
Key Value data type Name Value
BF encoding<int> BAM bit flags see separate section
CF encoding<int> CRAM bit flags see specific section
RI encoding<int> reference id record reference id from the SAM file header
RL encoding<int> read lengths read lengths
AP encoding<int> in-seq positions if AP-Delta = true: 0-based alignment start

delta from the AP value in the previous record.
Note this delta may be negative, for example
when switching references in a multi-reference
slice. When the record is the first in the slice, the
previous position used is the slice alignment-start
field (hence the first delta should be zero for
single-reference slices, or the AP value itself for
multi-reference slices).
if AP-Delta = false: encodes the alignment start
position directly

::::::::

(1-based)
RG encoding<int> read groups read groups. Special value ‘-1’ stands for no

group.
RNa encoding<byte[]> read names read names
MF encoding<int> next mate bit flags see specific section
NS encoding<int> next fragment

reference sequence id
reference sequence ids for the next fragment

NP encoding<int> next mate alignment
start

alignment positions for the next fragment

::::::::

(1-based)
TS encoding<int> template size template sizes
NF encoding<int> distance to next

fragment
number of records to skip to the next fragmentb

TLc encoding<int> tag ids list of tag ids, see tag encoding section
FN encoding<int> number of read

features
number of read features in each record

FC encoding<byte> read features codes see separate section
FP encoding<int> in-read positions positions of the read features; a positive delta to

the last position (starting with zero)
DL encoding<int> deletion lengths base-pair deletion lengths
BB encoding<byte[]> stretches of bases bases
QQ encoding<byte[]> stretches of quality

scores
quality scores

BS encoding<byte> base substitution
codes

base substitution codes

IN encoding<byte[]> insertion inserted bases
RS encoding<int> reference skip length number of skipped bases for the ‘N’ read feature
PD encoding<int> padding number of padded bases
HC encoding<int> hard clip number of hard clipped bases
SC encoding<byte[]> soft clip soft clipped bases
MQ encoding<int> mapping qualities mapping quality scores
BA encoding<byte> bases bases
QS encoding<byte> quality scores quality scores
TCd N/A legacy field to be ignored
TNd N/A legacy field to be ignored
a Note RN this is decoded after MF if the record is detached from the mate and we are attempting to

auto-generate read names.
b The count is reset for each slice so NF can only refer to a record later within this slice.
c TL is followed by decoding the tag values themselves, in order of appearance in the tag dictionary.
d TC and TN are legacy data series from CRAM 1.0. They have no function in CRAM 3.0 and should not

be present. However some implementations do output them and decoders must silently skip these fields.
It is illegal for TC and TN to contain any data values, although there may be empty blocks associated
with them.

10

Bit flag Name Description
0x1 quality scores stored as array quality scores can be stored as read features or as an

array similar to read bases.
0x2 detached mate information is stored verbatim (e.g. because the

pair spans multiple slices or the fields differ to the
CRAM computed method)

0x4 has mate downstream tells if the next segment should be expected further in
the stream

0x8 decode sequence as “*” informs the decoder that the sequence is unknown and
that any encoded reference differences are present only
to recreate the CIGAR string.

The following pseudocode describes the general process of decoding an entire CRAM record. The sequence data
itself is in one of two encoding formats depending on whether the record is aligned (mapped).

Decode pseudocode

1: procedure DecodeRecord

2: BAM_flags ← ReadItem(BF, Integer)
3: CRAM_flags ← ReadItem(CF, Integer)
4: DecodePositions ▷ See section 10.2
5: DecodeNames ▷ See section 10.3
6: DecodeMateData ▷ See section 10.4
7: DecodeTagData ▷ See section 10.5

8: if (BF AND 4) = 0 then ▷ Unmapped flag
9: DecodeMappedRead ▷ See section 10.6

10: else
11: DecodeUnmappedRead ▷ See section 10.7
12: end if
13: end procedure

This pseudocode is not meant to be a fully implementable programming language, but to act as an algorithmic
guide to the order and structure of CRAM decoding.

The ReadItem function referred above takes two arguments; the data series name and the data type used by
the Encoding. It will use the codec specified in the Container Compression Header to retrieve the next value
from that data series. Note there is only one permitted data type per data series, so the second argument is
redundant and is included only as an aide-mémoire.

10.2 CRAM positional data

Following the bit-wise BAM and CRAM flags, CRAM encodes positional related data including reference,
alignment positions and length, and read-group. Positional data is stored for both mapped and unmapped
sequences, as unmapped data may still be “placed” at a specific location in the genome (without being aligned).
Typically this is done to keep a sequence pair (paired-end or mate-pair sequencing libraries) together when one
of the pair aligns and the other does not.

