
0x61 0x87 0x47 # ‘a’ <1863>

0x62 0x02 0x82 0xe8 # ‘b’ <+2: c,d> <744>

0x81 0x74 # ‘c’ (implicit) <372>

0x81 0x74 # ‘d’ (implicit) <372>

0x72 0x82 0xe8 # ‘r’ <744>

0x00 # <0>

Order-1 encoding

To encode Order-1 statistics typically requires a larger table as for an N sized alphabet we need to potentially
store an NxN matrix. We store these as a series of Order-0 tables.

We start with the outer context byte, emitting the symbol if it is non-zero frequency. We perform the same
run-length-encoding as we use for the Order-0 table and end the contexts with a nul byte. After each context
byte we emit the Order-0 table relating to that context.

One last caveat is that we have no context for the first byte in the data stream (in fact for 4 equally spaced
starting points, see “interleaving" below). We use the ASCII value (‘\0’) as the starting context for each
interleaved rANS state and so need to consider this in our frequency table.

Consider abracadabraabracadabraabracadabraabracadabr
::

abracadabraabracadabraabracadabraabracadabrad

as example input. Note for the last “a” was omitted from this string in order to demonstrate how the
method works when the data is not a multiple of 4 long.

:::::::::

additional
:::::::

trailing
::::

“d”
::::::

giving
:::

us
:::

45
::::::::::

characters

::::::

instead
::

of
::::

44.
:

This can be broken into 4 approximate equal portions abracadabra abracadabra abracadabra

abracadabr
:::::::::::::

abracadabrad. We operate one independent rANS stream per portion, providing us the opportunity
to exploit CPU data parallelism.

Naively observed Order-1 frequencies:

Context Symbol Frequency
\0 a 4
a a 3

b 8
c 4
d 4

:

5
:

b r 8
c a 4
d a 4
r a 7

:

8
:

Normalised (per Order-0 statistics):

Context Symbol Frequency
\0 a 4095
a a 646

:::

614
:

b 1725
::::

1639
:

c 862
:::

819
:

d 862
::::

1023
:

b r 4095
c a 4095
d a 4095
r a 4095

Note that the above table has redundant entries. While our complete string had three cases of two consecutive
“a” characters (“...cadabraabraca...”), these spanned the junction of our split streams and each rANS state is
operating independently, starting with the same last character of nul (0). Hence during decode we will not need
to access the table for the frequency of “a” in the context of a previous “a”. A similar issue occurs for the very
last byte used for each rANS state, which will not be used as a context. In extreme cases this may even be
the only time that symbols occurs anywhere. While these scenarios represent unnecessary data to store, and
these frequency entries can be safely omitted, their presence does not invalidate the data format and it may be
simpler to use a more naive algorithm when producing the frequency tables.

The above tables are encoded as:

0x00 # ‘\0’ context

0x61 0x8f 0xff # a <4095>

0x00 # end of Order-0 table

0x61 # ‘a’ context

0x61 0x82 0x86 # a <646>

0x62 0x02 0x86 0xbd # b <+2: c,d> <1725>

0x83 0x5e # c (implicit) <862>

0x83 0x5e # d (implicit) <862>

:

0
:::

x61
::::::::

0
:::

x82
::

0
:::

x66
:::

#
::

a
:::::::::::::::::::

<614>

:

0
:::

x62
::

0
:::

x02
:::

0
:::

x86
::

0
:::

x66
:::

#
::

b
:::::

<+2:
:::

c
:

,
:

d
:

>
::::::::

<1638>

5

::::::::::::

0
:::

x83
::

0
:::

x33
:::

#
::

c
::

(
:::::::::

implicit
:

)
:::::::

<819>

::::::::::::

0
:::

x84
::

0
:::

x00
:::

#
::

d
::

(
:::::::::

implicit
:

)
:::::::

<1024>

0x00 # end of Order-0 table

0x62 0x02 # ‘b’ context, <+2: c, d>

0x72 0x8f 0xff # r <4095>

0x00 # end of Order-0 table

‘c’ context (implicit)

0x61 0x8f 0xff # a <4095>

0x00 # end of Order-0 table

‘d’ context (implicit)

0x61 0x8f 0xff # a <4095>

0x00 # end of Order-0 table

0x72 # ‘r’ context

0x61 0x8f 0xff # a <4095>

0x00 # end of Order-0 table

0x00 # end of contexts

2.2 rANS entropy encoding

The encoder takes a symbol s and a current state x (initially L below) to produce a new state x′ with function
C.

x′ = C(s, x)

The decoding function D is the inverse of C such that C(D(x)) = x.

D(x′) = (s, x)

The entire encoded message can be viewed as a series of nested C operations, with decoding yielding the symbols
in reverse order, much like popping items off a stack. This is where the asymmetric part of ANS comes from.

As we encode into x the value will grow, so for efficiency we ensure that it always fits within known bounds.
This is governed by

L ≤ x < bL− 1

where b is the base and L is the lower-bound.

We ensure this property is true before every use of C and after every use of D. Finally to end the stream we
flush any remaining data out by storing the end state of x.

Implementation specifics

We use an unsigned 32-bit integer to hold x. In encoding it is initialised to L. For decoding it is read little-endian
from the input stream.

Recall freqi is the frequency of the i-th symbol si in alphabet A. We define cfreqi to be cumulative frequency
of all symbols up to but not including si:

cfreqi =

{

0 if i < 1
cfreqi−1 + freqi−1 if i ≥ 1

We have a reverse lookup table cfreq_to_symc from 0 to 4095 (0xfff) that maps a cumulative frequency c to
a symbol s.

cfreq_to_symc = si where c : cfreqi ≤ c < cfreqi + freqi

The x′ = C(s, x) function used for the i-th symbol s is:

x′ = (x/freqi)× 0x1000+ cfreqi + (x mod freqi)

The D(x′) = (s, x) function used to produce the i-th symbol s and a new state x is:

6

	Introduction
	Pseudocode introduction
	Mathematical operators
	Implicit functions
	Other basic functions

	rANS 4x8 - Asymmetric Numeral Systems
	Frequency table
	rANS entropy encoding
	rANS decode pseudocode

	rANS Nx16
	Frequency tables
	rANS Nx16 Order-0
	rANS Nx16 Order-1
	rANS Nx16 Run Length Encoding
	rANS Nx16 Bit Packing
	Striped rANS Nx16
	Combined rANS Nx16 Format

	Range coding
	Adaptive Modelling
	Order-0 and Order-1 Encoding
	RLE with Order-0 and Order-1 Encoding

	Name tokenisation codec
	FQZComp quality codec
	FQZComp Models
	FQZComp Data Stream

