
The example shows in order:

1. A precise deletion with known breakpoint, a one base micro-homology, and a sample that is homozygous for
the deletion.

2. An imprecise deletion of approximately 105 bp.

3. An imprecise deletion of an ALU element relative to the reference.

4. An imprecise insertion of an L1 element relative to the reference.

5. An imprecise duplication of approximately 21Kb
:::::

21kb. The sample genotype is copy number 3 (one extra copy
of the duplicated sequence).

6. An imprecise tandem duplication of 76bp. The sample genotype is copy number 5 (but the two haplotypes are
not known).

5.4 Specifying complex rearrangements with breakends

An arbitrary rearrangement event can be summarized as a set of novel adjacencies. Each adjacency ties together
2 breakends. The two breakends at either end of a novel adjacency are called mates.

There is one line of VCF (i.e. one record) for each of the two breakends in a novel adjacency. A breakend record is
identified with the tag “SVTYPE=BND” in the INFO field. The REF field of a breakend record indicates a base or
sequence s of bases beginning at position POS, as in all VCF records. The ALT field of a breakend record indicates
a replacement for s. This “breakend replacement” has three parts:

1. The string t that replaces places s. The string t may be an extended version of s if some novel bases are inserted
during the formation of the novel adjacency.

2. The position p of the mate breakend, indicated by a string of the form “chr:pos”. This is the location of the
first mapped base in the piece being joined at this novel adjacency.

3. The direction that the joined sequence continues in, starting from p. This is indicated by the orientation of
square brackets surrounding p.

These 3 elements are combined in 4 possible ways to create the ALT. In each of the 4 cases, the assertion is that s
is replaced with t, and then some piece starting at position p is joined to t. The cases are:

REF ALT Meaning
s t[p[piece extending to the right of p is joined after t
s t]p] reverse comp piece extending left of p is joined after t
s]p]t piece extending to the left of p is joined before t
s [p[t reverse comp piece extending right of p is joined before t

The example in Figure 1 shows a 3-break operation involving 6 breakends. It exemplifies all possible orientations
of breakends in adjacencies. Notice how the ALT field expresses the orientation of the breakends.

#CHROM POS ID REF ALT QUAL FILTER INFO
2 321681 bnd W G G]17:198982] 6 PASS SVTYPE=BND
2 321682 bnd V T]13:123456]T 6 PASS SVTYPE=BND
13 123456 bnd U C C[2:321682[6 PASS SVTYPE=BND
13 123457 bnd X A [17:198983[A 6 PASS SVTYPE=BND
17 198982 bnd Y A A]2:321681] 6 PASS SVTYPE=BND
17 198983 bnd Z C [13:123457[C 6 PASS SVTYPE=BND

5.4.1 Inserted Sequence

Sometimes, as shown in Figure 2, some bases are inserted between the two breakends, this information is also carried
in the ALT column:

#CHROM POS ID REF ALT QUAL FILTER INFO
2 321682 bnd V T]13 : 123456]AGTNNNNNCAT 6 PASS SVTYPE=BND;MATEID=bnd U
13 123456 bnd U C CAGTNNNNNCA[2 : 321682[6 PASS SVTYPE=BND;MATEID=bnd V

11

6 BCF specification

VCF is very expressive, accommodates multiple samples, and is widely used in the community. Its biggest drawback
is that it is big and slow. Files are text and therefore require a lot of space on disk. A normal batch of 1̃00 exomes is a
few GB

::::::::

gigabytes, but large-scale VCFs with thousands of exome samples quickly become hundreds of GBs
::::::::

gigabytes.
Because the file is text, it is extremely slow to parse.

Overall, the idea behind is BCF2 is simple. BCF2 is a binary, compressed equivalent of VCF that can be indexed
with tabix and can be efficiently decoded from disk or streams. For efficiency reasons BCF2 only supports a subset
of VCF, in that all info and genotype fields must have their full types specified. That is, BCF2 requires that if e.g.
an info field AC is present then it must contain an equivalent VCF header line noting that AC is an allele indexed
array of type integer.