For reads stored in a position-sorted slice, the AP-delta flag in the compression header preservation map should
be set and the AP data series will be delta encoded, using the slice alignment-start value as the first position to
delta against. Note for multi-reference slices this may mean that the AP series includes negative values, such as
when moving from an alignment to the end of one reference sequence to the start of the next or to unmapped
unplaced data. When the AP-delta flag is not set the AP data series is stored as a normal integer value

:

,
:::::

using

:::::::

1-based
::::::::::

coordinates
:::

as
:::

per
:::::

SAM.

16

(mapped status, orientation) for both records. In this case both records are labelled as “detached” in the CF
data series using bit 2.

If this and the next fragment are within the same slice, we can derive much of this information by comparing the
two records. The upstream record has CF bit 4 (mate downstream) flag set and stores the number of records to
skip (in the NF data series) between this record and the record for the next fragment on this template, with zero
meaning the next fragment is also the next record. The downstream record has neither CF bits 2 (detached)
or 4 (mate downstream) set nor does it use the NF data series (unless it also has an additional “next fragment”
to refer to).

It is not mandatory to use this deduplication approach and optionally CRAM write implementations may wish
to label data as detached even when all records for the template reside in the same slice. One reason to do this
may be to preserve inconsistent data so that it round-trips through the CRAM format with full fidelity

Data series
type

Data series name Description

int NF the number of records to skip to the next fragment

In the above case, the NS (mate reference name), NP (mate position) and TS (template size) fields for both
records should be derived once the mate has also been decoded. Mate reference name and position are obvious
and simply copied from the mate. The template size is computed using the method described in the SAM
specification; the inclusive distance from the leftmost to rightmost mapped bases with the sign being positive
for the leftmost record and negative for the rightmost record.

If the next fragment is not found within this slice then the following structure is included into the CRAM record.
Note there are cases where read-pairs within the same slice may be marked as detached and use this structure,
such as to store mate-pair information that does not match the algorithm used by CRAM for computing the
mate data on-the-fly.

Data series
type

Data series name Description

int MF next mate bit flags, see table below
byte[] RN the read name (if and only if not known already)
int NS mate reference sequence identifier
int NP mate alignment start position

::::::::

(1-based)
int TS the size of the template (insert size)

Next mate bit flags (MF data series)

The next mate bit flags expressed as an integer represent the MF data series. These represent the missing bits
we excluded from the BF data series (when compared to the full SAM/BAM flags). The following bit flags are
defined:

Bit flag Name Description
0x1 mate negative strand bit the bit is set if the mate is on the negative strand
0x2 mate unmapped bit the bit is set if the mate is unmapped

Decode mate pseudocode

In the following pseudocode we are assuming the current record is this and its mate is next_frag.

1: procedure DecodeMateData

2: if CF AND 2 then ▷ Detached from mate
3: mate_flags← ReadItem(MF,Integer)
4: if mate_flags AND 1 then
5: bam_flags← bam_flags OR 0x20 ▷ Mate is reverse-complemented
6: end if
7: if mate_flags AND 2 then
8: bam_flags← bam_flags OR 0x08 ▷ Mate is unmapped
9: end if

10: if container_pmap.read_names_included ̸= 1 then
11: read_name← ReadItem(RN, Byte[])

18

	Overview
	Data types
	Logical data types
	Writing bits to a bit stream
	Writing bytes to a byte stream

	Encodings
	Checksums
	CRC32
	CRC32 sum

	File structure
	File definition
	Container header structure
	CRAM header container

	Block structure
	Block content types
	Block content id
	CRAM header block(s)
	Compression header block
	Slice header block
	Core data block
	External data blocks

	End of file container
	Record structure
	CRAM record
	CRAM positional data
	Read names (RN data series)
	Mate records
	Auxiliary tags
	Mapped reads
	Unmapped reads

	Reference sequences
	Indexing
	Encodings
	Introduction
	EXTERNAL: codec ID 1
	Huffman coding: codec ID 3
	Byte array coding
	Beta coding: codec ID 6
	Subexponential coding: codec ID 7
	Gamma coding: codec ID 9
	DEPRECATED: Golomb coding: codec ID 2
	DEPRECATED: Golomb-Rice coding: codec ID 8

	External compression methods
	Gzip
	Bzip2
	LZMA
	rANS4x8 codec
	rANS4x16 codec
	adaptive arithemtic coding
	fqzcomp codec
	name tokeniser

	Appendix
	Choosing the container size
	CRAM History
	Contributors and Acknowledgements

