘Z’ and ‘B’.

8.5 Slice header block

The slice header block is never compressed (block method=raw). For reference mapped reads the slice header
also defines the reference sequence context of the data blocks associated with the slice. Mapped reads can be
stored along with placed unmapped3 reads on the same reference within the same slice.

Slices with the Multiple Reference flag (-2) set as the sequence ID in the header may contain reads mapped to
multiple external references, including unmapped3 reads (placed on these references or unplaced), but multiple
embedded references cannot be combined in this way. When multiple references are used, the RI data series
will be used to determine the reference sequence ID for each record. This data series is not present when only
a single reference is used within a slice.

The Unmapped (-1) sequence ID in the header is for slices containing only unplaced unmapped3 reads.

A slice containing data that does not use the external reference in any sequence may set the reference MD5
sum to zero. This can happen because the data is unmapped or the sequence has been stored verbatim instead
of via reference-differencing. This latter scenario is recommended for unsorted or non-coordinate-sorted data.

The slice header block contains the following fields.

3Unmapped reads can be placed or unplaced. By placed unmapped read we mean a read that is unmapped according to bit
0x4 of the BF (BAM bit flags) data series, but has position fields filled in, thus "placing" it on a reference sequence. In contrast,
unplaced unmapped reads have have a reference sequence ID of -1 and alignment position of 0.

11

12: end if

13: mate_ref_id ← ReadItem(NS, Integer)
14: mate_position ← ReadItem(NP, Integer)
15: template_size ← ReadItem(TS, Integer)
16: else if CF AND 4 then ▷ Mate is downstream
17: if next_frag.bam_flags AND 0x10 then

18: this.bam_flags← this.bam_flags OR 0x20 ▷ next segment reverse complemented
19: end if

20: if next_frag.bam_flags AND 0x04 then

21: this.bam_flags← this.bam_flags OR 0x08 ▷ next segment unmapped
22: end if

23: next_frag ← ReadItem(NF,Integer)
24: next_record← this_record+ next_frag + 1
25: Resolve mate_ref_id for this_record and next_record once both have been decoded
26: Resolve mate_position for this_record and next_record once both have been decoded
27: Find leftmost and rightmost mapped coordinate in records this_record and next_record.
28: For leftmost of this_record and next_record: template_size← rightmost− leftmost+ 1
29: For rightmost of this_record and next_record: template_size← −(rightmost− leftmost+ 1)
30: end if

31: end procedure

Note as with the SAM specification a template may be permitted to have more than two alignment records.
In this case the “mate” for each record is considered to be the next record, with the mate for the last record
being the first to form a circular list. The above algorithm is a simplification that does not deal with this
scenario. The full method needs to observe when record this + NF is also labelled as having an additional
mate downstream. One recommended approach is to resolve the mate information in a second pass, once the
entire slice has been decoded. The final segment in the mate chain needs to set bam_flags fields 0x20 and
0x08 accordingly based on the first segment. This is also not listed in the above algorithm, for brevity.

10.5 Auxiliary tags

Tags are encoded using a tag line (TL data series) integer into the tag dictionary (TD field in the compression
header preservation map, see section 8.4). See section 8.4 for a more detailed description of this process.

Data series

type

Data series

name

Field Description

int TL tag line an index into the tag dictionary (TD)
* ??? tag name/type 3 character key (2 tag identifier and 1 tag

type), as specified by the tag dictionary

1: procedure DecodeTagData

2: tag_line← ReadItem(TL,Integer)
3: for all ele ∈ container_pmap.tag_dict(tag_line) do

4: name← first two characters of ele
5: tag(type)← last character of ele
6: tag(name)← ReadItem(ele, Byte[])
7: end for

8: end procedure

In the above procedure, name is a two letter tag name and type is one of the permitted types documented in
the SAM/BAM specification. Type is

:

A
::

(a
:::::

single
::::::::::

character),
:

c (signed 8-bit integer), C (unsigned 8-bit integer),
s (signed 16-bit integer), S (unsigned 16-bit integer), i (signed 32-bit integer), I (unsigned 32-bit integer), f
(32-bit float), Z (nul-terminated string), H (nul-terminated string of hex digits) and B (binary data in array
format with the first byte being one of c,C,s,S,i,I,f using the meaning above, a 32-bit integer for the number
of array elements, followed by array data encoded using the specified format). All integers are little endian
encoded.

For example a SAM tag MQ:i has name MQ and type i and will be decoded using one of MQc, MQC, MQs,
MQS, MQi and MQI data series depending on size and sign of the integer value.

19

	Overview
	Data types
	Logical data types
	Writing bits to a bit stream
	Writing bytes to a byte stream

	Encodings
	Checksums
	CRC32
	CRC32 sum

	File structure
	File definition
	Container header structure
	CRAM header container

	Block structure
	Block content types
	Block content id
	CRAM header block(s)
	Compression header block
	Slice header block
	Core data block
	External data blocks

	End of file container
	Record structure
	CRAM record
	CRAM positional data
	Read names (RN data series)
	Mate records
	Auxiliary tags
	Mapped reads
	Unmapped reads

	Reference sequences
	Indexing
	Encodings
	Introduction
	EXTERNAL: codec ID 1
	Huffman coding: codec ID 3
	Byte array coding
	Beta coding: codec ID 6
	Subexponential coding: codec ID 7
	Gamma coding: codec ID 9
	DEPRECATED: Golomb coding: codec ID 2
	DEPRECATED: Golomb-Rice coding: codec ID 8

	External compression methods
	Gzip
	Bzip2
	LZMA
	rANS4x8 codec
	rANS4x16 codec
	adaptive arithemtic coding
	fqzcomp codec
	name tokeniser

	Appendix
	Choosing the container size
	CRAM History
	Contributors and Acknowledgements