6.1 Overall file organization

A BCF2 file is composed of a mandatory header, followed by a series of BGZF compressed blocks of binary BCF2
records. The BGZF blocks allow BCF2 files to be indexed with tabix.

BGZF blocks are composed of a VCF header with a few additional records and a block of records. Following the
last BGZF BCF2 record block is an empty BGZF block (a block containing zero type of data), indicating that the
records are done.

A BCF2 header follows exactly the specification as VCF, with a few extensions/restrictions:

• All BCF2 files must have fully specified contigs definitions. No record may refer to a contig not present in the
header itself.

• All INFO and GENOTYPE fields must be fully typed in the BCF2 header to enable type-specific encoding of
the fields in records. An error should be thrown when converting a VCF to BCF2 when an unknown or not
fully specified field is encountered in the records.

6.2 Header

The BCF2 header contains the following items:

Field Type Notes

magic char[3] The characters “BCF”

major version uint8 t 2

minor version uint8 t 1

l text uint32 t Length of the “text” field, including the terminating NUL character

text char[l text] VCF format header text, NUL-terminated

The “magic” field and version numbers can be used to quickly examine the file to determine that it’s a BCF2.1 file.
The “text” field contains the standard VCF header lines in text format, from ##fileformat=VCFv4.1 to #CHROM ...

inclusive, terminated by a NUL character.
Because the type is encoded directly in the header, the recommended extension for BCF2 formatted files is

.bcf. BCF2 supports encoding values in a dictionary of strings. The string map is provided by the keyword
##dictionary=S0,S1,...,SN as a comma-separate ordered list of strings. See the “Dictionary of strings” section
for more details.

6.2.1 Dictionary of strings

Throughout the BCF file most string values are be specified by integer reference to their dictionary values. For
example, the following VCF record:

##INFO=<ID=ASP,Number=0,Type=Flag,Description="X">

##INFO=<ID=RSPOS,Number=1,Type=Integer,Description="Y">

##INFO=<ID=dbSNPBuildID,Number=1,Type=Integer,Description="Z">

##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens">

#CHROM POS ID REF ALT QUAL FILTER INFO

20 10144 rs144773400 TA T . PASS ASP;RSPOS=10145,dbSNPBuildID=134

20 10228 rs143255646 TA T . PASS ASP;RSPOS=10229;dbSNPBuildID=134

20

	The VCF specification
	An example
	Meta-information lines
	File format
	Information field format
	Filter field format
	Individual format field format
	Alternative allele field format
	Assembly field format
	Contig field format
	Sample field format
	Pedigree field format

	Header line syntax
	Data lines
	Fixed fields
	Genotype fields

	Understanding the VCF format and the haplotype representation
	INFO keys used for structural variants
	FORMAT keys used for structural variants
	Representing variation in VCF records
	Creating VCF entries for SNPs and small indels
	Example 1
	Example 2
	Example 3

	Decoding VCF entries for SNPs and small indels
	SNP VCF record
	Insertion VCF record
	Deletion VCF record
	Mixed VCF record for a microsatellite

	Encoding Structural Variants
	Specifying complex rearrangements with breakends
	Inserted Sequence
	Large Insertions
	Multiple mates
	Explicit partners
	Telomeres
	Event modifiers
	Inversions
	Uncertainty around breakend location
	Single breakends
	Sample mixtures
	Clonal derivation relationships
	Phasing adjacencies in an aneuploid context

	BCF specification
	Overall file organization
	Header
	Dictionary of strings
	Dictionary of contigs

	BCF2 records
	Site encoding
	Genotype encoding
	Type encoding

	Encoding a VCF record example
	Encoding CHROM and POS
	Encoding QUAL
	Encoding ID
	Encoding REF/ALT fields
	Encoding FILTER
	Encoding the INFO fields
	Encoding Genotypes

	BCF2 block gzip and indexing

